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A B S T R A C T 

In [1], the authors introduced a property of rings called the f(x),g(x)-clean property. We 
investigate some new results about this property. In particular, we prove that the ring of 
matrices over a ring R is f(x),g(x)-clean if the ring R is f(x),g(x)-clean as well. We demonstrate, 
among many other things, that a ring's f(x),g(x)-cleanness may always be passed to R[[x]], but 
not always to its polynomial ring R[x].  
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1-Introduction: 

    The definition of clean rings was initially provided in a 1977 publication by the author of [6]. “An element a ∈ R of 
a ring R is called clean if a = v + η, where v is a unit and η is an idempotent, and R is clean if every element of it is 
clean”. Numerous studies have been conducted on this kind of ring due to its intriguing features see [2], [5], and [7]. 
Several researchers have provided a broad range of generalizations of these rings; see, for example, [3], [4], and [9]. 
A novel class of rings known as g(x)-clean was described by the writers of [4]. “Let R be a ring and let g(x) ∈ C(R)[x] 
be a polynomial with coefficients in the center C(R) of R. An element a ∈ R is said to be g(x)-clean if a = v + η, where 
v is a unit and g(η) = 0, and when every element of R is g(x)-clean, we declare R as a g(x)-clean ring”.  Rings that are 
g(x)-clean rings and rings  that possesses the clean property are closely related, as demonstrated by the authors of 

mailto:abdelwahabelnajjar@gmail.com
mailto:akr_tel@tu.edu.iq


Akram S. Mohammed, Journal of Al-Qadisiyah  for Computer Science and Mathematics VOL.16(1) 2024, PP Math. 23–28                       24 

 

[4]. The authors of [1] have recently investigated a property known as f(x),g(x)-clean. Let f(x),g(x)∈C(R)[x] be two 
polynomials. If a = v + η + ϑ, where v is a unit and f(η)=g(ϑ)=0, then the element a ∈ R is considered to be f(x),g(x)-
clean. We proclaim R to be an f(x),g(x)-clean ring when every element in R is f(x),g(x)-clean. 

    The purpose of this study is to explore some more characteristics and extensions of rings that are f(x),g(x)-clean. 
Section 1 covers these additional features, whereas Section 2 deals with extensions of f(x),g(x)-clean rings. 
Throughout this work, R is a ring that has an identity element 1. The following definition is relevant in Proposition 
1.4.  

Definition [8]: An element a ∈ R is said to be 3-good if a = v1 + v2 + v3 where the vi’s are unit elements, and the 

ring R is said to be 3-good if every element of R is 3-good.      

2- New Properties of f(x),g(x)-clean Rings 

    First, let's look at the following lemma, which will help us build additional f(x),g(x)-clean rings. We'll also utilize it 
in the proof of Theorem 1.5. 

 
Lemma 1.1: Let f(x), g(x) ∈ C(R)[x]. Then R is an f(x),g(x)-clean ring if R is f(x)-clean and g(x) has at worst one root 

in R. 

Proof: Based on the presumption, there exists ϑ ∈ R where g(ϑ) = 0. For an arbitrary a ∈ R, there is the following 

decomposition a − ϑ = v + η, such that v is a unit while f(η) = 0 because R is f(x)-clean. Now, we have a = v + η + ϑ 
so the element a is f(x),g(x)-clean. Because the element a was arbitrary, each member of R is f(x),g(x)-clean, the proof 
is concluded. 

Example 1.2: As mentioned above, we now use the previous lemma to construct more examples of rings that are 

f(x),g(x)-clean. Let R = {
a

b
∈ ℚ: gcd(b, 7) = 1} and let ℤ3 be the group with three elements. The author of [9] showed 

in Theorem 3.1 that Rℤ3 is (x4 − x)-clean and because this ring contains roots of the polynomial (x2 − x) (e.g. the 
elements 0 and 1), it follows from Lemma 1.1 that Rℤ3 is also (x2 − x), (x4 − x)-clean. If we set a = b = c = d = 1 and 
m = 1, n = 2 in Theorem 1.3 below, we conclude that Rℤ3 is also (x2 + x), (x4 + x)-clean. 

Theorem 1.3: A ring R is ax2m − bx, cx2n − dx-clean iff R is ax2m + bx, cx2n + dx-clean, where m, n ∈ ℕ and 
a, b, c, d ∈ C(R). 

Proof: Assume that the ring R is ax2m − bx, cx2n − dx-clean, and let r ∈ R. It follows that −r = v + η + ϑ, where v is 

a unit and aη2m − bη = 0 = cϑ2n − dϑ, so r = −v − η − ϑ, where now −v is still a unit while −η and −ϑ are roots of 
a(−x)2m − b(−x) = ax2m + bx and c(−x)2n − d(−x) = cx2n + dx, respectively. Therefore R is ax2m + bx, cx2n + dx-
clean. The other direction follows exactly from the same reasoning used above. 

Proposition 1.4: Consider a ring R and let f(x) = ∑ aix
im

i=0 , g(x) = ∑ bix
in

i=0 ∈ C(R)[x] such that a0 and b0 are unit 

elements. R is 3-good if it is f(x),g(x)-clean. 

Proof: By assumption, we can write an arbitrary r ∈ R as r = v + η + ϑ, where v is a unit and η, ϑ are roots for the 

polynomials f(x) and g(x), respectively. Now, f(η) = 0 implies that η(a1 + ⋯ + amηm−1) = (a1 + ⋯ + amηm−1)η =
−a0, because the ai’s are all central. Since −a0 is a unit then so is η. The same argument shows that ϑ is also a unit so 
the element r is 3-good. The element r was arbitrary so the whole ring is 3-good.  

    The next theorem exhibits an interesting relationship between rings that has the clean property and certain rings 
that possesses the f(x),g(x)-clean property. 

Theorem 1.5: Let 2 is a nilpotent element in a commutative ring R, and let a,b ∈ R be arbitrary elements, the claims 

that follow considered equivalent: 

1. R possesses the clean property. 

2. R possesses the (x2-x),(x2-a2)-clean property. 
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3. R possesses the (x2-x),(x2+b2)-clean property. 

Proof: (1⟺ 2) If R possesses the clean property, then this means that R is (x2 − x)-clean (an idempotent η is an 

element such that η2 = η) and because the element a is a root of (x2 − a2) we conclude from Lemma 1.1 that R 

possesses the (x2-x),(x2-a2)-clean property. Conversely, assume that R is (x2-x),(x2-a2)-clean and pick an arbitrary 

r ∈ R. Then by assumption we are allowed to write r − a = v + η + ϑ, where v is a unit, η2 = η and ϑ2 = a2 so r = v +
(ϑ + a) + η. Note that 

(ϑ + a)2 = ϑ2 + 2ϑa + a2 = a2 + 2ϑa + a2 = 2(a2 + ϑa), 

which tells us that the element ϑ + a is a nilpotent because 2 is, therefore the element v + (ϑ + a) is a unit because it 
is a unit and nilpotent combination in a ring that is commutative so the element r is clean since η is an idempotent 
which proves the cleanness of R. 

(1⟺ 3) The forward arrow is a repetition of the forward arrow of the equivalence 1⟺ 2. Conversely, assume that R 

is (x2-x),(x2+b2)-clean ring and let r ∈ R. Now we can decompose r − b as r − b = v + η + ϑ where v is a unit while 
η2 = η and ϑ2 = −b2 therefore r = v + (ϑ + b) + η. We have 

(ϑ + b)2 = ϑ2 + 2ϑb + b2 = −b2 + 2ϑb + b2 = 2ϑb, 

which shows that the element ϑ + b is a nilpotent because 2 is a nilpotent so the element v + (ϑ + b) is a unit because 
it is a unit and nilpotent combination in a commutative ring. As η is idempotent, the element r is clean which indeed 
proves the cleanness of R and concludes the proof. 

The previous type of reasoning can be used to show the impossibility of constructing certain rings with the f(x),g(x)-
clean property as demonstrated in the proposition below. 

Proposition 1.6: Let R be a ring that is nonzero, commutative and contains 2 as a nilpotent, then R can't be 
(x2+1),(x2-1)-clean. 

Proof: On the contrary, suppose that R is (x2+1),(x2-1)-clean. We can write 2 = v + η + ϑ, where v is a unit, η2 = 1 

and ϑ2 = −1. Now we get 0 = v + (η − 1) + (ϑ − 1) with the following observation 

(η − 1)2 = η2 + 2η + 1 = 1 + 2η + 1 = 2(η + 1). 

As was argued in the previous theorem, the element η − 1 is a nilpotent. Similarly, the element ϑ + 1 is also nilpotent 
from which we deduce that the element v + (η − 1) + (ϑ − 1) is a unit because it is a sum of a unit and two nilpotents. 
Set this unit to be u =  v + (η − 1) + (ϑ − 1) so u = 0 hence 1 = 0 a contradiction with R being a nonzero ring. 

    To create an f(x),g(x)-clean ring from two rings-one of which is an f(x)-clean ring and the other has the g(x)-clean 
property-one can utilize the direct product of two rings. Given two rings, R and S, and two polynomial f(x) =

∑ aix
im

i=0 ∈ C(R)[x] and g(x) = ∑ bix
in

i=0 ∈ C(S)[x], we may embed f(x) and g(x) in C(R × S) as follows: 

f(x)= ∑ (ai,0)xim
i=0  and g(x)= ∑ (0,bi)xin

i=0 , respectively. 

Proposition 1.7: Let R and S be two rings and f(x) and g(x) be two polynomials as discussed above. If R possesses 

the f(x)-clean property and S possess the g(x)-clean property, then their product R × S is a ring that is f(x),g(x)-clean. 

Proof: Let (r,s)∈R×S. Because R possesses the f(x)-clean property and S possess the g(x)-clean property, we may 

write (r,s)=(v+η,u+ϑ), where v is an invertible element of R, η is a zero of the polynomial f(x), u is an invertible 
element of S and ϑ is a zero of g(x). Therefore, we have (r,s)=(v+η,u+ϑ)=(v,u)+(η,0)+(0,ϑ), where (u,v) is an 

invertible element of R × S with multiplicative inverse (v-1,u-1), while (η,0) and (0,ϑ) are zeros of the polynomials f(x) 
and g(x), in that order (recall the embedding we mentioned earlier). We concluded that (r,s) is f(x),g(x)-clean so R × S 
is f(x),g(x)-clean ring.  

3- Extensions of f(x),g(x)-clean Rings 
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    The current part of the paper discuses several extensions of f(x),g(x)-clean rings. Let R and S be two rings and let 

ϕ: R ⟶ S be a ring homomorphism. We can build a new ring homomorphism ϕ̅: C(R)[x] ⟶ C(S)[x] defined 

by  ϕ̅(a0 + a1x + ⋯ + amxm) = ϕ(a0) + ϕ(a1)x + ⋯ + ϕ(am)xm. 

Proposition 2.1: Consider two rings R and S with a surjective ring homomorphism, ϕ: R ⟶ S. Let 

f(x)=a0+a1x+…+amxm,g(x)=b0+b1x+…+bnxn∈C(R)[x]. If R is f(x),g(x)-clean, then S is fϕ(x),gϕ(x)-clean where 

fϕ(x) = ϕ̅(f(x)) and gϕ(x) = ϕ̅(g(x)). 

Proof: Let s ∈ S be an arbitrary element, then ∃r ∈ R with ϕ(r) = s. Because R is f(x),g(x)-clean, there is a 

decomposition r = v + η + ϑ with v an invertible element and f(η) = g(ϑ) = 0. Now, s = ϕ(r) = ϕ(v + η + ϑ) =
ϕ(v) + ϕ(η) + ϕ(ϑ) where ϕ(v) is a unit of S because it is an image of a unit under ϕ and ϕ(η) is a root of fϕ(x) 

because 

fϕ(ϕ(η)) = ϕ(a0) + ϕ(a1)ϕ(η) + ⋯ + ϕ(am)(ϕ(η))m 

= ϕ(a0 + a1η + ⋯ + amηm) 

= ϕ(0) = 0, 

because f(η) = 0 . Similarly, ϕ(ϑ) is a zero for gϕ(x) so the element s is fϕ(x),gϕ(x)-clean so the whole ring is 

fϕ(x),gϕ(x)-clean. 

    As an immediate result, we obtain the following statements. 

Corollary 2.2: Consider 2 polynomials f(x) and g(x) with integers coefficients (in the subring generated by 1) and 

consider a family of rings (Rλ)λ∈Λ. The ring ∏ Rλλ∈Λ  is f(x),g(x)-clean iff each Rλ is f(x),g(x)-clean. 

Corollary 2.3: Consider a ring R  with an ideal, J ⊆ R and let f(x),g(x) be 2 polynomials in C(R)[x]. The quotient ring 

R/J possesses the fπ(x),gπ(x)-clean property if R possesses the f(x),g(x)-clean property, where π: R ⟶ R/J is the 
homomorphism defined by π(a) = a + J. 

    A partial converse of Corollary 2.3 can be constructed. Recall that if η + J is a zero for a polynomial fπ(x) in 
C(R/J)[x], then we say that η + J lifts module J if there exist η′ ∈ R that is a zero for f(x) and with η + J = η′ + J i.e. η −
η′ ∈ J. 

Theorem 2.4: Consider a ring R,  an ideal J of R contained in the Jacobson radical, and let f(x) and g(x) be in C(R)[x]. 

If R/J possesses the fπ(x),gπ(x)-clean property where all roots (zeros) of the polynomials f(x) and g(x) lifts module J, 
it must be that R possesses the f(x),g(x)-clean property. 

Proof: Chose some arbitrary a ∈ R, then from the assumption a + J = (v + J) + (η + J) + (ϑ + J), where v + J is an 

invertible element of R/J, while η + J and ϑ + J are roots of fπ(x) and gπ(x), respectively. Since roots lift module J, there 
exist roots η′ and ϑ′ in R for f(x) and g(x), respectively where η + J = η′ + J and ϑ + J = ϑ′ + J. Now, a + J = (v + J) +
(η′ + J) + (ϑ′ + J) so (a + J) − (η′ + J) − (ϑ′ + J) = v + J, and as v + J is a unit, then also (a − η′ − ϑ′) + J is a unit of 
R/J. Because the ideal J lies in the Jacobson radical, we deduce that the element a − η′ − ϑ′ is a unit of R itself so we 
can write a = (a − η′ − ϑ′) + η′ + ϑ′, where the element in the brackets is a unit of R, and the second and third are 
roots for the polynomials f(x) and g(x), in that order. This proves the f(x),g(x)-clean property and ends the proof.   

    Next, we prove the f(x),g(x)-clean property of a matrix ring if its ring of entries is of the same type. Recall that the 
map a ⟶ aIn equips the n by n matrix ring with a structure of an algebra over C(R), where a is a central element of R 
and In is the identity matrix of size n by n.  

Theorem 2.5: Consider a ring R with f(x),g(x)∈C(R)[x]. Whenever R possesses the f(x),g(x)-clean property, the ring 
Mn×n(R) possesses the f(x),g(x)-clean property for every positive integer n. 
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Proof: The proof of this theorem is achieved by mathematical induction as follows. If n = 1, the theorem is satisfied 

because M1×1(R) = R. Assume the theorem is satisfied for n − 1 > 1. Let K ∈ Mn×n(R), we can put K in the form K =

[K′ A
B k

], where K′ ∈ Mn−1×n−1 (R), A is an n − 1 column, B is an n − 1 row and k ∈ R. Because Mn−1×n−1 (R) possesses 

the f(x),g(x)-clean property, there is an expression K′ = V + Η + Θ, where V is a unit (invertible matrix) of 
Mn−1×n−1 (R), H is a zero for f(x) in Mn−1×n−1 (R) and Θ is a zero for g(x) in  Mn−1×n−1 (R). Note also that k − BV−1A ∈
R so by the f(x),g(x)-cleanness of R we can write k − BV−1A = v + η + ϑ, where v is an invertible element and η, ϑ ∈ R 
such that f(η) = g(ϑ) = 0. Putting everything in the described formula for K we get 

K = [
V A
B v + BV−1A

] + [
H 0
0 η

] + [
Θ 0
0 ϑ

]. 

Note that the second and third matrices are roots of f(x) and g(x), respectively so we only need to show that the first 
matrix is invertible. One can easily see that  

[
V A
B v + BV−1A

] = [
In−1 0

−BV−1 1
]

−1

[
V 0
0 v

] [In−1 −V−1A
0 1

]
−1

, 

a product of invertible matrices so the first matrix in the decomposition of K is invertible proving the f(x),g(x)-
cleanness of K and hence of Mn×n (R). The result is satisfied for all n ≥ 1.   

Example 2.6: By direct computation, one can easily show that the ring ℤ5 is (x2-3x+2),(x2-4x+3)-clean so it follows 

from Theorem 2.5, the ring of matrices  Mn×n(ℤ5) is (x2-3x+2),(x2-4x+3)-clean for all n ≥ 1. 

    We can consider another ring of matrices namely the trivial extension. Consider an R-module N where the ring R is 
commutative. We construct a ring called the trivial extension of R by N written as R(N) which is the collection 

R(N) = {[
a n
0 a

] : a ∈ R and n ∈ N}, 

with the typical and intuitive addition and matrix multiplication. We associate with such ring a homomorphism 
Φ: R[x]  ⟶ R(N)[x]  that identify polynomials in the ring R[x] with their images in the ring R(N)[x] and which is 
defined as 

Φ(a0 + a1x + ⋯ + amxm) = [
a0 0
0 a0

] + [
a1 0
0 a1

] x + ⋯ + [
am 0
0 am

] xm. 

Proposition 2.7: Consider a ring R which is commutative with some f(x),g(x)∈C(R)[x]. R possesses the f(x),g(x)-

clean property iff R(N) possesses the same property. 

Proof: Assume that R(N) is f(x),g(x)-clean. The set {J = [
0 n
0 0

]  with n ∈ N}  is evidently an ideal in the ring R(N) 

hence R(N)/J ≅ R possesses the f(x),g(x)-clean property by Corollary 2.3. Conversely, pick some [
a n
0 a

] ∈ R(N). By 

the f(x),g(x)-cleanness of R, there is a decomposition a = v + η + ϑ, where v is a unit  of  R, and η,ϑ are roots of f(x) 
and g(x), respectively. So we end up with the following decomposition 

[
a n
0 a

] = [
v n
0 v

] + [
η 0
0 η

] + [
ϑ 0
0 ϑ

], 

where the second and third matrices are the zeros for f(x) and g(x), at that order while the first matrix is obviously a 
unit. The proof is achieved. 

    Lastly, we will show that the ring of power series R[[x]] over a given ring R possesses the f(x),g(x)-clean property 
whenever R possesses this same property. On the other hand, we can find polynomials f(x) and g(x) for which we get 
R is f(x),g(x)-clean but the ring of polynomials over the ring R is not. 
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Proposition 2.8: Consider a ring R and let f(x),g(x)∈C(R)[x]. R possesses the f(x),g(x)-clean property iff R[[x]] 

possesses this same property. 

Proof: Assume that R is f(x),g(x)-clean, and pick some a0 + a1x + a2x2 + ⋯ ∈ R[[x]]. We have a0 = v + η + ϑ, where 

v is a unit and f(η) = g(ϑ) = 0. Therefore, a0 + a1x + a2x2 + ⋯ = (v + a1x + a2x2 + ⋯ ) + η + ϑ. It is known that 
power series with unit constant terms are themselves units, so (v + a1x + a2x2 + ⋯ ) is a unit, proving the f(x),g(x)-
cleanness of  R. Conversely, when R[[x]] is f(x),g(x)-clean, then the map a0 + a1x + a2x2 + ⋯ ⟶ a0 is a surjective ring 
morphism onto R so R possesses the f(x),g(x)-clean property by Proposition 2.1. 

Proposition 2.9: Consider a ring R that is commutative and (xm-x),(xn-x)-clean, for a pair m, n ∈ ℕ, then the ring of 
polynomials R[x] over R is not an (xm-x),(xn-x)-clean ring. 

Proof: With the aim of obtaining a contradiction, say R[x] possesses the (xm-x),(xn-x)-clean property. We can write 

x as x = v + η + ϑ, where v is a unit and f(η) = g(ϑ) = 0. As in Example 3.2 of [9] the elements η and ϑ are in R, so 
v = a + x, where a = −η − ϑ is a scalar. Since v is an invertible element and v = a + x, we conclude that the element 
a + x is a invertible, but this is a contradiction since units in R[x] must have nilpotent coefficients for all terms except 
the constant term (Note that the coefficient of x is 1 which is not a nilpotent).   
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