

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

> In this paper, notions of some separation axioms by using D-set in bitopological space. We studied some of the fundamental properties and relations among types of D_k -bitopological

Some Separation Axioms Via D-Set in Bitopological Space

A B S T R A C T

MSC..

spaces where $k = 0.1$.

Hadeel Husham Kadhim^a

^aDepartment of Mathematics, College of Education, University of Al-Qadisiyah, Al-Diwaniyah , Iraq.

Email[: hiadeel.husham@qu.edu.iq](mailto:hiadeel.husham@qu.edu.iq)

A R T I C L E IN F O

Article history: Received: 12 /1/2024 Rrevised form: 4 /2/2024 Accepted : 3 /3/2024 Available online: 30 /3/2024

Keywords:

D-set, D_k -bitopological spaces, pairwise D_k -bitopological spaces and weak pairwise D_k -bitopological spaces for $k = 0,1$.

https://doi.org/10.29304/jqcsm.2024.16.11444

1. Introduction:

Kelly In 1963 [3] defined bitopological spac . In 1966[4] Murdeshwar studied the concepts of pairwise- T_a and weak pairwise $T_o\,$ spaces. In [5] 1982 Tong introduced definition of D-set . Tallafha In [1] studied continuous and pairwise continuous functions of bitopological spaces. In [6] O.Ravi investigated open set in bitopological space . Rupaya in [7] presented defined $\,T_{o}\,$ -bitopological space . In [2] Khadiga investigated defined subbitopological spaces. In this paper we introduce and study the definition of D-set in bitopological space and some types of D_k –bitopological spaces for $\boldsymbol{k} = 0.1$.

2. D-set in bitopological space

Definition (2.1)[5]

Let (X, τ) is topological space .The subset H of X is said to be difference set (D-set) if there exist two open sets M and N in X such that $M \neq X$, H= M – N.

Definition (2.2)[3]

Email addresses: : hiadeel.husham@qu.edu.iq

[∗]Corresponding author: Hadeel Husham Kadhim

If X non-empty set and σ_1 , σ_2 are two Topologies on X. A space (X, σ_1 , σ_2) is called bitopological space.

Definition (2.3)[6]

In bitopological space (X, σ_1, σ_2) the subset K is said to be $\sigma_1\sigma_2$ -open set if K= U∪V where U∈ σ_1 and V∈ σ_2 . The complement of $\sigma_1 \sigma_2$ -open is called $\sigma_1 \sigma_2$ -closed.

Definition (2.4)

A subset W of bitopological space (X , σ_1 , σ_2) is called $\sigma_1\sigma_2$ -difference set ($\sigma_1\sigma_2$ -D -set) if W= U_1 \cup U_2 where U_1 is Dset in (X, σ_1) and U_2 is D-set in (X, σ_2) .

Remark (2.1)

Every $\sigma_1 \sigma_2$ -open (is not equal to X) is $\sigma_1 \sigma_2$ -D-set.

But the converse is not true for example

Example (2.1)

Let X={h₁, h₂, h₃, h₄} and σ_1 ={ Ø, X,{h₁, h₂, h₃}, {h₂, h₃}}, σ_2 ={Ø, X,{h₂,h₄}, {h₄}} are two topologies on X. Since $A = \{h_1, h_2\} = \{h_1\} \cup \{h_2\}$. Since $\{h_1\} \notin \sigma_1$ and $\{h_2\} \notin \sigma_2$ hence $\{h_1, h_2\}$ is not $\sigma_1 \sigma_2$ -open . But $\{h_1\}$ is σ_1 -D- set and $\{h_2\}$ is σ_2 -D- set then A is $\sigma_1 \sigma_2$ -D- set

Definition (2.5)[1]

Afunction f:(X, σ_1 , σ_2) \to (Y, ρ_1 , ρ_2) is called continuous if f:(X, σ_1) \to (Y, ρ_1) and f:(X, σ_2) \to (Y, ρ_2) are continuous where (X, σ_1, σ_2) and (Y, ρ_1, ρ_2) be two bitopological spaces

Theorem (2.1)

If f:(X, σ_1 , σ_2) \rightarrow (Y, ρ_1 , ρ_2) is continuous therefore the inverse image of $\rho_1 \rho_2$ -D-set is $\sigma_1 \sigma_2$ -D-set. **Proof**

Suppose G is $\rho_1 \rho_2$ -D-set in Y .Then G =A∪B suchthat A is ρ_1 -D-set and B is ρ_2 -D-sets in Y thus A=U–V and B=O–S where $U, V \neq Y$ and $(U, V \in \rho_1)$ and $(O, S \in \rho_2)$ Since $f:(X, \sigma_1, \sigma_2) \rightarrow (Y, \rho_1, \rho_2)$ is continuous hence $f:(X, \rho_1, \rho_2)$ σ_1 \rightarrow (Y, ρ_1) and f: (X, σ_2) \rightarrow (Y, ρ_2) are continuous . Thus $f^{-1}(U)$, $f^{-1}(U)$ \in σ_1 and $f^{-1}(U)$, $f^{-1}(V)$ \in σ_2 . And $f^{-1}(U)$ $f^{-1}(0) \neq X$. Therefore $f^{-1}(U) - f^{-1}(V) = f^{-1}(U - V) = f^{-1}(A)$ hence $f^{-1}(A)$ is σ_1 -D-set and $f^{-1}(0) - f^{-1}(V)$ $f^{-1}(S) = f^{-1}(O-S) = f^{-1}(B)$ is σ_2 -D-set in X. Thus the inverse image of $\rho_1 \rho_2$ -D-set is $\sigma_1 \sigma_2$ -D-set

3. -bitopological spaces

Definition (3.1)[7]

Bitopological space (X , σ_1 , σ_2) is said to be T_o if and only if for each different points in *X* there exists U is $\sigma_1\sigma_2$ -open set containing one not containing other*.*

Definition (3.2)

A bitopological space (X, σ_1, σ_2) is called D_o if and only if for each different points in *X* there exists $\sigma_1\sigma_2$ -D- set containing one but not containing other *.*

Theorem (3.1)

Every T_o bitopological space is D_o .

Proof :

Let (X, σ_1, σ_2) is T_o and x, y in X such that $x \neq y$. Then there exist A is $\sigma_1\sigma_2$ -open set suchthat $x \in A$, $y \notin A$. Thus A is $\sigma_1 \sigma_2$ -D-set we have (X, σ_1 , σ_2) is D_o

Theorem (3.2)

If (X, σ_1) and (X, σ_2) is D_o then (X, σ_1, σ_2) is D_o . **Proof :**

Suppose $x \neq y$ in X. Thus $\exists G_1 = \{x \in G_1, y \notin G_1\}$ is σ_1 -D-set in (X, σ_1) and $G_2 = \{x \notin G_2, y \in G_2\}$ is σ_2 -D-set in (X, σ_2) because (X, σ_1) and (X, σ_2) are D_o . Let $G = G_1 \cup G_2$ then $x \in G$ and $y \notin G$ then (X, σ_1, σ_2) is D_o .

The following example shows the opposite of Theorem (3.2) is not true

Example (3.1)

Suppose X={ m, n, o, p}, σ_1 ={ \emptyset , X,{m, o},{0}} and σ_2 = { \emptyset , X, {n, p},{ p}}. It is clear that (X, σ_1 , σ_2) is D_o . But $n \neq p$ and there is no σ_1 -D-set containing n not containing p thus (X,σ_1) is not D_o . And $m \neq o$ and there is no σ_2 -Dset containing 1 not 3 thus (X, σ_2) is not D_o .

Theorem (3.3)

If f:(M , σ_1 , σ_2) \rightarrow (N , ρ_1 , ρ_2) is continuous and one to one and N is D_o -space then M D_o -space. **Proof :**

Let N is D_0 and $x \neq y$ in M . Then there exist a, b in Y and $a \neq b$, ($f(x)=a$, $f(y)=b$). Since f is one to one hence $f(x) \neq f(y)$. Since Y is D_0 then there exist U is $\rho_1 \rho_2$ -D-set in N such that $a \in U$ and b \Box U. we have the inverse image of U is $\sigma_1 \sigma_2$ -D-set in M containing x not y. Therefore (M, σ_1 , σ_2) is D_0 .

Definition(3.3)[2]

For a bitopological space (Y, σ_1, σ_2) and $A \subseteq X$. $(A, \sigma_{1_A}, \sigma_{2_A})$ is said to be subspace of (Y, σ_1, σ_2) when $\sigma_{1_A} = \{U_1 \cap A :$ $U_1 \in \sigma_1$ and $\sigma_{2_A} = \{ U_2 \cap A : U_2 \in \sigma_2 \}.$

Theorem(3.4)

If (Y, σ_1, σ_2) is D_o and A subset of X then $(A, \sigma_{1_A}, \sigma_{2_A})$ is D_o

Proof :

Suppose a and b are two distance points in A thus a and b in Y. Since Y is D_o then there exist G is $\sigma_1\sigma_2$ -D-set in Y and G containing a not b. Hence $G = V_1 \cup V_2$ where V_1 is σ_1 -D-set and V_2 is σ_2 -D-set in Y. Then $V_1 = O_1 - S_1$ and $V_2 = O_2 - S_2$ such that $(O_1, S_1 \in \sigma_1)$, $(O_2, S_2 \in \sigma_2)$ and $O_1, O_2 \neq Y$.

A∩G = A∩ [$(0_1 - S_1)$ ∪ ($0_2 - S_2$)] = $[(A \cap O_1) - (A \cap S_1)] \cup [(A \cap O_2) - (A \cap S_2)]$

Since $(A \cap O_1)$, $(A \cap S_1) \in \sigma_{1_A}$ and $(A \cap O_1) \neq Y$

 $(A \cap O_2)$, $(A \cap S_2) \in \sigma_{2A}$ and $(A \cap O_2) \neq Y$

Let $O_1^* - S_1^* = (A \cap O_1) - (A \cap S_1)$ and $O_2^* - S_2^* = (A \cap O_2) - (A \cap S_2)$

Hence $0^*_1 - S^*_1$ is σ_{1_A} -D-set and $A^*_2 = 0^*_2 - S^*_2$ is σ_{2_A} -D-set in A

Then A∩G = $A^* = A_1^* \cup A_2^*$ is $\tau_A \sigma_A$ -D-set in A . Since $x \in G$, $x \in A$ thus $x \in A^*$ and $y \notin G$, $y \in A$ thus $y \Box A^*$. we have hence (A, σ_{1_A} , σ_{2_A}) is D_o .

The following example shows that converse of Theorem(3.4) is not true

Example (3.2)

Let Y ={i, g, h, k }, σ_1 ={ \emptyset , X,{g}} and σ_2 = { \emptyset , X, {g, h}}. Let A={i} then $\sigma_{1_A} = \sigma_{2_A}$ ={ \emptyset , X}. It is clear that (A , $\sigma_{1_A}, \sigma_{2_A}$) is D_o . But i≠ k and ∄ U is $\sigma_1 \sigma_2$ -D-set and i ∈ U, k∉U hence (Y, σ_1 , σ_2) is not D_o .

Definition (3.4)

Bitopology (Y, σ_1 , σ_2) is said to be D_1 if and only if for each distance points m and n there are H and K $\sigma_1\sigma_2$ -Dsets such that $m \in H$, $n \notin H$ and $m \notin K$, $n \in K$.

Theorem (3.5)

If (Y, σ_1) and (Y, σ_2) are D_1 then (Y, σ_1, σ_2) is D_1 .

Proof :

Suppose $i \neq j$ in X. Since (Y, σ_1), (Y, σ_2) are D_1 then there exist U_1 and U_2 are σ_1 -D-sets such that ($i \in U_1$, $j \notin U_1$ and $i \notin U_2$, $j \in U_2$) and V_1 and V_2 are σ_2 -D-sets such that ($i \in V_1$, $j \notin V_1$ and $i \notin V_2$, $j \in V_2$). Let $U = U_1 \cup U_2$ and $V = U_1$ $V_1 \cup V_2$. Hence U and V are $\sigma_1 \sigma_2$ -D-sets and $i \in U$, j⊠U, i $\mathbb{Z}V$ and $j \in V$. Thus (Y, σ_1 , σ_2) is D_1 . The following example converse of Theorem(3.4) is not true for

Example (3.3)

Suppose $Y = \{u, v, w\}$, $\sigma_1 = \{\emptyset, Y, \{u, v\}, \{u\}\}$ and $\sigma_2 = \{\emptyset, Y, \{v, w\}, \{w\}\}\$. It is clear that (Y, σ_1, σ_2) is D_1 . But $u \neq w$ and $\#$ C_1 , C_2 are σ_1 -D-sets as u \in C_1 , $v \notin C_1$, $u \notin C_2$, $v \in C_2$.Thus (Y, σ_1) not D_1 . Similarity we have (Y, σ_2) is not D_1 .

Theorem (3.6)

If $f:(Y_1,\sigma_1,\sigma_2) \to (Y_2,\rho_1,\rho_2)$ is continuous and one to one and Y is D_1 -space then Y_1 D_1 -space. **Proof :**

Let Y_2 is D_1 and $x \neq y$ in Y_1 . Then there exist $a, b \in Y_2$ where $a \neq b$ $f(x)=u$, $f(y)=v$. Since f is one to one hence $f(x)$ is not equal to (y) . Since Y_2 is D_1 then there exist E and H are $\rho_1\rho_2$ -D containing in Y and $u \in E$, $v \notin E$, $u \notin H$ and $v \in H$. The inverse image of E and H are $\sigma_1\sigma_2$ -D-sets in Y_1 because f is continuous . And the inverse image of E containing u not v . We have $(Y_1, \sigma_1, \sigma_2)$ is D_1 .

Theorem(3.7)

Every subspace of D_1 -bitopological space is D_1 -bitopological space

Proof :

Suppose $(A, \sigma_{1_A}, \sigma_{2_A})$ is subspace in (M, σ_1, σ_2) . Let *u* and *v* are two different points in A thus *u*, $v \in M$. Since M is D₁ then there exist G and W are $\sigma_1\sigma_2$ -D-sets in M and ($u \in G$, $v \notin G$, $u \notin W$ and $v \in W$). Since A∩G and A∩W are $\sigma_{1_A}\sigma_{2_A}$ -D-sets in A . Let G* = A∩G and W* = A∩W. Therefore G* containing u not v and W* containing v not u then (A , σ_{1_A} , σ_{2_A}) is D_1

Theorem (3.8)

Every D_1 -bitopological space is D_0 .

Proof :

Let $a \neq b$ in X. Since (X, σ_1, σ_2) is D_1 then then there exist $G = \{ \in G, b \notin G \}$ and $W = \{ a \notin W, b \in W \}$ are $\sigma_1 \sigma_2$ -D Then (X, σ_1, σ_2) is D_o .

4. Pairwise and weak pairwise D_k \cdot bitopological spaces

Definition(4.1)

(N , σ_1 , σ_2) is said to be

1- pairwise T_o if and only if $\forall c$, $d \in \mathbb{N}$ and $c \neq d \exists K_1$ is σ_1 -open $(c \in K_1, d \notin K_1)$ or $\exists K_2$ is σ_2 -open $(d \in K_2)$, $c \notin K_2$) . [4]

2- pairwise D_o if and only if $\forall u, v \in \mathbb{N}$ $u \neq v \exists G_1$ is σ_1 -D-set ($u \in G_1$, $d \notin G_1$) or $\exists G_2$ σ_2 -D ($v \in G_2$, $u \notin G_2$).

Theorem (4.1)

Bitopological (X, σ_1, σ_2) pairwise T_o if and only if pairwise D_o

Proof:

Let $x \neq y$ in X and (X, σ_1, σ_2) is pairwise T_o then there exist either A is σ_1 -open A containing x not y. Or there is B is σ_2 -open set containing $\,x\,$ not $\,y\,$ thus $\,\sigma_1$ -D-set containing x not $y\,$. Therefore X is pairwise D_o .

Let $m \neq n$ in X and (X, σ_1, σ_2) is pairwise D_o then either A is σ_1 -D-set, $m \in A$ and $n \not\in A$. Thus $A = A_1 - A_2$ such that $A_1 \neq X$ where A_1, A_2 are σ_1 -open hence $m \in A_1$ and $y \notin A_1$. Or B is σ_2 -D-set such that $m \notin B$ and $n \in B$ thus B= B_1 – B_2 such that $B_1 \neq X$ and B_1 , B_2 are σ_2 -open hence $m \not\in B_1$ and $n \in B_1$. Therefore X is pairwise T_o .

Theorem (4.2)

Every D_0 is pairwise D_0 .

Proof:

Let $x \neq y$ in X and (X, σ_1, σ_2) is D_0 thus $\exists G$ is $\sigma_1 \sigma_2$ -D-set where $G = \{m \in G \text{ and } n \not\in G\}$. Thus $G = A \cup B$ such that A is σ_1 -D-set and B is σ_2 -D-set thus x containing in A or not containing in B and y not containing in A. Thus there exist A is σ_1 -D-set , A={ $x \in A$ and $y \notin A$ } or there exist B is σ_2 -D-set , B{ $x \not\in B$ and $y \in B$ }. Hence (X, σ_1 , σ_2) is pairwise D_o .

Theorem(4.3)

If (M, σ_1, σ_2) is pairwise- D_o and A subset of X therefore $(A, \sigma_{1_A}, \sigma_{2_A})$ is pairwise- D_o **proof**

Suppose c , d are different points in A thus $x \neq y$ in M . Since M is pairwise- D_o then either G is (σ_1 -D-set or is σ_2 -D) in M where G ={ $c \in G$ and d∉G} or G ={ $c \notin G$ and d $\in G$ }. It is clear that G∩A is σ_{1_A} -D-set or is σ_{2_A} -D-set in A, let G^* = G∩A .We have that $c \in G^*$ and $d \notin G^*$ or $c \notin G^*$ and $d \in G^*$. Therefore $(A, \sigma_{1_A}, \sigma_{2_A})$ is pairwise- D_o .

Definition (4.2)[1]

A function f:(X, σ_1 , σ_2) \to (Y, ρ_1 , ρ_2) said to be pairwise continuous if $f^{-1}(A) \in \sigma_1 \cup \sigma_2$ for all $A \in \rho_1 \cup \rho_2$

Theorem (4.4)

If $g:(N, \sigma_1, \sigma_2) \rightarrow (H, \rho_1, \rho_2)$ is pairwise continues and one to one and Y is D_0 -space then X D_0 -space. **Proof :**

Let H pairwise- D_0 where $x \neq y$ in X. We have \exists a, b in Y, $a \neq b$ and $g(x)=a$, $g(y)=b$. Since g is one to one hence $g(x) \neq g(y)$. Since N is pairwise- D_o then there exist G is (ρ_1 -D-set suchthat $a \in G$ and $b \notin G$) or (G is ρ_2 -D-set suchthat $a \notin G$ and $b \in G$. Hence then there exist S_1 , S_2 are ρ_1 open or ρ_2 -open suchthat $S_1 \neq H$ and $G = S_1 - S_2$. We have S_1 , $S_2 \in \rho_1 \cup \rho_2$. Since f is pairwise continuous thus the inverse image of S_1 , S_2 are σ_1 -open or σ_2 -open sets in N. Therefore the inverse image of S_1 , S_2 containing in $\tau_1\cup\sigma_1$ suchthat $f^{-1}(G)=f^{-1}(U)-f^{-1}(V)$ thus $f^{-1}(G)$ not equal to N $\;$ thus $f^{-1}(G)$ is $(\sigma_1$ -D-set suchthat $f^{-1}(G)$ ={ $x \in f^{-1}(G)$ and $y \notin f^{-1}(G)$ } or (G is σ_2 -D-set suchthat $x \notin$ G and $y \in G$). Hence Let X is pairwise- D_0 .

Definition(4.3)

A space (K, σ_1, σ_2) is said to be

i) Weak pairwise T_o if and only if ∀ m and n are distinct points in k ∃ U is σ_1 -open set or σ_2 -open , m ∈U and n∉U. [4]

ii)Weak pairwise D_o if and only if ∀m and n are distinct points in K \exists U is σ_1 -D-set or σ_2 -D-set m ∈U and n∉U.

Remark(4.1)

Every pairwise D_o is weak pairwise D_o

Theorem(4.5)

A bitopological space (X, σ_1 , σ_2) is weak pairwise T_o if and only if weak pairwise D_o **Proof :** Similarity to Theorem (4.1)

Remark(4.2)

Every D_0 is Weak pairwise D_0 .

Theorem (4.6)

If (M, σ_1) or (M, σ_2) D_o then (M, σ_1 , σ_2) is waek pairwise- D_o .

Proof:

Suppose x and y are different points in X. Since (M, σ_1) or (M, σ_2) are D_o thus there exist W is σ_1 -D-set or σ_2 -Dset such that $x\in$ W and y \mathbb{Z} W . Therefore <code>(M, σ_{1} , σ_{2})</code> is weak pairwise- D_o .

But the converse is not true for example

Example (4.1)

Let M ={ c, d, e} such that σ_1 ={ Ø, M,{c}} and σ_2 ={ Ø, M,{d}}. It is clear that M is weak pairwise- D_o but (M, σ_1) and (M , σ_2) not D_o

Theorem(4.7)

If (X , σ_1 , σ_2) is waek pairwise- D_o and A subset of X then $(A, \sigma_{1_A}, \sigma_{2_A})$ is weak pairwise- D_o

Proof : Clear

Remark (2.1)

If σ_1 or σ_2 discrete then (X, σ_1 , σ_2) is weak pairwise- D_o

Definition(4.4)

(M , σ_1 , σ_2) is said to be

i) pairwise D₁-space if and only if ∀ i , j ∈M where i≠j .∃ σ_1 -D-set U and σ_2 -D-set V where U ={ i ∈U ,)∉U } and V $\{i \notin V, i \in V\}$

ii) Weak pairwise D_1 -space if and only if ∀ i , j ∈M where i≠j . ∃ σ_1 -D-set A and σ_2 -D-set B such that either i ∈ A , j∉A and $j \in B$, i∉B or i $\in B$, j∉B and i∉A, j $\in A$.

- **Theorem (4.8)**
- 1) Every D_1 is pairwise D_0 .
- 2) Every pairwise D_1 is weak pairwise D_0 .
- 3) Every weak pairwise D_1 is pairwise D_0 .

```
Proof :
```
1) Let $x \neq y$ in X. And (X, σ_1, σ_2) is D_1 thus there exist A and B are $\sigma_1 \sigma_2$ -D-sets, A containing x not y, B containing y not $x, y \in B$. Then $A = S \cup O$ and $B = G \cup W$ such that S and G are σ_1 -D-sets, O and W are σ_2 -D-sets hence there exits S is σ_1 -D-set such that $x \in S$, $y \notin S$ or O is σ_2 -D-set such that $x \notin O$, $y \in O$. We have X is pairwise $D_{\scriptstyle o}$.

2) Suppose $x \neq y$ in W. And (W, σ_1 , σ_2) is pairwise D_1 thus there exist A is σ_1 -D-set and B is σ_2 -D-set such that $x \in A$, $y \notin A$ and $x \notin B$, $y \in B$. We have W is pairwise D_0 .

3) Let $x \neq y$ in X. And (X, σ_1, σ_2) is weak pairwise D_1 thus there exist K is σ_1 -D-set and G is σ_2 -D-set such that either K={ $x \in K$, $y \notin K$ } and G={ $x \notin G$, $y \in G$ } or G={ $x \in G$, $y \notin G$ } and K={ $x \notin K$, $y \in K$ }. Hence there exist K is σ_1 -D-set such that $x \in K$, $y \notin K$ or there exist G is σ_2 -D-set such that $x \notin G$, $y \in G$. We have (X, σ_1, σ_2) is pairwise D_{o}

Theorem (4.9)

If h: $(M, \sigma_1, \sigma_2) \rightarrow (N, \rho_1, \rho_2)$ is pairwise continues and one to one and N is D_1 then M is D_1 . **Proof :**

Similarity to Theorem (4.4)

Theorem (4.10)

If (X, σ_1, σ_2) is waek pairwise- D_1 and A subset of X then (A, τ_A, σ_A) is weak pairwise- D_1 **Proof: clear**

The following diagram explain the relations of types of D_K for $K = 0$, 1, as shown in Fig. 1.

Fig. 1. Relationship of types of D_K

References

[3] Kelly . J.C. '' Bitopological spaces '' proc. London Math Soc. 3(13) (1963) 71-89.

^[1] Tallafha Abdallah , Al-Bsoul Adnan and Fora Ali '' Countable Dense Homogeneous Bitopological Spaces*'' . TÜBİTAK, Tr. J. of Mathematics* 23 (1999) 233-242.

^[2] Khadiga Ali Arwini and Hanan Musbah Almrtadi '' New pairwise separation axioms in biotopplogical spaces '' Department of Mathematics Tripoli university Libya 145(2020) 31-45 .

[4] Murdeshwar. M. G and Naimpally. S. A, R1-Topological Spaces. *Canad. Math. Bull* 9 (1966) 521-523.

[5] Tong J. "A separation axioms between T_o and T_1 " Ann. Soc. Sci. Bruxelles , 96:85-90(1982)

[6] O. Ravi, S. Pious Missier, and T. salai Parkunan, (May, 2011) ,A new type of homeomorphism in a bi-topological space, International Journal of math. Sci. and Application, Vol. 1 No. 2 .

[7] Rupaya Roshmi and M. S. Hossain '' properties of separation axioms in bitopological spaces '' Department of Mathematics university of Rajshahi Bangladesh Acad Sci , Vol 43. No 191-195 (2019) .