Some Properties of Rings of the Type $f(x), g(x)$-clean

Abdelwahab El Najjar ${ }^{1}$ \& Akram S. Mohammed ${ }^{2}$
1,2 Tikrit University's, College of Computer Science and Mathematics, Department of Mathematics, Tikrit, Iraq
${ }^{1}$ abdelwahabelnajjar@gmail.com
2akr_tel@tu.edu.iq

ARTICLEINFO

Article history:
Received: 2 /2/2024
Revised form: $11 / 3 / 2024$
Accepted : 14 /3/2024
Available online: $30 / 3 / 2024$
In [1], the authors introduced a property of rings called the $f(x), g(x)$-clean property. We investigate some new results about this property. In particular, we prove that the ring of matrices over a ring R is $f(x), g(x)$-clean if the ring R is $f(x), g(x)$-clean as well. We demonstrate, among many other things, that a ring's $f(x), g(x)$-cleanness may always be passed to $R[[x]]$, but

MSC..
Keywords:
Matrix ring,
$g(x)$-clean rings,
$f(x), g(x)$-clean rings

ABSTRACT

 not always to its polynomial ring $\mathrm{R}[\mathrm{x}]$.https://doi.org/10.29304/jqcsm.2024.16.11445

1-Introduction:

The definition of clean rings was initially provided in a 1977 publication by the author of [6]. "An element a $\in \mathrm{R}$ of a ring R is called clean if $a=v+\eta$, where v is a unit and η is an idempotent, and R is clean if every element of it is clean". Numerous studies have been conducted on this kind of ring due to its intriguing features see [2], [5], and [7]. Several researchers have provided a broad range of generalizations of these rings; see, for example, [3], [4], and [9]. A novel class of rings known as $g(x)$-clean was described by the writers of [4]. "Let R be a ring and let $g(x) \in C(R)[x]$ be a polynomial with coefficients in the center $C(R)$ of R. An element $a \in R$ is said to be $g(x)$-clean if $a=v+\eta$, where v is a unit and $g(\eta)=0$, and when every element of R is $g(x)$-clean, we declare R as a $g(x)$-clean ring". Rings that are $\mathrm{g}(\mathrm{x})$-clean rings and rings that possesses the clean property are closely related, as demonstrated by the authors of

[^0][4]. The authors of [1] have recently investigated a property known as $f(x), g(x)$-clean. Let $f(x), g(x) \in C(R)[x]$ be two polynomials. If $a=v+\eta+\vartheta$, where v is a unit and $f(\eta)=g(\vartheta)=0$, then the element a $\in R$ is considered to be $f(x), g(x)-$ clean. We proclaim R to be an $f(x), g(x)$-clean ring when every element in R is $f(x), g(x)$-clean.

The purpose of this study is to explore some more characteristics and extensions of rings that are $f(x), g(x)$-clean. Section 1 covers these additional features, whereas Section 2 deals with extensions of $f(x), g(x)$-clean rings. Throughout this work, R is a ring that has an identity element 1 . The following definition is relevant in Proposition 1.4.

Definition [8]: An element $a \in R$ is said to be 3-good if $a=v_{1}+v_{2}+v_{3}$ where the v_{i} 's are unit elements, and the ring R is said to be 3-good if every element of R is 3-good.

2- New Properties of $f(x), g(x)$-clean Rings

First, let's look at the following lemma, which will help us build additional $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x})$-clean rings. We'll also utilize it in the proof of Theorem 1.5.

Lemma 1.1: Let $f(x), g(x) \in C(R)[x]$. Then R is an $f(x), g(x)$-clean ring if R is $f(x)$-clean and $g(x)$ has at worst one root in R.

Proof: Based on the presumption, there exists $\vartheta \in R$ where $g(\vartheta)=0$. For an arbitrary a $\in R$, there is the following decomposition $a-\vartheta=v+\eta$, such that v is a unit while $f(\eta)=0$ because R is $f(x)$-clean. Now, we have $a=v+\eta+\vartheta$ so the element a is $f(x), g(x)$-clean. Because the element a was arbitrary, each member of R is $f(x), g(x)$-clean, the proof is concluded.

Example 1.2: As mentioned above, we now use the previous lemma to construct more examples of rings that are $f(x), g(x)$-clean. Let $R=\left\{\frac{a}{b} \in \mathbb{Q}: \operatorname{gcd}(b, 7)=1\right\}$ and let \mathbb{Z}_{3} be the group with three elements. The author of [9] showed in Theorem 3.1 that $R \mathbb{Z}_{3}$ is $\left(x^{4}-x\right)$-clean and because this ring contains roots of the polynomial ($x^{2}-x$) (e.g. the elements 0 and 1), it follows from Lemma 1.1 that $R \mathbb{Z}_{3}$ is also $\left(x^{2}-x\right),\left(x^{4}-x\right)$-clean. If we set $a=b=c=d=1$ and $\mathrm{m}=1, \mathrm{n}=2$ in Theorem 1.3 below, we conclude that $R \mathbb{Z}_{3}$ is also $\left(\mathrm{x}^{2}+\mathrm{x}\right),\left(\mathrm{x}^{4}+\mathrm{x}\right)$-clean.

Theorem 1.3: A ring R is $a x^{2 m}-b x, c x^{2 n}-d x$-clean iff R is $a x^{2 m}+b x, c x^{2 n}+d x$-clean, where $m, n \in \mathbb{N}$ and $a, b, c, d \in C(R)$.

Proof: Assume that the ring R is $a x^{2 m}-b x, c x^{2 n}-d x$-clean, and let $r \in R$. It follows that $-r=v+\eta+\vartheta$, where v is a unit and $a \eta^{2 m}-b \eta=0=c \vartheta^{2 n}-d \vartheta$, so $r=-v-\eta-\vartheta$, where now $-v$ is still a unit while $-\eta$ and $-\vartheta$ are roots of $a(-x)^{2 m}-b(-x)=a x^{2 m}+b x$ and $c(-x)^{2 n}-d(-x)=c x^{2 n}+d x$, respectively. Therefore R is $a x^{2 m}+b x, c x^{2 n}+d x-$ clean. The other direction follows exactly from the same reasoning used above.

Proposition 1.4: Consider a ring R and let $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{i=0}^{n} b_{i} x^{i} \in C(R)[x]$ such that a_{0} and b_{0} are unit elements. R is 3-good if it is $f(x), g(x)$-clean.

Proof: By assumption, we can write an arbitrary $r \in R$ as $r=v+\eta+\vartheta$, where v is a unit and η, ϑ are roots for the polynomials $f(x)$ and $g(x)$, respectively. Now, $f(\eta)=0$ implies that $\eta\left(a_{1}+\cdots+a_{m} \eta^{m-1}\right)=\left(a_{1}+\cdots+a_{m} \eta^{m-1}\right) \eta=$ $-a_{0}$, because the a_{i} 's are all central. Since $-a_{0}$ is a unit then so is η. The same argument shows that ϑ is also a unit so the element r is 3 -good. The element r was arbitrary so the whole ring is 3 -good.

The next theorem exhibits an interesting relationship between rings that has the clean property and certain rings that possesses the $f(x), g(x)$-clean property.

Theorem 1.5: Let 2 is a nilpotent element in a commutative ring R, and let $a, b \in R$ be arbitrary elements, the claims that follow considered equivalent:

1. R possesses the clean property.
2. R possesses the $\left(x^{2}-x\right),\left(x^{2}-a^{2}\right)$-clean property.
3. R possesses the $\left(x^{2}-x\right),\left(x^{2}+b^{2}\right)$-clean property.

Proof: $(1 \Leftrightarrow 2)$ If R possesses the clean property, then this means that R is ($\left.x^{2}-x\right)$-clean (an idempotent η is an element such that $\eta^{2}=\eta$) and because the element a is a root of $\left(x^{2}-a^{2}\right)$ we conclude from Lemma 1.1 that R possesses the $\left(x^{2}-x\right),\left(x^{2}-a^{2}\right)$-clean property. Conversely, assume that R is $\left(x^{2}-x\right),\left(x^{2}-a^{2}\right)$-clean and pick an arbitrary $r \in R$. Then by assumption we are allowed to write $r-a=v+\eta+\vartheta$, where v is a unit, $\eta^{2}=\eta$ and $\vartheta^{2}=a^{2}$ so $r=v+$ $(\vartheta+a)+\eta$. Note that

$$
(\vartheta+a)^{2}=\vartheta^{2}+2 \vartheta a+a^{2}=a^{2}+2 \vartheta a+a^{2}=2\left(a^{2}+\vartheta a\right)
$$

which tells us that the element $\vartheta+\mathrm{a}$ is a nilpotent because 2 is, therefore the element $\mathrm{v}+(\vartheta+\mathrm{a})$ is a unit because it is a unit and nilpotent combination in a ring that is commutative so the element r is clean since η is an idempotent which proves the cleanness of R.
$(1 \Leftrightarrow 3)$ The forward arrow is a repetition of the forward arrow of the equivalence $1 \Leftrightarrow 2$. Conversely, assume that R is $\left(x^{2}-x\right),\left(x^{2}+b^{2}\right)$-clean ring and let $r \in R$. Now we can decompose $r-b$ as $r-b=v+\eta+\vartheta$ where v is a unit while $\eta^{2}=\eta$ and $\vartheta^{2}=-b^{2}$ therefore $r=v+(\vartheta+b)+\eta$. We have

$$
(\vartheta+b)^{2}=\vartheta^{2}+2 \vartheta b+b^{2}=-b^{2}+2 \vartheta b+b^{2}=2 \vartheta b
$$

which shows that the element $\vartheta+\mathrm{b}$ is a nilpotent because 2 is a nilpotent so the element $\mathrm{v}+(\vartheta+\mathrm{b})$ is a unit because it is a unit and nilpotent combination in a commutative ring. As η is idempotent, the element r is clean which indeed proves the cleanness of R and concludes the proof.

The previous type of reasoning can be used to show the impossibility of constructing certain rings with the $f(x), g(x)$ clean property as demonstrated in the proposition below.

Proposition 1.6: Let R be a ring that is nonzero, commutative and contains 2 as a nilpotent, then R can't be $\left(x^{2}+1\right),\left(x^{2}-1\right)$-clean.

Proof: On the contrary, suppose that R is $\left(x^{2}+1\right),\left(x^{2}-1\right)$-clean. We can write $2=v+\eta+\vartheta$, where v is a unit, $\eta^{2}=1$ and $\vartheta^{2}=-1$. Now we get $0=v+(\eta-1)+(\vartheta-1)$ with the following observation

$$
(\eta-1)^{2}=\eta^{2}+2 \eta+1=1+2 \eta+1=2(\eta+1)
$$

As was argued in the previous theorem, the element $\eta-1$ is a nilpotent. Similarly, the element $\vartheta+1$ is also nilpotent from which we deduce that the element $v+(\eta-1)+(\vartheta-1)$ is a unit because it is a sum of a unit and two nilpotents. Set this unit to be $u=v+(\eta-1)+(\vartheta-1)$ so $u=0$ hence $1=0$ a contradiction with R being a nonzero ring.

To create an $f(x), g(x)$-clean ring from two rings-one of which is an $f(x)$-clean ring and the other has the $g(x)$-clean property-one can utilize the direct product of two rings. Given two rings, R and S, and two polynomial $f(x)=$ $\sum_{i=0}^{m} a_{i} x^{i} \in C(R)[x]$ and $g(x)=\sum_{i=0}^{n} b_{i} x^{i} \in C(S)[x]$, we may embed $f(x)$ and $g(x)$ in $C(R \times S)$ as follows: $\mathrm{f}(\mathrm{x})=\sum_{\mathrm{i}=0}^{\mathrm{m}}\left(\mathrm{a}_{\mathrm{i}}, 0\right) \mathrm{x}^{\mathrm{i}}$ and $\mathrm{g}(\mathrm{x})=\sum_{\mathrm{i}=0}^{\mathrm{n}}\left(0, \mathrm{~b}_{\mathrm{i}}\right) \mathrm{x}^{\mathrm{i}}$, respectively.

Proposition 1.7: Let R and S be two rings and $f(x)$ and $g(x)$ be two polynomials as discussed above. If R possesses the $f(x)$-clean property and S possess the $g(x)$-clean property, then their product $R \times S$ is a ring that is $f(x), g(x)$-clean.

Proof: Let $(r, s) \in R \times S$. Because R possesses the $f(x)$-clean property and S possess the $g(x)$-clean property, we may write $(r, s)=(v+\eta, u+\vartheta)$, where v is an invertible element of R, η is a zero of the polynomial $f(x)$, u is an invertible element of S and ϑ is a zero of $g(x)$. Therefore, we have $(r, s)=(v+\eta, u+\vartheta)=(v, u)+(\eta, 0)+(0, \vartheta)$, where (u, v) is an invertible element of $R \times S$ with multiplicative inverse $\left(v^{-1}, u^{-1}\right)$, while ($\left.\eta, 0\right)$ and $(0, \vartheta)$ are zeros of the polynomials $f(x)$ and $g(x)$, in that order (recall the embedding we mentioned earlier). We concluded that (r, s) is $f(x), g(x)$-clean so $R \times S$ is $f(x), g(x)$-clean ring.

3- Extensions of $f(x), g(x)$-clean Rings

The current part of the paper discuses several extensions of $f(x), g(x)$-clean rings. Let R and S be two rings and let $\phi: R \rightarrow S$ be a ring homomorphism. We can build a new ring homomorphism $\bar{\phi}: C(R)[x] \rightarrow C(S)[x]$ defined by $\bar{\phi}\left(a_{0}+a_{1} x+\cdots+a_{m} x^{m}\right)=\phi\left(a_{0}\right)+\phi\left(a_{1}\right) x+\cdots+\phi\left(a_{m}\right) x^{m}$.

Proposition 2.1: Consider two rings R and S with a surjective ring homomorphism, $\phi: R \rightarrow S$. Let $f(x)=a_{0}+a_{1} x+\ldots+a_{m} x^{m}, g(x)=b_{0}+b_{1} x+\ldots+b_{n} x^{n} \in C(R)[x]$. If R is $f(x), g(x)$-clean, then S is $f_{\phi}(x), g g_{\phi}(x)$-clean where $\mathrm{f}_{\phi}(\mathrm{x})=\bar{\phi}(\mathrm{f}(\mathrm{x}))$ and $\mathrm{g}_{\phi}(\mathrm{x})=\bar{\phi}(\mathrm{g}(\mathrm{x}))$.

Proof: Let $s \in S$ be an arbitrary element, then $\exists r \in R$ with $\phi(r)=s$. Because R is $f(x), g(x)$-clean, there is a decomposition $r=v+\eta+\vartheta$ with v an invertible element and $f(\eta)=g(\vartheta)=0$. Now, $s=\phi(r)=\phi(v+\eta+\vartheta)=$ $\phi(v)+\phi(\eta)+\phi(\vartheta)$ where $\phi(v)$ is a unit of S because it is an image of a unit under ϕ and $\phi(\eta)$ is a root of $f_{\phi}(x)$ because

$$
\begin{gathered}
\mathrm{f}_{\phi}(\phi(\eta))=\phi\left(\mathrm{a}_{0}\right)+\phi\left(\mathrm{a}_{1}\right) \phi(\eta)+\cdots+\phi\left(\mathrm{a}_{\mathrm{m}}\right)(\phi(\eta))^{\mathrm{m}} \\
=\phi\left(\mathrm{a}_{0}+\mathrm{a}_{1} \eta+\cdots+\mathrm{a}_{\mathrm{m}} \eta^{\mathrm{m}}\right) \\
=\phi(0)=0
\end{gathered}
$$

because $f(\eta)=0$. Similarly, $\phi(\vartheta)$ is a zero for $g_{\phi}(x)$ so the element s is $f_{\phi}(x), g_{\phi}(x)$-clean so the whole ring is $\mathrm{f}_{\phi}(\mathrm{x}), \mathrm{g}_{\phi}(\mathrm{x})$-clean.

As an immediate result, we obtain the following statements.
Corollary 2.2: Consider 2 polynomials $f(x)$ and $g(x)$ with integers coefficients (in the subring generated by 1) and consider a family of rings $\left(R_{\lambda}\right)_{\lambda \in \Lambda}$. The ring $\prod_{\lambda \in \Lambda} R_{\lambda}$ is $f(x), g(x)$-clean iff each R_{λ} is $f(x), g(x)$-clean.

Corollary 2.3: Consider a ring R with an ideal, $J \subseteq R$ and let $f(x), g(x)$ be 2 polynomials in $C(R)$ [x]. The quotient ring R / J possesses the $f_{\pi}(x), g_{\pi}(x)$-clean property if R possesses the $f(x), g(x)$-clean property, where $\pi: R \rightarrow R / J$ is the homomorphism defined by $\pi(\mathrm{a})=\mathrm{a}+\mathrm{J}$.

A partial converse of Corollary 2.3 can be constructed. Recall that if $\eta+J$ is a zero for a polynomial $f_{\pi}(x)$ in $C(R / J)[x]$, then we say that $\eta+J$ lifts module J if there exist $\eta^{\prime} \in R$ that is a zero for $f(x)$ and with $\eta+J=\eta^{\prime}+J$ i.e. $\eta-$ $\eta^{\prime} \in J$.

Theorem 2.4: Consider a ring R, an ideal J of R contained in the Jacobson radical, and let $f(x)$ and $g(x)$ be in $C(R)[x]$. If R / J possesses the $f_{\pi}(x), g_{\pi}(x)$-clean property where all roots (zeros) of the polynomials $f(x)$ and $g(x)$ lifts module J, it must be that R possesses the $f(x), g(x)$-clean property.

Proof: Chose some arbitrary $a \in R$, then from the assumption $a+J=(v+J)+(\eta+J)+(\vartheta+J)$, where $v+J$ is an invertible element of R / J, while $\eta+J$ and $\vartheta+$ J are roots of $f_{\pi}(x)$ and $g_{\pi}(x)$, respectively. Since roots lift module J, there exist roots η^{\prime} and ϑ^{\prime} in R for $f(x)$ and $g(x)$, respectively where $\eta+J=\eta^{\prime}+J$ and $\vartheta+J=\vartheta^{\prime}+J$. Now, $a+J=(v+J)+$ $\left(\eta^{\prime}+J\right)+\left(\vartheta^{\prime}+J\right)$ so $(a+J)-\left(\eta^{\prime}+J\right)-\left(\vartheta^{\prime}+J\right)=v+J$, and as $v+J$ is a unit, then also $\left(a-\eta^{\prime}-\vartheta^{\prime}\right)+J$ is a unit of R / J. Because the ideal J lies in the Jacobson radical, we deduce that the element a $-\eta^{\prime}-\vartheta^{\prime}$ is a unit of R itself so we can write $a=\left(a-\eta^{\prime}-\vartheta^{\prime}\right)+\eta^{\prime}+\vartheta^{\prime}$, where the element in the brackets is a unit of R, and the second and third are roots for the polynomials $f(x)$ and $g(x)$, in that order. This proves the $f(x), g(x)$-clean property and ends the proof.

Next, we prove the $f(x), g(x)$-clean property of a matrix ring if its ring of entries is of the same type. Recall that the map $a \rightarrow \mathrm{II}_{n}$ equips the n by n matrix ring with a structure of an algebra over $C(R)$, where a is a central element of R and I_{n} is the identity matrix of size n by n.

Theorem 2.5: Consider a ring R with $f(x), g(x) \in C(R)[x]$. Whenever R possesses the $f(x), g(x)$-clean property, the ring $M_{n \times n}(R)$ possesses the $f(x), g(x)$-clean property for every positive integer n.

Proof: The proof of this theorem is achieved by mathematical induction as follows. If $n=1$, the theorem is satisfied because $M_{1 \times 1}(R)=R$. Assume the theorem is satisfied for $n-1>1$. Let $K \in M_{n \times n}(R)$, we can put K in the form $K=$ $\left[\begin{array}{cc}K^{\prime} & A \\ B & k\end{array}\right]$, where $K^{\prime} \in M_{n-1 \times n-1}(R)$, A is an $n-1$ column, B is an $n-1$ row and $k \in R$. Because $M_{n-1 \times n-1}(R)$ possesses the $f(x), g(x)$-clean property, there is an expression $K^{\prime}=V+H+\Theta$, where V is a unit (invertible matrix) of $M_{n-1 \times n-1}(R)$, H is a zero for $f(x)$ in $M_{n-1 \times n-1}(R)$ and Θ is a zero for $g(x)$ in $M_{n-1 \times n-1}$ (R). Note also that $k-B V^{-1} A \in$ R so by the $f(x), g(x)$-cleanness of R we can write $k-B V^{-1} A=v+\eta+\vartheta$, where v is an invertible element and $\eta, \vartheta \in R$ such that $f(\eta)=g(\vartheta)=0$. Putting everything in the described formula for K we get

$$
\mathrm{K}=\left[\begin{array}{cc}
\mathrm{V} & \mathrm{~A} \\
\mathrm{~B} & \mathrm{v}+\mathrm{BV}^{-1} \mathrm{~A}
\end{array}\right]+\left[\begin{array}{cc}
\mathrm{H} & 0 \\
0 & \eta
\end{array}\right]+\left[\begin{array}{cc}
\Theta & 0 \\
0 & \vartheta
\end{array}\right]
$$

Note that the second and third matrices are roots of $f(x)$ and $g(x)$, respectively so we only need to show that the first matrix is invertible. One can easily see that

$$
\left[\begin{array}{cc}
V & A \\
B & v+B V^{-1} A
\end{array}\right]=\left[\begin{array}{cc}
I_{n-1} & 0 \\
-B V^{-1} & 1
\end{array}\right]^{-1}\left[\begin{array}{cc}
V & 0 \\
0 & v
\end{array}\right]\left[\begin{array}{cc}
I_{n-1} & -V^{-1} A \\
0 & 1
\end{array}\right]^{-1}
$$

a product of invertible matrices so the first matrix in the decomposition of K is invertible proving the $f(x), g(x)$ cleanness of K and hence of $M_{n \times n}(R)$. The result is satisfied for all $n \geq 1$.

Example 2.6: By direct computation, one can easily show that the ring \mathbb{Z}_{5} is $\left(x^{2}-3 x+2\right),\left(x^{2}-4 x+3\right)$-clean so it follows from Theorem 2.5, the ring of matrices $M_{n \times n}\left(\mathbb{Z}_{5}\right)$ is $\left(x^{2}-3 x+2\right),\left(x^{2}-4 x+3\right)$-clean for all $n \geq 1$.

We can consider another ring of matrices namely the trivial extension. Consider an R -module N where the ring R is commutative. We construct a ring called the trivial extension of R by N written as $R(N)$ which is the collection

$$
R(N)=\left\{\left[\begin{array}{ll}
a & n \\
0 & a
\end{array}\right]: a \in R \text { and } n \in N\right\}
$$

with the typical and intuitive addition and matrix multiplication. We associate with such ring a homomorphism $\Phi: \mathrm{R}[\mathrm{x}] \rightarrow \mathrm{R}(\mathrm{N})[\mathrm{x}]$ that identify polynomials in the ring $\mathrm{R}[\mathrm{x}]$ with their images in the ring $\mathrm{R}(\mathrm{N})[\mathrm{x}]$ and which is defined as

$$
\Phi\left(a_{0}+a_{1} x+\cdots+a_{m} x^{m}\right)=\left[\begin{array}{cc}
a_{0} & 0 \\
0 & a_{0}
\end{array}\right]+\left[\begin{array}{cc}
a_{1} & 0 \\
0 & a_{1}
\end{array}\right] x+\cdots+\left[\begin{array}{cc}
a_{m} & 0 \\
0 & a_{m}
\end{array}\right] x^{m} .
$$

Proposition 2.7: Consider a ring R which is commutative with some $f(x), g(x) \in C(R)[x]$. R possesses the $f(x), g(x)$ clean property iff $R(N)$ possesses the same property.

Proof: Assume that $R(N)$ is $f(x), g(x)$-clean. The set $\left\{J=\left[\begin{array}{ll}0 & n \\ 0 & 0\end{array}\right]\right.$ with $\left.n \in N\right\}$ is evidently an ideal in the ring $R(N)$ hence $R(N) / J \cong R$ possesses the $f(x), g(x)$-clean property by Corollary 2.3. Conversely, pick some $\left[\begin{array}{cc}a & n \\ 0 & a\end{array}\right] \in R(N)$. By the $f(x), g(x)$-cleanness of R, there is a decomposition $a=v+\eta+\vartheta$, where v is a unit of R, and η, ϑ are roots of $f(x)$ and $g(x)$, respectively. So we end up with the following decomposition

$$
\left[\begin{array}{cc}
\mathrm{a} & \mathrm{n} \\
0 & \mathrm{a}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{v} & \mathrm{n} \\
0 & \mathrm{v}
\end{array}\right]+\left[\begin{array}{ll}
\eta & 0 \\
0 & \eta
\end{array}\right]+\left[\begin{array}{ll}
\vartheta & 0 \\
0 & \vartheta
\end{array}\right]
$$

where the second and third matrices are the zeros for $f(x)$ and $g(x)$, at that order while the first matrix is obviously a unit. The proof is achieved.

Lastly, we will show that the ring of power series $R[[x]]$ over a given ring R possesses the $f(x), g(x)$-clean property whenever R possesses this same property. On the other hand, we can find polynomials $f(x)$ and $g(x)$ for which we get R is $f(x), g(x)$-clean but the ring of polynomials over the ring R is not.

Proposition 2.8: Consider a ring R and let $f(x), g(x) \in C(R)[x]$. R possesses the $f(x), g(x)$-clean property iff $R[[x]]$ possesses this same property.

Proof: Assume that R is $f(x), g(x)$-clean, and pick some $a_{0}+a_{1} x+a_{2} x^{2}+\cdots \in R[[x]]$. We have $a_{0}=v+\eta+\vartheta$, where v is a unit and $f(\eta)=g(\vartheta)=0$. Therefore, $a_{0}+a_{1} x+a_{2} x^{2}+\cdots=\left(v+a_{1} x+a_{2} x^{2}+\cdots\right)+\eta+\vartheta$. It is known that power series with unit constant terms are themselves units, so $\left(v+a_{1} x+a_{2} x^{2}+\cdots\right)$ is a unit, proving the $f(x), g(x)-$ cleanness of R. Conversely, when $R[[x]]$ is $f(x), g(x)$-clean, then the map $a_{0}+a_{1} x+a_{2} x^{2}+\cdots \rightarrow a_{0}$ is a surjective ring morphism onto R so R possesses the $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x})$-clean property by Proposition 2.1.

Proposition 2.9: Consider a ring R that is commutative and $\left(x^{m}-x\right),\left(x^{n}-x\right)$-clean, for a pair $m, n \in \mathbb{N}$, then the ring of polynomials $R[x]$ over R is not an ($\left.x^{m}-x\right),\left(x^{n}-x\right)$-clean ring.

Proof: With the aim of obtaining a contradiction, say $\mathrm{R}[\mathrm{x}]$ possesses the $\left(\mathrm{x}^{\mathrm{m}}-\mathrm{x}\right),\left(\mathrm{x}^{\mathrm{n}}-\mathrm{x}\right)$-clean property. We can write x as $x=v+\eta+\vartheta$, where v is a unit and $f(\eta)=g(\vartheta)=0$. As in Example 3.2 of [9$]$ the elements η and ϑ are in R, so $v=a+x$, where $a=-\eta-\vartheta$ is a scalar. Since v is an invertible element and $v=a+x$, we conclude that the element $a+x$ is a invertible, but this is a contradiction since units in $R[x]$ must have nilpotent coefficients for all terms except the constant term (Note that the coefficient of x is 1 which is not a nilpotent).

References

[1] El Najjar, A., \& Salem, A. (2024). The $f(x), g(x)$-clean property of rings. International Journal of Mathematics and Computer Science, 19(3), 687-691.
[2] Camilo, V. P., \& Simon, J.J. (2002). The Nicholson-Varadarajan theorem on clean linear transformations. Glasgow Mathematical Journal, 44(3), 365369.
[3] Danchev, P. V. (2017). Invo-clean unital rings. Communications of the Korean Mathematical Society, 32(1), 19-27.
[4] Fan, L., \& Yang, X. (2008). On rings whose elements are the sum of a unit and a root of a fixed polynomial. Communications in Algebra, 36 (1), 269278.
[5] Han, J., \& Nicholson, W. K. (2001). Extensions of clean rings. Communications in Algebra, 29(6), 2589-2595.
[6] Nicholson, W. K. (1977). Lifting idempotents and exchange rings. Transactions of the American Mathematical Society, 229, 269 - 278.
[7] Nicholson, W. K., \& Zhou, Y. (2005). Clean rings: a survey. In Advances in Ring Theory, 181-198.
[8] Vámos, P. (2005). 2-good rings. Quarterly Journal of Mathematics, 56(3), 417-430.
[9] Ye, Y. (2003). Semiclean rings. Communications in Algebra, 31(11), 5609-5625.

[^0]: *Corresponding author: Akram S. Mohammed

 Email addresses: akr_tel@tu.edu.iq

