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A B S T R A C T 

The aim of this paper is to analyze the temperature and magnetohydrodynamic (MHD) 
peristaltic flow of non-Newtonian Sutterby fluid through a porous wavechannel under the 
influence of rotation. The problem formula is non-linear and non-homogeneous partial 
differential equations. By using the perturbation technique, we solved the momentum equation 
under the assumptions of a long wavelength and an extremely low Reynolds number. After 
getting the solution, we have used the "Mathematica 13" program to analyze the results 
through graphs, and it have been studied the effect of the rotation, magnetic field, viscosity of 
the fluid and average radius of the tube on the fluid movement and its temperature. 

MSC.. 

https://doi.org/10.29304/jqcsm.2024.16.11447

1. Introduction 

     In industrial and physiological processes, the non-Newtonian fluids are acknowledged more than viscous fluids. 
There are several types of non-Newtonian substances that can be seen in nature such like shampoo, paints, ketchup 
and blood, Sutterby fluid model (which is a non-Newtonian fluid) represents the high-polymer aqueous solutions [6]. 
Porous media can be distinguished through its spatial properties such as permeability, porosity, hardness and so 
many other properties, but one of the most recognized characteristics is permeability and porosity [5]. There are 
many materials in porous media such as man-made materials like cement, natural materials such as rocks, last but 
not least biological tissues such as bones. Porous media is used in many applications in science and engineering fields. 
The flow of fluids through the porous medium faces movement’s obstruction due to the friction of the fluid with the 
walls of the porous medium [5]. AL-Khafajy et al. in [3], studied variable viscosity effects of mass transfer on the MHD 
oscillatory flow of the Carreau fluid through a porous channel. The most important subject in fluid kinematics through 
a channel is the magnetic field which is generated from an electric current. It has encouraged other researchers to 
write about its uses in a variety of science, including the natural and health science. AL-Khafajy in [2], analyze the 
mathematical model of the effect of peristalsis flow from the MHD of a Jeffrey fluid across a cylindrical polar 
coordinates system for the slanted porous channel at different temperatures and concentrations with variable 
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viscosity for the fluid. The peristaltic flow of a fluid through a channel while a magnetic field is present has been the 
subject of numerous studies, Reddy in [7], found that when permeability parameter increases, the fluid’s velocity 
increases, but when magnetic parameter increases, the fluid’s velocity decreases. Hayat et al. in [4], found out that the 
fluid’s velocity has increased near the flow channel wall when the magnetic parameter has been increased, while the 
fluid’s velocity decreased in the center of the channel. Riaz et al. in [8], found out that the velocity of the fluid decreased 
with the magnetic parameter. Recently, interest has begun to investigate the effect of the temperature on liquid’s 
moveableness proceed along the channel, as most researchers agree that increasing in the temperature leads to 
increasing in the fluid’s velocity. There is a major concept in biological processes and industrial fluid transport is heat 
transfer as an example, keep up the body's temperature is one of the most required roles of the cardiovascular system 
and air that goes into the lungs must also be tempered to the temperature of the body. Mohammed and Hummady in 
[6], studied the effects of the rotation on heat transfer for peristaltic transport of Sutterby fluid in an asymmetric 
channel. These studies inspire us to present a mathematical model to analyze the temperature and hydrodynamic 
peristaltic flow of a Sutterby fluid through a porous wave channel under the influence of rotation.  

2. Mathematical Formulation 

    Consider a peristaltic flow of a Sutterby fluid through a porous wavechannel which the equation for the flow channel 

wall is ±(𝑑 − ∅̅ 𝑠𝑖𝑛2 (
𝜋

𝜔
(�̅� − 𝑠𝑡̅))) in two-dimensional Cartesian coordinates, where the positive sign represents the 

upper wall while the negative sign represents the lower wall of the channel. Where 𝑑 is the average radius of the tube, 

∅̅ is the amplitude of a peristaltic wave, 𝜔 is a wavelength, 𝑠 is a wave propagation speed, and 𝑡̅ is a time. The fluid is 
electrically conducted by an external magnetic field, 𝐵 = (0, 𝐵0, 0). The fluid rotates with a uniform angular velocity 
Ω about the z-axis. Due to the wave motion of the flow channel wall (contraction and relaxation), the fluid moves in 
the form of a peristaltic flow in the middle of the channel. The basic governing equations of the system are (continuity, 
momentum, and temperature equation), given by: 

   𝛻. 𝑈 = 0.                                                                                                            (continuity equation)                                                            (1) 

  𝜌(𝑈. 𝛻)�̅� + 𝜌 (Ω(Ω × 𝑈) + 2Ω ×
𝜕𝑈

𝜕𝑡̅
) = 𝛻𝑆̅ −

𝜇

�̂�
𝑈 + 𝜇𝑒 . �̅� × 𝑗 ̅    )momentum  equation)                                                        (2) 

  𝜌𝑐𝑝(�̅� . 𝛻)𝑇 = 𝐻. 𝛻
2𝑇 + 𝜏. (∇�̅�) − 𝐺(𝑇 − 𝑇0)                                      (temperature equation)                                                          (3) 

The definition of Sutterby fluid equation [1] is: 

 𝑆̅ = −�̅�𝐼 + 𝜏                                                                                                                                              

 𝜏 =  
𝜇

2
[
𝑠𝑖𝑛ℎ−1(𝑏𝛾)̇

𝑏�̇�
]
𝑛

(𝛻�̅� + (𝛻𝑈)𝑇).                                                                                                                                                             (4)  

Here 𝑈  is velocity filed, Ω is the rotation parameter,  𝑆̅ is the Cauchy stress tensor, �̅� is the pressure, 𝐼  is the unit 
tensor, 𝜏 is the extra stress tensor, 𝜇0 is the zero shear rate viscosity, and �̇� is the second invariant strain tensor which 

is defined as �̇� =
1

√2
√ 𝑡𝑟𝑎𝑐(𝛻𝑈 + (𝛻�̅�)𝑇)2, where (𝛻𝑈) is a gradient of the fluid velocity, and (𝛻𝑈)𝑇 is the transpose 

of the gradient velocity in the Cartesian coordinates system (x,y,z). When  |bγ̇|≪1, we have  sinh-1(bγ̇)≈(bγ̇)- 
(bγ̇)3

6
, so 

that equation (4) become: 

  𝜏 ≈
𝜇

2
[1 −

𝑛𝑏2

6
(�̇�)2] (𝛻𝑈 + (𝛻𝑈)𝑇).                                                                                                                                                           (5) 

3. Solution of Problem 

    Let 𝑈1 and 𝑈2 be the respective the components of velocity in the radial and axial directions in the fixed frame, 
respectively. The equations (1), (2), and (3) may be written as follows: 

  
𝜕𝑈1

𝜕�̅�
+

𝜕𝑈2

𝜕�̅�
= 0,                                                                                                                                                                                                 (6) 

𝜌 (
𝜕𝑈1

𝜕𝑡̅
+ 𝑈1

𝜕𝑈1

𝜕�̅�
+ 𝑈2

𝜕�̅�1

𝜕�̅�
) − Ω𝜌 (Ω𝑈1 + 2

𝜕𝑈2

𝜕𝑡̅
) = −

𝜕�̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕�̅�
 − 𝜎𝐵0

2𝑈1 −
𝜇

�̂�
𝑈1,                                                                 (7) 
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𝜌 (
𝜕�̅�2

𝜕𝑡̅
+ �̅�1

𝜕�̅�2

𝜕�̅�
+ �̅�2

𝜕�̅�2

𝜕�̅�
) − Ω𝜌 (Ω�̅�2 − 2

𝜕�̅�1

𝜕𝑡̅
) = −

𝜕𝑝̅

𝜕𝑌
 +

𝜕�̅��̅��̅�

𝜕𝑋
+

𝜕�̅��̅��̅�

𝜕�̅�
−

𝜇

�̂�
𝑈2,                                                                                     (8) 

𝜌𝑐𝑝 (
𝜕𝑇

𝜕𝑡̅
+ 𝑈1

𝜕𝑇

𝜕�̅�
+ 𝑈2

𝜕𝑇

𝜕�̅�
) = 𝐻 (

𝜕2𝑇

𝜕�̅�2
+

𝜕2𝑇

𝜕�̅�2
) +

𝜕�̅�1

𝜕�̅�
(𝜏�̅̅��̅�) + 

𝜕𝑈1

𝜕�̅�
( 𝜏�̅̅��̅�) + 

𝜕�̅�2

𝜕�̅�
(𝜏̅�̅��̅�) +

𝜕�̅�2

𝜕�̅�
(𝜏̅�̅��̅�) − 𝐺(𝑇 − 𝑇0),                            (9) 

where, Ω, 𝐵0, 𝜎, 𝐾, 𝜌, 𝐶𝑝, 𝐻, and 𝐺 refer to "rotation parameter, magnetic field, electric conductivity, permeability, fluid 

density, specific heat, thermal conductivity, and heat source”, respectively. The following relations are for converting 
from the test frame (X̅,Y̅) to the wave frame(�̅�, �̅�): 

 u̅1(x̅,y̅)=U̅1(X ̅–st,̅Y,̅t)̅-s, u̅2(x̅,y̅)=U̅2(X ̅–st,̅Y,̅t)̅, p̅ (x̅,y̅)=P̅ (X ̅–st,̅Y,̅t)̅                                                                (10) 
where (�̅�1, �̅�2) and (U̅1, U̅2) are velocity components and 𝑝̅ is the pressure in a frame wave. 

4. Method of Solution 
     In order to simplify the governing equations of the problem, we might introduce the following dimensionless 
transformations as follow: 

x=
x̅

ω
, y=

y̅

d
, u1=

u̅1

s
, u2=

ωu̅2

sd
, p=

d2p̅

μωs
, Re=

ρsd

μ
,w=

w̅

d
,Ψ=

Ψ̅

ds
,Q1=

Q1̅̅ ̅̅

ds
,

q1=
q1̅̅ ̅

ds
,ϵ=

nb2s2

2d2
, δ=

d

ω
, ∅=

∅̅

d
,τxx=

ω τ̅x̅x̅

μs
,τxy=

dτ̅x̅y̅

μs
 , τyy=

ω τ̅y̅y̅

μs
,

Me
2=

d2

μ
σB0

2, Hc=
Gd2

μCp
,Da=

K̂

d2
,θ=

T-T0

T1-T0
,Pr=

μcp

H
,Ec=

s2

cp(T1-T0) }
 
 

 
 

                                                                       (11) 

where 𝑅𝑒"Reynolds number", ∅ "amplitude ratio", 𝛿 "dimensionless wave number", Ψ "stream function", 𝑞1 "rate of 
flow", 𝜖 "Sutterby fluid parameter", 𝐷𝑎  "Darcy number", 𝜃 "dimensionless temperature", 𝑀𝑒  "Magnetic parameter", 
𝐻𝑐  "heat source parameter", 𝐸𝑐  "Eckert number", and 𝑃𝑟  "Prandtl number". Substituting equations (10,11) into 
equations (6-9), we will obtain: 

    
𝜕𝑢1

𝜕𝑥
+

𝜕𝑢2

𝜕𝑦
= 0,                                                                                                                                                                                             (12) 

  𝑅𝑒𝛿 ((𝑢1 + 1)
𝜕𝑢1

𝜕𝑥
+ 𝑢2

𝜕𝑢1

𝜕𝑦
) −

𝜌𝑑2

𝜇
Ω2(𝑢1 + 1) = −

𝜕𝑝

𝜕𝑥
 + 𝛿2

𝜕𝜏𝑥𝑥

𝜕𝑦
+ 

𝜕𝜏𝑥𝑦

𝜕𝑦
− (𝑀𝑒

2 +
1

𝐷𝑎
) (𝑢1 + 1),                                              (13) 

 𝑅𝑒𝛿
3 ((𝑢1 + 1)

𝜕𝑢2

𝜕𝑥
+ 𝑢2

𝜕𝑢2

𝜕𝑦
) − 𝛿2

𝜌𝑑2

𝜇
Ω2𝑢2 = −

𝜕𝑝

𝜕𝑦
 + 𝛿2

𝜕𝜏𝑦𝑥

𝜕𝑦
+ 𝛿2

𝜕𝜏𝑦𝑦

𝜕𝑦
− 𝛿2

1

𝐷𝑎
𝑢2,                                                                       (14)     

 𝑅𝑒𝛿 ((𝑢1 + 1)
𝜕𝜃

𝜕𝑥
+ 𝑢2

𝜕𝜃

𝜕𝑦
) =

1

𝑃𝑟
(𝛿2

𝜕2𝜃

𝜕𝑥2
+

𝜕2𝜃

𝜕𝑦2
) + 𝐸𝑐 (𝛿

2 𝜕𝑢1

𝜕𝑥
(𝜏𝑥𝑥) +

𝜕𝑢1

𝜕𝑦
(𝜏𝑥𝑦) + 𝛿

2  
𝜕𝑢2

𝜕𝑥
( 𝜏𝑦𝑥) + 𝛿

2 𝜕𝑢2

𝜕𝑦
(𝜏𝑦𝑦)) − 𝐻𝑐𝜃.        

                                                                                                                                                                                                                        (15) 
The component of extra stress of Sutterby’s fluid be as the form: 

𝜏𝑥𝑦 = [1 − 𝜖 {2𝛿
2 (

𝜕𝑢1

𝜕𝑥
)
2

+ 2𝛿2 (
𝜕𝑢2

𝜕𝑦
)
2

+ (
𝜕𝑢1

𝜕𝑦
+ 𝛿2

𝜕𝑢2

𝜕𝑥
)
2

}] (
𝜕𝑢1

𝜕𝑦
+ 𝛿2

𝜕𝑢2

𝜕𝑥
).                                                                                 (16) 

The associated dimensionless boundary conditions in the wave frame are: 
 𝑢1 = −1   at  𝑦 = ±𝑤 = ±(1 − ∅ 𝑠𝑖𝑛2(𝜋𝑥))                                                                                           
 𝜃 = 0   at  y=-w=-1+∅ sin2(πx) , and  𝜃 = 1   at  𝑦 = 𝑤 = 1 − ∅𝑠𝑖𝑛2(𝜋𝑥).                             
Because of the flow channel’s structure, we assume the wavelength 𝛿 is too small (𝛿 ≪ 1). And simplification the 
equations (13)-(16) by neglecting those parts where this parameter appears, so that we get: 

  −
𝜌𝑑2

𝜇
Ω2(𝑢1 + 1) = −

𝜕𝑝

𝜕𝑥
 +  

𝜕

𝜕𝑦
𝜏𝑥𝑦 − (𝑀𝑒

2 +
1

𝐷𝑎
) (𝑢1 + 1),                                                                                                              (17) 

  −
𝜕𝑝

𝜕𝑦
= 0,                                                                                                                                                                                                                  (18) 

    
1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2
+ 𝐸𝑐  𝜏𝑥𝑦 (

𝜕𝑢1

𝜕𝑦
) − 𝐻𝑐𝜃 = 0,                                                                                                                                                                (19) 

   𝜏𝑥𝑦 = [
𝜕𝑢1

𝜕𝑦
− 𝜖 (

𝜕𝑢1

𝜕𝑦
)
3

].                                                                                                                                                                                           (20) 

By substituting equation (20) into equation (17) and equation (19), we obtain: 

  −
𝜌𝑑2

𝜇
Ω2(𝑢1 + 1) = −

𝜕𝑝

𝜕𝑥
+

𝜕2𝑢1

𝜕𝑦2
− 3𝜖 (

𝜕𝑢1

𝜕𝑦
)
2 𝜕2𝑢1

𝜕𝑦2
− (𝑀𝑒

2 +
1

𝐷𝑎
) (𝑢1 + 1)                                                                                   (21) 
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𝜕2𝜃

𝜕𝑦2
− 𝑃𝑟𝐻𝑐𝜃 = 𝑃𝑟𝐸𝑐𝜖 (

𝜕𝑢1

𝜕𝑦
)
4

− 𝑃𝑟𝐸𝑐 (
𝜕𝑢1

𝜕𝑦
)
2

                                                                                                                                           (22) 

4.1 Rate of Volume Flow 

    The instantaneous volume flow rate in fixed coordinates system given by: 

  Q̂= ∫ U̅1(X̅-st,̅ Y,̅ t)̅dY̅
W

-W
                                                                                                                                                                       (23) 

Using the transformation (u̅1(x̅,y̅)+s) into equation (23) and then integrating it, we get: 

 �̂� = �̅� + 𝑠(𝑊 +𝑊) = �̅� + 2𝑠𝑊                                                                                                                                                                    (24) 

Where  q̅= ∫ u̅1(x̅,y̅)dy̅
W

-W
                                                                                                                        

The time mean flow rate over a period 𝑇 =
𝜔

𝑠
 at a fixed position is defined as: 

  �̅� =  
1

𝑇
∫ �̂�
𝑇

0
 𝑑𝑡̅.                                                                                                                                                                                                  (25) 

Substituting equation (24) in equation (25), we will obtain: 

 �̅� =  
1

𝑇
∫ (�̅� + 2𝑠𝑊)
𝑇

0
𝑑𝑡̅ =  �̅� + 2𝑠(𝑑 −

∅̅

2
).                                                                                                                                                  (26) 

By using (11) into equation (26), we get: 

 𝑑𝑠𝑄 =  𝑑𝑠𝑞 + 2𝑠(𝑑 −
𝑑∅

2
).                                                                                                                                                                                 (27) 

The non-dimensional equation (27) has writing as: 

  𝑄 = 𝑞 + 2 − ∅,                                                                                                                                         

then  𝑞 = 𝑄 + ∅ − 2.                                                                                                                                   

Where 𝑞 is the dimensionless volume flow rate in the wave frame has the form: 

  𝑑𝑠𝑞 = ∫ 𝑠𝑢1
𝑊

−𝑊
𝑑 𝑑𝑦     →   𝑞 =  ∫ 𝑢1

𝑊

−𝑊
 𝑑𝑦                                 

4.2 Velocity Function 

    The equation (18) shows that 𝑝 dependents only on 𝑥. Equation (21) becomes as: 

  
𝜕2𝑢1

𝜕𝑦2
− 𝐴𝑢1 =

𝑑𝑝

𝑑𝑥
+ 3𝜖 (

𝜕𝑢1

𝜕𝑦
)
2 𝜕2𝑢1

𝜕𝑦2
+ 𝐴,       where  𝐴 = 𝑀𝑒

2 +
1

𝐷𝑎
−

𝜌𝑑2

𝜇
Ω2                                                                                                (28) 

Because equation (28) is a non-linear differential equation and it’s difficult to find an exact solution, so we use the 
perturbation technique to find the problem solution, as follows: 

  𝑢1 = 𝑢10 + 𝜖 𝑢11 + Օ (𝜖
2),                                                                                                                                                       (29) 

  𝑝 =  𝑝0 + 𝜖 𝑝1 + Օ (𝜖
2),                                                                                                                                                                       (30) 

  Ѱ = Ѱ0 + 𝜖 Ѱ1 + Օ (𝜖
2),                                                                                                                                                                      (31) 

substituting equations (29) and (30) into equation (28), then by equating the similar powers of 𝜖, we get the following 
results displayed as below: 

i – Zero-order system (𝝐𝟎) 
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𝜕2𝑢10

𝜕𝑦2
− 𝐴𝑢10 = 

𝑑𝑝0

𝑑𝑥
+ 𝐴.                                                                                                                                                                           (32) 

The associated boundary conditions  𝑢10 = −1   at  𝑦 = ±ℎ = ±(1 − ∅𝑠𝑖𝑛2(𝜋𝑥)) 

ii – First-order system (𝝐𝟏)   

   
𝜕2𝑢11

𝜕𝑦2
− 𝐴𝑢11 =

𝑑𝑝1

𝑑𝑥
+ 3 (

𝜕𝑢10

𝜕𝑦
)
2

 
𝜕2𝑢10

𝜕𝑦2
.                                                                                                                                                              (33) 

The associated boundary conditions  𝑢11 = 0   at  𝑦 = ±ℎ = ±(1 − ∅𝑠𝑖𝑛2(𝜋𝑥)). 

By substituting the solution of equations (32) and (33) in to equation (29), we obtain: 

u1=
ⅇ√Ah(

dp0
dx
)

A(1+ⅇ2√Ah)
(ⅇ√Ay+ⅇ-√Ay) -

A+(
dp0
dx
)

A
+ϵ

(

 
 
 
 
 
 
 

(ⅇ√Ay+ⅇ-√Ay)

(

 
 
 
 
 
 

1

8A2(1+ⅇ2√Ah)
4 ⅇ

√Ah

(

 
 
 
 
 
-3 (

dp0

dx
)
3

-6ⅇ2√Ah (
dp0

dx
)
3

-6ⅇ4√Ah (
dp0

dx
)
3

-3ⅇ6√Ah (
dp0

dx
)
3

-

12√Aⅇ2√Ahh (
dp0

dx
)
3

+

12√Aⅇ4√Ahh (
dp0

dx
)
3

+8A (
dp1

dx
)+24Aⅇ2√Ah (

dp1

dx
)+

24Aⅇ4√Ah (
dp1

dx
)+8Aⅇ6√Ah (

dp1

dx
) )

 
 
 
 
 

)

 
 
 
 
 
 

-

1

8A2(1+ⅇ2√Ah)
3 ⅇ

-3√Ay

(

 
 
 
 
3ⅇ3√Ah (

dp0

dx
)
3

-6ⅇ3√Ah+2√Ay (
dp0

dx
)
3

-6ⅇ√A(3h-2y)+2√Ay (
dp0

dx
)
3

-6ⅇ3√Ah+6√Ay (
dp0

dx
)
3

-

6ⅇ√A(3h-2y)+6√Ay (
dp0

dx
)
3

+3ⅇ√A(3h-2y)+8√Ay (
dp0

dx
)
3

+12√Aⅇ3√Ah+4√Ayy (
dp0

dx
)
3

-

12√Aⅇ√A(3h-2y)+4√Ayy (
dp0

dx
)
3

+8Aⅇ3√Ay (
dp1

dx
)+24Aⅇ2√Ah+3√Ay (

dp1

dx
)+

24Aⅇ4√Ah+3√Ay (
dp1

dx
)+8Aⅇ6√Ah+3√Ay (

dp1

dx
) )

 
 
 
 

)

 
 
 
 
 
 
 

,   

where  

𝑑𝑝

𝑑𝑥
= (

𝐴3 2⁄ (−2+2ℎ+𝜙+𝑄0)

2(√𝐴ℎ−Tanh[√𝐴ℎ])
) − 𝜖

(

 
 
 
 
 

(

  
 
𝐴3 2⁄ 𝑒−4√𝐴ℎ(1+𝑒2√𝐴ℎ)

4
Sech[√𝐴ℎ]

3

(

 
 
ⅇ4√𝐴ℎ(12√𝐴ℎ−8Sinh[2√𝐴ℎ]+Sinh[4√𝐴ℎ])(−

𝐴3 2⁄ (−2+2ℎ+𝜙+𝑄0)

2(√𝐴ℎ−Tanh[√𝐴ℎ])
)

3

𝐴5 2⁄ (1+ⅇ2√𝐴ℎ)
4 +𝑄1

)

 
 

)

  
 

(32(−√𝐴ℎCosh[√𝐴ℎ]+Sinh[√𝐴ℎ]))

)

 
 
 
 
 

.  

4.3 Temperature Function 

    By substituting the velocity function into the heat equation (22) and then solving the compensation result, we find 
the temperature function (very long). By drawing the temperature function, we will discuss the effect of the main 
parameters on the rise or fall of the fluid temperature. 

4.4 Pressure Rise, Friction Forces, and Stream Function  

Pressure rise ∆𝑝Ω and friction forces 𝐹Ω on the upper and lower walls are defined as follow: 

  ∆𝑝Ω = ∫ (
𝑑𝑝

𝑑𝑥
)

1 

0 
 𝑑𝑥,                                                                                                                                 

  𝐹Ω = ∫ ℎ2 (−
𝑑𝑝

𝑑𝑥
)

1

0
 𝑑𝑥.                                    
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We found the stream function  through equation (𝛹 = 𝛹0 + 𝜀𝛹1 = ∫𝑢10 𝑑𝑦 + 𝜖 ∫ 𝑢11 𝑑𝑦) and its formula after the 
solution is: 

 

𝛹 = −

𝐴𝑦+
(−ⅇ2√𝐴ℎ−√𝐴(ℎ−𝑦)+ⅇ√𝐴(ℎ−𝑦))(

𝑑𝑝0
𝑑𝑥 )

√𝐴(1+ⅇ2√𝐴ℎ)
+𝑦(

𝑑𝑝0
𝑑𝑥

)

𝐴
+ 𝜖 (

1

8𝐴5 2⁄ (1+𝑒2√𝐴ℎ)
4 ⅇ

−3√𝐴𝑦 (−((ⅇ3√𝐴ℎ + ⅇ5√𝐴ℎ − 3ⅇ√𝐴(ℎ+2𝑦) −

ⅇ3√𝐴(ℎ+2𝑦) − 3ⅇ√𝐴(7ℎ+2𝑦) + 3ⅇ√𝐴(ℎ+4𝑦) + 3ⅇ√𝐴(7ℎ+4𝑦) − ⅇ√𝐴(5ℎ+6𝑦) + 12ⅇ√𝐴(5ℎ+4𝑦) (−1 + √𝐴(−ℎ + 𝑦)) +

12ⅇ√𝐴(3ℎ+2𝑦) (1 + √𝐴(−ℎ + 𝑦)) + 12ⅇ√𝐴(3ℎ+4𝑦) (−1 + √𝐴(ℎ + 𝑦)) + 12ⅇ√𝐴(5ℎ+2𝑦) (1 + √𝐴(ℎ + 𝑦))) (
𝑑𝑝0

𝑑𝑥
)
3

) −

8𝐴ⅇ2√𝐴𝑦(1 + ⅇ2√𝐴ℎ)
3
(ⅇ√𝐴ℎ − ⅇ√𝐴(ℎ+2𝑦) + √𝐴ⅇ√𝐴𝑦𝑦 + √𝐴ⅇ√𝐴(2ℎ+𝑦)𝑦) (

𝑑𝑝1

𝑑𝑥
))).   

5. Numerical Results and Discussion 

    In this section, we discuss and graphically analyze the temperature and MHD peristaltic flow of a Sutterby fluid 
through a porous wavechannel under the influence of rotation, by using the "Mathematica 13" program. This section 
divided to five subsections: the first one discusses the effect of the parameters on fluid velocity, the second one studies 
the effect of the parameters on pressure gradient and pressure rise, the third one analyzes the effect of the parameters 
on Friction Forces, the fourth one analyze the effect of the parameters on temperature, and the final subsection 
analyzes the effect of the parameters on stream function. 

5.1 Velocity Distribution 

    The Figs.  (1a)-(1d) show the effect of parameters ∅,Ω,Q0=Q1,d,Me,μ,ϵ and 𝐷𝑎  respectively, on the distribution of 
velocity. Fig. (1a), shows that 𝑢1 increases in the middle of the channel, but it  decreases near the channel’s walls when 
increases the parameters ∅ and Ω, respectively. In Fig. (1b), we can see the velocity increases when the flow rate 𝑄0 =
𝑄1 increases, while the velocity increases in the middle of the channel but decreases near the channel’s walls when 
the average radius 𝑑 increases. We notice in Fig. (1c), 𝑢1 decreases in the middle of the channel, but increases near 
the channel’s walls when increases the parameters 𝑀𝑒  and 𝜇 , respectively. Fig. (1d), shows the velocity increases 
when  Sutterby fluid parameter 𝜖 increases, while the velocity increases in the middle of the channel but decreases 
near the channel’s walls when 𝐷𝑎  increases. 
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Fig. 1: Variation of the velocity distribution for the following parameters 
{Q0=Q1=1.2,  ∅=0.25, ρ=0.8, μ=0.07, Ω=0.2, d=0.8,Me=1.2,Da=0.8, ϵ=0.2,x=0.1} 

5.2 Pressure Distribution 

    In this subsection, we discussed the influence of parameters ∅,ϵ,d,ρ,Ω,μ,Me and 𝐷𝑎  on the pressure gradient 𝑑𝑝/𝑑𝑥. 
In Figs.  (2a) and (2b), we can see 𝑑𝑝/𝑑𝑥 decreases with an increase in the parameters ∅,ϵ,d and 𝜌, respectively. Fig. 
(2c), shows the pressure gradient decreases with an increase in the rotation parameter Ω, while 𝑑𝑝/𝑑𝑥 increases 
when the fluid’s viscosity 𝜇 increases. We notice in Fig. (2d), 𝑑𝑝/𝑑𝑥 increases when the parameter 𝑀𝑒  increases, while 
pressure gradient decreases when 𝐷𝑎  increases. 

   

   

Fig. 2: Variation of the pressure gradient for the following parameters 
{Q0=Q1=1.2,  ∅=0.25, ρ=0.8, μ=0.07, Ω=0.2,d=0.8,Me=1.2, Da=0.8, ϵ=0.2} 

 

     Figs.  (3a)-(3d) show the effects of the parameters Da,μ,Q0=Q1,ρ,∅,ϵ,Me and 𝑑, respectively on the pressure rise ∆𝑝Ω  
vs. Ω, through the region 1 < Ω < 1.3. Fig. (3a), shows that the pressure rise increases when Darcy number increases, 
while it decreases when 𝜇 increases. In Figs.  (3b) and (3c), we can see ∆𝑝Ω  increases with an increase the parameters 
Q0=Q1,ρ,∅ and 𝜖. Fig. (3d), shows that ∆𝑝Ω decreases when the magnetic parameter increases, while the pressure rise 
increases when 𝑑 increase. 
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Fig. 3: Variation of the pressure rise for the following parameters 
{Q0=Q1=1.2, ∅=0.25,  ρ=0.8, μ=0.07,d=0.8,Me=1.2, Da=0.8, ϵ=0.2} 

 

5.3 Friction Force Distribution 

    Figs.  (4a)-(4d) shows the effect of parameters Da,μ,Q0=Q1,ρ,∅,ϵ,Me and 𝑑 on the friction forces 𝐹Ω vs. Ω, through 
the region 1 < Ω < 1.3. Fig. (4a), shows that the friction forces decreases when the parameter 𝐷𝑎  increases, while it 
increases with increasing the fluid’s viscosity 𝜇. We can see in Figs.  (4b) and (4c), the friction forces decreases when 
the parameters Q0=Q1,ρ,∅ and 𝜖 increases, respectively. In Fig. (4d), the friction forces increases with increasing the 
parameter 𝑀𝑒 , while it decreases when the average radius 𝑑 increases. 

   

   

Fig. 4: Variance of the frictional forces for the following parameters {𝑄0 = 𝑄1 = 1.2, ∅ =  0.25, 𝜌 = 0.8, 𝜇 =
0.07, 𝑑 = 0.8,𝑀𝑒 =  1.2, 𝐷𝑎 = 0.8, 𝜖 = 0.2} 

 

5.4 Temperature profile 

    Figs.  (5a)-(5I) show the effect of parameters 𝑄0 = 𝑄1, ∅ 𝜌, 𝜇, Ω, 𝑑,𝑀𝑒 , 𝐷𝑎 , 𝜖, 𝐸𝑐 , 𝐻𝑐  and 𝑃𝑟  on the temperature vs. y. 
Fig. (5a), shows that the temperature decreases when parameter 𝑄0 = 𝑄1  increases. In Fig. (5b), shows the 
temperature decreases at 𝑦 < 0, while increases at 𝑦 > 0 when ∅ increases. In Figs.  (5c) and (5d), we notice that the 
temperature increases when the fluid’s density 𝜌  increases, while the temperature decreases when the fluid’s 
viscosity increases. We can see in Figs.  (5e) and (5f), that the temperature increases when the parameters Ω and 𝑑 
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increase, respectively. Figs.  (5g) and (5h), show the temperature decreases when the parameters 𝜖 and 𝑀𝑒  increase, 
respectively. Figs.  (5i) and (5j), show that the temperature increases when the parameters 𝐷𝑎  and 𝐸𝑐  increase, 
respectively. Fig. (5k), shows that the temperature decreases when parameter 𝐻𝑐  increases. In Fig. (5l), we can see 
that the temperature increases and decreases when the parameter 𝑃𝑎  increases.  
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Fig. 5: Variation of the temperature distribution for the following parameters 
{Q0=Q1=1.2,∅= 0.25, ρ=0.8,μ=0.07 Ω=0.2, d=0.8,Me= 1.2,Da=0.8, ϵ=0.2,x=0.1,Ec=0.4,Hc=0.3,Pr=2} 

5.5 Trapping Phenomenon 

    The creation of in fluid internal bolus by a closed streamline in a fluid flow is known as the trapping phenomenon. 
In this part we will illustrate the effect of the parameters Q0=Q1,∅,ρ,μ,Ω,d,Me,Da and 𝜖 on trapped bolus through a 
porous wavechannel. Figs.  (6a)-(6c), show that the trapped bolus has increases at the lower and upper walls of the 
channel when the parameters Q0=Q1,∅ and 𝜌 increases. Fig. (6d), shows the trapped bolus decreases when the fluid’s 
viscosity 𝜇 increases. In Figs.  (6e) and (6f), we can see the trapped bolus increases when the parameters Ω and 𝑑 
increases. Fig. (6g), show that the trapped bolus decreases when the magnetic parameter increases. Figs.  (6h) and 
(6i), show that the trapped bolus increases when the parameters 𝐷𝑎  and 𝜖 increases. 

  

Fig. 6a: Stream function of Q0=Q1={1.192,1.2,1.208}  at ∅=0.25, ρ=0.8, μ=0.07,  Ω=0.2, d=0.8,Me=1.2, 
Da=0.8, ϵ=0.2 
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Fig. 6b: Stream function of ∅={0.24,0.25,0.26}  at Q0=Q1=1.2, ρ=0.8, μ=0.07,  Ω=0.2,  d=0.8,Me=1.2, 
Da=0.8, ϵ=0.2 

 

 

Fig. 6c: Stream function of ρ={0.5,0.9,1.2}  at Q0=Q1=1.2, ∅=0.25, μ=0.07, Ω=0.2,  d=0.8,Me=1.2, 
Da=0.8, ϵ=0.2 

 

 

Fig. 6d: Stream function of μ={0.04,0.07,0.1}  at Q0=Q1=1.2, ∅=0.25, ρ=0.8, Ω=0.2,  d=0.8,Me=1.2, 
Da=0.8, ϵ=0.2 
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Fig. 6e: Stream function of Ω={0.15,0.2,0.25}  at Q0=Q1=1.2, ∅=0.25, ρ=0.8, μ=0.07, d=0.8,Me=1.2, 
Da=0.8, ϵ=0.2 

 

 

Fig. 6f: Stream function of d={0.5,0.8,1.1}  at Q0=Q1=1.2, ∅=0.25, ρ=0.8, μ=0.07, Ω=0.2,Me=1.2, 
Da=0.8, ϵ=0.2 

 

 

Fig. 6g: Stream function of Me={1.15,1.2,1.25}  at Q0=Q1=1.2, ∅=0.25, ρ=0.8, μ=0.07, Ω=0.2,d=0.8, 
Da=0.8, ϵ=0.2 
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Fig. 6h: Stream function of Da={0.65,0.8,0.95}  at Q0=Q1=1.2, ∅=0.25, ρ=0.8, μ=0.07, Ω=0.2,d=0.8, 
Me=1.2, ϵ=0.2 

 

 

Fig. 6i: Stream function of ϵ={0.18,0.2,0.22}  at Q0=Q1=1.2, ∅=0.25, ρ=0.8, μ=0.07, Ω=0.2,d=0.8, 
Me=1.2,Da=0.8 

 

6. Conclusion Remarks 

    In this paper, we analyze the temperature and magnetohydrodynamic (MHD) peristaltic flow of a Sutterby fluid 
through a porous wavechannel under the effect of rotation. A summary of the above discussed results is as follows: 

1. Increasing in the parameters 𝑄0 = 𝑄1 and 𝜖 leads to fluid’s velocity increases. The velocity of fluid 

increases in the middle of the channel, but it decreases near the channel’s walls when increases the 

parameters ∅, Ω, 𝑑 and 𝐷𝑎, while the fluid’s velocity decreases in the middle of the channel, but it  

increases near the channel’s walls when the parameters 𝜇 and 𝑀𝑒 increases. 

2. Increasing in the parameters 𝑀𝑒 and 𝜇 leads to the pressure gradient rise, while by increasing the 

parameters ∅,ϵ,d,ρ,Ω and 𝐷𝑎 leads to the pressure gradient 𝑑𝑝/𝑑𝑥 decreases. 

3. Increasing in the parameters Q0=Q1,Da,ρ,∅,ϵ and 𝑑 leads to increase in the pressure rise, while by 

increasing the parameters 𝜇 and 𝑀𝑒 leads to decrease in the pressure rise. 

4. Increasing in the parameters 𝜇 and 𝑀𝑒 leads to increase in the friction forces, while by increasing the 

parameters Q0=Q1,Da,ρ,∅,ϵ and 𝑑 leads to decrease in the friction forces. 

5. Increasing in the parameters p,Ω,d,Da  and 𝐸𝑐  leads to increase in the temperature, while by 

increasing the parameters Q0=Q1,μ,ϵ,Me and 𝐻𝑐 leads to decrease in the temperature. By increasing 

the parameters ∅ the temperature decreases at 𝑦 < 0, while increases at 𝑦 > 0. The temperature 

increases and decreases when the parameter 𝑃𝑎 increases.  
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6. Increasing in the parameters Q0=Q1,∅,ρ,Ω,d,Da and 𝜖 leads to trapped bolus expanding, while an 

increase in the parameter 𝜇 and the parameter 𝑀𝑒 leads to trapped bolus shrinkage. 
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