
Journal of Al-Qadisiyah for Computer Science and Mathematics VOL16(1) 2024, PP Comp. 124-136

∗Corresponding author Entesar H. Abdulsaed Almuhsen

Email addresses: hopidhadha@gmail.com

Communicated by ‘sub etitor’

Optimizing the Architecture of Convolutional Neural Networks

Using Modified Salp Swarm Algorithm

Entesar H. Abdulsaed1*, Maytham Alabbas1, Raidah S. Khudeyer2

1Department of Computer Science, College of Computer Science and Information Technology, University of Basrah, Basrah, Iraq.
 Email: hopidhadha@gmail.com, ma@uobasrah.edu.iq
2Department of Computer Information Systems, College of Computer Science and Information Technology, University of Basrah, Basrah, Iraq.
 Email: raidah.khudayer@uobasrah.edu.iq

A R T I C L E I N F O

Article history:

Received: 3 /3/2024

Rrevised form: 21 /3/2024

Accepted : 28 /3/2024

Available online: 30 /3/2024

Keywords:

Deep learning

Convolutional neural networks

Hyperparameters optimization

Salp swarm algorithm

A B S T R A C T

Deep learning is highly effective in dealing with complex tasks such as image
classification and recognition. However, finding the optimal architecture's
hyperparameters for Convolutional Neural Networks (CNNs) to achieve the
best performance and parameter regularization can be challenging.
Metaheuristic optimization algorithms can be utilized to find solutions in
this context. In this research, a computerized CNN was adjusted using an
improved Salp Swarm Algorithm (SSA) to enhance crucial CNN settings, like
dropout rate, hidden units, learning rate, and batch size. The refined design
was tested on two standard datasets. MNIST and Fashion MNIST. The
outcomes displayed model performance achieving accuracy levels of 99.6%
for MNIST and 94.08% for Fashion MNIST. This tuned system outperformed
the existing practices by 0.2% and 0.04% for each dataset while also cutting
down on computational expenses. The fusion of SSA with CNNs displayed
adaptability and resilience opening up possibilities, in image classification
and consistently delivering outstanding outcomes.

MSC.

https://doi.org/10.29304/jqcsm.2024.16.11450

1. introduction

Deep Learning (DL) falls under the umbrella of machine learning. Relies, on Artificial Neural Networks (ANNs) to learn
from data and enhance performance on specific tasks [1]. These networks imitate the structure and functionality of
the brain enabling them to process information and make decisions in a manner. DL can be viewed as a group of
interconnected classifiers each tasked with recognizing features or patterns within the input data [2]. These
classifiers use regression in conjunction with activation functions to extract more advanced features ultimately
producing the desired output. It should be emphasized that achieving optimal performance from CNNs relies greatly
on fine-tuning their hyperparameters [3, 4]. These settings, including the learning rate, batch size, and kernel size,
dictate how the network functions and directly affects its overall performance [5, 6]. Consequently, finding the ideal

124 Entesar H. Abdulsaed et al, Journal of Al-Qadisiyah for Computer Science and Mathematics VOL16(1) 2024, PP Comp. 124-136

combination of these hyperparameters necessitates the use of efficient techniques that can effectively explore the
extensive hyperparameters space to uncover this optimal configuration. Metaheuristic optimization algorithms like
Gray Wolf Optimizer (GWO), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC) have proven to be
valuable tools in this regard [7-9].

In this research, we delve into how effective SSA, is in tuning the hyperparameters of CNN architectures. Opting
for SSA is a choice because of its established advantages; rapid convergence, comprehensive exploration of solution
spaces, and an algorithm that facilitates the identification of optimal configurations. Additionally, its simple
mathematical framework makes it easier to implement and comprehend [10]. To validate SSA's performance, we
conducted experiments on the MNIST and fashion MNIST datasets, pitting them against other optimization methods
[11, 12]. The results will not only reveal SSA's effectiveness and efficiency in optimizing CNN hyperparameters but
also offer valuable insights for further research on deep learning model optimization.

This paper is structured as follows: Section 2 delves into existing research relevant to our work. Section 3 lays the
theoretical groundwork, introducing CNNs and SSA. The proposed approach is then meticulously described in Section
4. Section 5 presents comprehensive evaluation experiments, followed by a thorough analysis and visualization of
results in Section 6. Finally, Section 7 draws insightful conclusions and wraps up the paper.

2. Related Works

Recent trends in evolutionary algorithms and reinforcement learning approaches have shown promise in developing
and applying diverse techniques for autonomously setting hyperparameters and selecting the structure of CNNs.
These methods aim to eliminate the need for tedious grid search and manual parameter tweaking, thereby reducing
computational costs and saving valuable time during network construction. In this section, we delve into some of the
latest research within this field, exploring the innovative methods that are shaping the future of automated CNN
design.

In [13] proposes using a Genetic Algorithm (GA) to optimize several CNN parameters. They investigated a variety
of GA parameters and ranges, and their exhaustive search culminated in an approximation of the global optimum.
Notably, even training with a large dataset did not achieve optimal accuracy, suggesting potential limitations in the
chosen parameter space. In [14], it explores using distributed Particle Swarm Optimization (DPSO) to optimize CNNs
hyperparameters. Their method utilizes an encoding technique, for CNNs customizing update operations for each
element. This allows an automated search to find the CNNs model. Additionally, they use a distributed framework to
speed up optimization and reduce processing time. However, obtaining results might involve using several elements
potentially raising computational expenses. In another study, an automated strategy is introduced that combines
algorithms (tree growth and firefly) to optimize hyperparameters and create CNN structures [15]. While effective the
computational requirements of these methods restricted the analysis to a dataset than intended. Another proposal
suggests employing Decreasing Weight Particle Swarm Optimization (LDWPSO) to fine-tune CNNs hyperparameters
[16]. The goal is to enhance the LeNet 5 architecture. Yet the authors acknowledge the necessity for research and
validation to confirm its effectiveness. Moreover, it is crucial to investigate the drawbacks of LDWPSO, in CNNs
optimization related to convergence speed and computational expenses.

Furthermore, another approach is presented for categorizing the Fashion MNIST dataset by combining features
extracted from level co-matrices “GLCMs” Histograms of Oriented Gradients (HOGs) and Support Vector Machines
(SVMs) resulting in an impressive accuracy rate of 91.59% [17]. In [18] introduces the idea of Activation Functions
(CAFs). Suggests the Parameter Free Rectified Exponential Unit (PFREU), as a specific CAF example. Their paper then
demonstrates the effectiveness of CAFs for data classification by applying them to two architectures: ResNet-110 on
CIFAR-10 and LeNet-5 on Fashion-MNIST. In [19] IntelliSwAS is a technique for optimizing Deep Neural Network
(DNN) architectures for both classification and regression tasks. To improve the search process, the authors leverage
Directed Acyclic Graphs Recurrent Neural Networks DAGRNN [20], a machine learning model specifically designed to
predict network architecture quality. While IntelliSwAS successfully identified high-performing CNNs cells (building
blocks of the network), manually integrating them into larger CNNs architectures remained a bottleneck. In [21]
proposes a Hybrid Particle Swarm Optimization and Grey Wolf Optimization (HPSGW) algorithm to enhance the
performance of CNNs models by optimizing their hyperparameters.

The researcher in [22] introduces a Simple Deterministic Selection Genetic Algorithm (SDSGA) for optimizing the
hyperparameters of two popular machine learning models: CNNs and the Random Forest (RF) algorithm. In [23]
proposes a 15-convolutional-layer Multiple CNN (MCNN15). The authors in [24] investigate the performance of CNNs
and ANNs for image classification on the Fashion-MNIST apparel dataset, evaluating the effect of different optimizers.

In [25] advantages established deep learning architectures like VGG16 and ResNet to achieve high classification
accuracy. The authors further propose an approximate dynamic learning rate update algorithm to promote faster
convergence and shorten training time. In [26] employs the Local Autonomous Competitive Harmony Search (LACHS)
algorithm to optimize the classification accuracy of a VGGNet on both Fashion-MNIST and CIFAR-10 datasets. The

Entesar H. Abdulsaed et al., Journal of Al-Qadisiyah for Computer Science and Mathematics VOL16(1) 2024, PP Comp. 124-136 125

researchers in [27] introduce a novel Q-learning Reinforcement Learning (RL)-based Optimization Algorithm (ROA)
for optimizing CNN hyperparameters. The paper tests the proposed ROA on two datasets: MNIST and CIFAR-10. In
[11] focuses on implementing a deep CNNs model to improve recognition accuracy for the MNIST handwritten digit
dataset.

Table 1. outlines the limitations and effectiveness of different approaches for optimizing CNN hyperparameters.

Table 1: Related Works.

Ref Method(s)
Parameters for

optimization
Limitations Datasets Acc. %

[13]
2019

GA
Learning rate, dropout,
batch size, no. of layers

• The investigation was time-

consuming due to the extensive

dataset

MNIST 99.4

[14]
2020

PSO

)DPSO)

Kernel size, type of
pooling, Activ. Fun. in FC,
dropout, Learning rate

• Increasing computational
complexity may occur when
numerous particles are necessary
for achieving satisfactory results.

MNIST,
Fashion-
MNIST

99.3,
92.92

[15]
2020

Tree growth &
firefly
algorithms

No. of Conv, no. of FC,
kernel size, no. of kernel,
FC-layer size

• Employ a solitary dataset to

assess the precision of the

approach.

MNIST 99.18

[16]
2020

PSO (LDWPSO)

No. of kernels, kernel
size, Activ. Fun., no. of
neurons, batch size,
optimizer

• The method employs a

straightforward CNN

architecture (LeNet-5).

• Comparisons with alternative

optimization methods or CNN

architectures are missing.

MNIST 98.95

[18]
2021

CAF Activ. Fun.

• In comparison to other cutting-

edge Activ. Fun. , there is none.

• No theoretical analysis exists

regarding CAF.

• The efficacy impact of
hyperparameters has not been
investigated.

Fashion-
MNIST

91.21

[19]
2022

PSO
(IntelliSwAS)

Conv.,
depthwise-separable
Conv., dilated
Conv.

• Identified CNN cells of superior
quality; however, their
integration into more extensive
CNN architectures necessitated
manual effort

MNIST 95.0

[21]
2022

PSO&GWO
)HPSGW)

No. of kernel, kernel
size, batch size,
no. of epochs

• A limited number of CNN

hyperparameters can be

optimized.

• High cost of computation

MNIST 99.4

[22]
2022

GA
SDSGA

Learning rate, batch size
• Diversity may be diminished by

selection, and a fixed mutation
rate might not apply to all issues

MNIST 99.2

[23]
2022

MCNN15
No. of the kernel,
kernel size, batch size,
no. of neurons

• No assessment of model efficacy
or comparison to the current
state of the art is provided

Fashion-
MNIST

94.04

[24]
2022

ANN and
CNN

Optimizer

• Challenges in managing intricate

or innovative visuals

• Varies in response to

hyperparameter selections .

Fashion-
MNIST

91.0

126 Entesar H. Abdulsaed et al, Journal of Al-Qadisiyah for Computer Science and Mathematics VOL16(1) 2024, PP Comp. 124-136

3. Tools

This section introduces the main tools: SSA and CNNs, which are employed in our proposed methodology.

3.1. Convolution neural networks (CNNs)

CNNs have emerged as a leading class of deep neural networks in computer vision, achieving cutting-edge results in
various tasks and revolutionizing the field, such as automotive safety, handwriting recognition, face detection, video
surveillance, semantic segmentation, and speech recognition [28-33].

CNNs leverage the inherent spatial structure in images for superior performance compared to traditional neural
networks. Their multi-stage architecture combines linear and non-linear operations. The initial feature extraction
stage utilizes a series of convolutional (Conv.) layers, each followed by a pooling layer and activation function,
enabling both local feature extraction and hierarchical representation building. In contrast, the classification stage
employs several FC layers [34] to map these features to output categories.

 Weight sharing lies at the heart of CNNs' success, significantly reducing the number of learnable parameters and
enhancing their ability to learn generalizable patterns while avoiding overfitting. However, this efficiency comes at a
cost: training CNNs demands substantial data, requiring considerable time, expertise, and manual construction. To
address this data requirement, researchers have developed various optimization techniques to fine-tune
hyperparameters and structures [35].

To avoid building CNNs from scratch, some researchers leverage transfer learning (TL), an approach that
repurposes information from a pre-trained model to achieve superior intrusion detection performance compared to
other models [36]. Within TL for deep learning models, fine-tuning can further enhance effectiveness. This technique
involves retraining a subset of the pre-trained model's top layers on the new dataset while keeping the majority of
the frozen (weight-preserved) layers intact [37]. Popular models suitable for TL include DenseNet, MobileNetV3,
EfficientNet, VGG, GoogleNet, and Inception-ResNet.

The network's architecture comprises a carefully orchestrated stack of layers, each designed to process incoming
data, extract meaningful features, and ultimately classify it according to the problem at hand. These layers include:

• Extra effort and financial
investment in computation .

[25]
2023

approximate
dynamic
learning rate
update
algorithm,
ResNet,
and VGG16

Learning rate

• Particularly with small samples,
deep network hierarchies, and
intricate parameters can overfit,
thereby limiting training time .

Fashion-
MNIST

93

[26]
2023

LACHS

No. of kernel,
Kernel size, Activ. Fun.
in Conv., no. of
Neurons, learning rate.
batch size, Momentum

• The absence of a comparative
analysis with other
hyperparameters optimization
techniques complicates the
assessment of LACHS's utility and
superiority.

Fashion-
MNIST

93.34

[27]
2023

Reinforcement
Learning (RL)
algorithm

no. of kernel,
Kernel sizes, Activ. Fun.,
no. of
neurons, learning rate

• It lacks comparison with other
state-of-the-art studies.

MNIST 98.97

[11]
2023

deep CNN

Batch sizes, kernel sizes,
batch normalization,
Activ. Fun., and learning
rate

• Model efficacy or comparison did

not try another benchmark.
MNIST 99.4

Entesar H. Abdulsaed et al., Journal of Al-Qadisiyah for Computer Science and Mathematics VOL16(1) 2024, PP Comp. 124-136 127

3.1.1. Input layer

 The input layer, positioned at the leftmost edge of the network's architecture, serves as the entry point for raw image
data. It encodes and presents this visual information to the subsequent layers for further processing.

3.1.2. Convolutional layers (Conv. layers)

Convolutional layers form the heart of CNNs, housing a collection of learned kernels (filters, weights) that
meticulously extract diverse features from images. This extraction is achieved through a process known as
convolution, in which each kernel meticulously scans the input image to uncover specific patterns. Each kernel
specializes in detecting distinct features, such as edges, textures, or object parts, resulting in a rich tapestry of feature
maps that illuminate the image's key characteristics [38].

Multiple convolutional kernels within CNNs allow them to detect a range of spatial patterns in images. This
automatic feature extraction eliminates the need for manual engineering, a significant advantage. Its hyperparameters
are set before using a convolutional layer, defining the output dimensions and number of connections in the resulting
feature maps. These key hyperparameters include:

• Number of filters: determines the depth of the output feature maps.
• Filter size: defines the spatial dimensions of the kernels.
• Padding: specifies the amount of zero padding added to the input data.
• Stride: controls the step size of the kernel's movement across the input.

Following any trainable layer (i.e., convolutional or fully connected) in a CNN architecture comes a non-linear
activation layer. These layers introduce non-linearity into the network, enabling it to learn complex concepts, unlike
a purely linear model [8]. Sigmoid, hyperbolic tangent (tanh) and Rectified Linear Unit (ReLU) are common activation
functions in CNNs. ReLU is the most popular due to its computational efficiency and ability to mitigate vanishing
gradients.

3.1.3. Pooling layers

Pooling layers play a crucial role in CNNs by reducing the spatial dimensions of feature maps while preserving their
essential characteristics. This significantly decreases computational demands and boosts the model's robustness to
minor spatial variations. There are two types of pooling: max pooling (keeps the highest value) and average pooling
(calculates mean). Each layer requires two hyperparameters adjustments before training:

• Pooling size: Defines the spatial dimensions of the pooling region.
• Stride: Determines the step size by which the pooling window moves across the feature map.

Following feature extraction, the extracted features feed into the next layer, usually an FC layer. This layer
integrates information from the pooling layers to generate predictions for the input image. Before entering the FC
layer, the previous layer's output must be transformed into a one-dimensional vector. This flattening process converts
multi-dimensional feature maps into a format compatible with fully connected layers.

3.1.4. Fully connected layers (FC)

Connected (FC) layers, positioned close, to the end of a CNNs play a role in converting extracted features into either
regression values or probabilities for different classes. They achieve this by connecting every neuron in the preceding
layer with every neuron in the following layer allowing them to combine high-level features for predictions.
Nevertheless, FC layers also bring about hyperparameters that need initialization and regularization to prevent
overfitting. These include:

• Number of layers: While having hidden layers may enhance performance, it also raises the risk of overfitting. It's
practice to start with two or three layers and adjust as necessary.

• Number of neurons: The complexity of the task determines the number of neurons assigned to each hidden layer.
Tasks that are more intricate and require predictions will need several neurons. For instance, in image
classification, the output layer may have neurons representing classes. In contrast, in object detection, it might
contain neurons, for both calculating bounding box coordinates and determining class probabilities.

• Activation function: This function dictates how each neuron output is transformed. ReLU is a choice because of its
efficiency and its ability to address vanishing gradients.

• Regularization: Methods such, as dropout, which randomly deactivates a portion of neurons during training can
aid in averting overfitting by diminishing model intricacy and promoting generalization.

128 Entesar H. Abdulsaed et al, Journal of Al-Qadisiyah for Computer Science and Mathematics VOL16(1) 2024, PP Comp. 124-136

3.1.5. Output layer

The last layer outputs class predictions or regression values (e.g., probabilities). The choice of activation function (e.g.,
softmax for classification) depends on the task.

Layer count varies based on resources and task complexity. Training uses backpropagation (iteratively adjusting
weights based on errors).

While powerful in learning spatial features, handling big data, and generalizing well, CNNs face challenges in their
high computational cost and need for large datasets [39].

3.2. Salp Swarm Algorithm (SSA)

Inspired by the chain formation behavior of marine salps, the SSA is a population-based metaheuristic algorithm for
optimization. Salps adjust their velocities and positions based on a combination of randomness, the current best
solution, and its local neighbors, guiding the entire population towards better solutions [9].

SSA demonstrates effectiveness in diverse optimization tasks like parameter estimation, engineering design, and
function optimization. Compared to other metaheuristics like PSO, GA, and Differential Evolution (DE), SSA offers
several advantages [40]:

• Less parameter tuning: Requires fewer parameters to adjust, making it easier to optimize.
• Simple implementation: Straightforward implementation facilitates understanding and application.
• Robustness: Resists noise and outliers, making it suitable for unpredictable data.
• Efficiency: Scales well to large-scale optimization problems.

Fig. 1 visually illustrates the SSA pseudocode.

Fig. 1. Pseudocode of SSA [9].

3.3. Good-Point Set (GPS)

Good-point set are a method for selecting well-distributed points as initial samples for population-based optimization
algorithms [41]. Unlike random initialization, GPS aim to provide uniform coverage that spans the entire objective
function landscape. Popular GPS sampling strategies include Sobol sequences, Halton sequences, Hammersley
sequences, and Latin Hypercube sampling. These low-discrepancy sequences cover the parameter space more
efficiently by reducing gaps and clustering. Initializing the population with GPS promotes diversity, allowing for
broader exploration and quicker convergence of stochastic optimization algorithms. This enhances the likelihood of
discovering the global optimum. In summary, GPS initialize optimization algorithms more intelligently than
randomization does, improving coverage through strategic, uniform sampling of the search space.

Fig. 2 outlines the mathematical procedure for introducing the GPS.

Entesar H. Abdulsaed et al., Journal of Al-Qadisiyah for Computer Science and Mathematics VOL16(1) 2024, PP Comp. 124-136 129

1: Create a point = (r1, r2 , ⋯ , rD) , 𝑟𝑖 = {2 𝑐𝑜𝑠
2𝜋𝑖

𝑝
} , where 1 ≤ i≤ D, p represents the minimum prime number

content with p ≥ 2*D +3.

2: Let 𝑃𝑛(𝑘) = , where {𝑟𝑖 ∗ 𝑘} is the decimal fraction of 𝑟1 ∗ 𝑘 , k=1, 2, …, SN, then set the points {P1, P2, …, PSN} is
referred to as a good point set.

3: The map is defined as follows:

 Xij=Lbj+ {ri*k}*(Ubj- Lbj),

which means the good point is mapped to search space.

Fig. 2. Pseudocode of the GPS [42].

4. The proposed approach

To optimize CNN classification performance, we propose a new enhancement to the SSA for the architecture's
hyperparameters selection. Our approach identifies the best settings for key parameters influencing the training
process and model accuracy. We strategically focus on four crucial hyperparameters:
Dropout rate, hidden units, learning rate (which has a significant and wide-ranging impact on network behavior), and
batch size.

To overcome the challenge of constraining the candidate solution population by the number of network weights,
we leverage multiple iterations of the CNN architectures. Each iteration represents a different combination of values
assigned to the chosen hyperparameters. Subsequently, we utilize the SSA to individually train each variant with a
diverse set of candidate solutions.

4.1. Representation of individuals

To gauge the scalability and robustness of our CNNs-SSA approach, we implemented extensive training and evaluation
across diverse CNN architecture, datasets, and hyperparameters settings. This iterative process yielded the optimal
hyperparameters and configurations with defined lower and upper bounds presented in Table 2 Within our
framework, a four-dimensional vector corresponding to the chosen CNN hyperparameters represents each individual
(candidate solution).

Table 2: CNNs structure hyperparameters.

Hyperparameters Range

Dropout rate 0.2, 0.3, 0.4
hidden units 64, 128, 256, 512
learning rate 0.01, 0.001, 0.0001, 1e-05
batch size 32, 64, 128

4.2. Initial population based on GPS

While replacing a random search space distribution with a uniform one could improve SSA effectiveness, it risks
neglecting essential areas. Therefore, for wider solution space coverage in most scenarios, the initial distribution
should be further refined. This study introduces a hybrid approach: the initial population is generated half-randomly
and the remaining half leverages the GPS method for a more targeted exploration.

4.3. Fitness assessment

To measure the quality of an individual, we utilize the following objective function:

F = a × MSE + b × ep/epmx (1)

Where ep and epmx are current and maximum epochs respectively. a and b  [0,1] and a+b =1.

130 Entesar H. Abdulsaed et al, Journal of Al-Qadisiyah for Computer Science and Mathematics VOL16(1) 2024, PP Comp. 124-136

This objective function, F, strikes a balance between model accuracy and speed. It achieves this by weighing the
quality of the result with factor a and the epoch status with factor b. These factors, constrained to sum to 1, allow fine-
tuning the priority between minimizing training error and encouraging training progression, thereby preventing both
overfitting and stagnation.

5. Experimental results

5.1. Parameters Setting

Table 3 provides an overview of the parameters employed in this research, categorizing them into two sections: CNNs
Training and SSA. The first category defines the core CNN architecture, including parameters like the number of
convolutional layers, number of kernels per layer, kernel size, activation function for convolutional layers, stride and
padding values, pooling size, number of pooling layers, specifications for hidden layers (number of neurons, etc.),
activation function for fully-connected layers, activation function for the output layer, loss function, optimizer
selection, evaluation metrics, and specified epoch (training iterations).

 The second category governs the behavior of the SSA algorithm, encompassing the number of salps (population
size), and the maximum number of iterations.

Table 3: Hyperparameters for current work.

5.2. Datasets

To benchmark our methodology's effectiveness, we selected the widely used MNIST and Fashion-MNIST datasets.
Their popularity in the deep learning community, manageable sizes, and diverse content ensured thorough evaluation
across different domains.

5.2.1. The MNIST dataset

The MNIST dataset, a cornerstone benchmark for image classification, features 70,000 greyscale images of
handwritten digits, each pixelated canvas measuring 28×28 [43]. Divided into 60,000 training and 10,000 testing
samples, MNIST boasts pre-centered and normalized data, further bolstered by a validation set split from the training
data (55,000/5,000) [11]. While the training set fuels model development, the test set rigorously evaluates its

CNNs parameters Values

No. of Conv. layers 3

No. of kernels 1,2,3

Kernel size 512,256,256

Act. Fun. for Conv. layers Relu

Batch Normalization 2

No. of pooling layers 2

Max Pooling size 3

Padding Same

Stride 1

No. Hidden layers 3

Activ. Fun. for FC layers Relu

Activ. Fun. for the out. layer softmax

Loss function Categorical-cross-entropy

Optimizer Adam

Metrics accuracy

Epochs 50

SSA parameters values

No. of salps 10

Max-generations 100

Entesar H. Abdulsaed et al., Journal of Al-Qadisiyah for Computer Science and Mathematics VOL16(1) 2024, PP Comp. 124-136 131

performance. This standardization allows researchers to directly compare their findings, fostering collaboration and
progress in the field.

5.2.2. The Fashion-MNIST dataset

Fashion-MNIST mirrors its predecessor, offering 70,000 grayscale images of fashion items, neatly categorized into ten
classes with 7,000 samples each. Each image, like its MNIST counterpart, occupies a 28×28 pixel canvas. The dataset
divides neatly into a 60,000-image training set and a 10,000-image test set, making it a perfect substitute for the
original MNIST due to its identical dimensions, data format, and split structure [12].

6. Results and analyses

Leveraging Google Colab Pro+ with its generous 500 monthly compute units, our GPU T4-powered environment, and
Python 3 hardware acceleration facilitated the smooth execution of our method within 12-15 hours. To display its
effectiveness, we compare our approach's accuracy against established methods on MNIST and Fashion-MNIST
datasets, further highlighting the optimal architectures uncovered through this work. Detailed comparisons can be
found in Figures 3 and 4.

Fig. 3. A comparison of the accuracy of the MNIST dataset of the current work and various models.

As can be seen from Fig. 3, the CNNs-SSA technique shines on MNIST, achieving a remarkable 99.60% accuracy,
edging past well-established rivals like PSO and deep CNNs. This slight, yet statistically significant advantage (further
testing recommended) marks a promising advance in image classification. While other methods like GA and PSO
variants come close, CNNs-SSA stands out, demonstrating its potential for wider application beyond MNIST. Exploring
generalizability to more complex datasets and delving deeper into its internal workings will refine and solidify its
claim as a top contender in the increasingly competitive field of image classification.

132 Entesar H. Abdulsaed et al, Journal of Al-Qadisiyah for Computer Science and Mathematics VOL16(1) 2024, PP Comp. 124-136

Fig. 4. A comparison of the accuracy of the Fashion-MNIST dataset of the current work and various models.

Fig. 4 convincingly demonstrates the superior performance of the CNNs-SSA method on the Fashion-MNIST
dataset. It achieves the highest recorded accuracy (94.08%), surpassing well-established techniques like PSO (DPSO),
CAF, multi-optimizers, and LACHS by margins ranging from 0.74% to 3.08%. Notably, even though its efficiency is
comparable to MCNN15 (94.04%), CNNs-SSA's distinctive accuracy advantage highlights its potential for diverse
image classification tasks, especially those with intricate categories like Fashion-MNIST.

We conducted a statistical analysis to compare the performance of CNNs with SSA and other optimization
techniques. This analysis aimed to determine which architecture is superior. To do this, we used the Mann-Whitney
U test as a nonparametric method [44, 45]. The test analyzed the accuracy values of both architectures.

We set the null hypothesis (H0) that both architectures yield the same accuracy (μ0 = μ1). The alternative
hypothesis (H1) stated that the CNN with SSA achieves higher accuracy than those with other techniques (μ1 > μ0). We
set a significance level of 99% (α = 0.01).

Table 4: Statistical analyses (MNIST dataset)

Ref. Methods P-Value

[13] GA 0.002
[14] PSO (DPSO) 0.001
[44] SI (tree growth & firefly) algorithms 0.001
[16] PSO(LDWPSO) < 0.000
[19] PSO (IntelliSwAS) < 0.000
[21] PSO&GWO (HPSGW) < 0.000
[22] GA (SDSGA) < 0.000
[27] Reinforcement Learning (RL) algorithm < 0.000
[11] Deep CNN < 0.000

Entesar H. Abdulsaed et al., Journal of Al-Qadisiyah for Computer Science and Mathematics VOL16(1) 2024, PP Comp. 124-136 133

Table 5: Statistical analyses (Fashion-MNIST dataset)

Ref. Methods P-Value

[14] PSO (DPSO) 0.008
[18] CAF 0.005
[23] MCNN15 0.003
[24] ANN and CNN 0.002
[25] Approximate dynamic learning rate Update algorithm, ResNet, and VGG16 0.001
[26] LACHS 0.001

The results of the Mann-Whitney U test are presented in Tables 4 and 5 for both the MNIST and Fashion-MNIST
datasets. For both datasets, the p-values are less than the chosen significance level (p < 0.01). Based on these findings,
we reject the H0 and conclude that for these specific datasets, auto-tuned CNNs with SSA outperform those with other
optimization techniques in terms of accuracy.

Table 6 respectively displays the individuals (hyperparameters configurations) that achieved the highest
accuracies on the MNIST and Fashion-MNIST evaluations.

Table 6: Optimal selection for the MNIST and Fashion-MNIST datasets.

7. Conclusion

This work introduces CNNs-SSA, a new strategy for optimizing CNNs by leveraging an enhanced SSA. CNNs-SSA excels
in balancing accuracy, computational speed, and training duration, as demonstrated by its outstanding performance
on MNIST and Fashion-MNIST datasets. Notably, it outperforms computationally demanding algorithms, making it
well suited for practical settings with limited resources and time constraints. This approach paves the way for
seamless integration of CNNs into real-world applications, particularly those facing resource limitations. Future
research could explore the applicability of SSA-based optimization to diverse deep learning architectures and tasks
beyond computer vision. Additionally, delving deeper into the theoretical underpinnings of SSA and refining
hyperparameters optimization strategies could unlock its broader potential in machine learning applications.

References

[1] Y. Bengio, I. Goodfellow, and A. Courville, "Deep learning (Vol. 1)," MIT Press Cambridge, MA, USA, vol. 22, pp. 23-24, 2017.
DOI: 10.1007/s10710-017-9314-z

[2] S. Dong, P. Wang, and K. Abbas, "A survey on deep learning and its applications," Computer Science Review, vol. 40, p. 100379,
2021. doi https://doi.org/10.1016/j.cosrev.2021.100379.

[3] M. Abdulla and A. Marhoon, "Agriculture based on Internet of Things and Deep Learning," Iraqi Journal for Electrical and
Electronic Engineering, vol. 18, no. 2, pp. 1-8, 2022. http://dx.doi.org/10.37917/ijeee.18.2.1.

[4] A. Shrestha and A. Mahmood, "Review of deep learning algorithms and architectures," IEEE access, vol. 7, pp. 53040-53065,
2019. doi: http://dx.doi.org/10.1109/access.2019.2912200.

[5] N. F. A. Hassan, A. A. Abed, and T. Y. Abdalla, "Face mask detection using deep learning on NVIDIA Jetson Nano," International
Journal of Electrical & Computer Engineering (2088-8708), vol. 12, no. 5, 2022. doi:
http://dx.doi.org/10.11591/ijece.v12i5.pp5427-5434.

[6] Y. Wang, H. Zhang, and G. Zhang, "cPSO-CNN: An efficient PSO-based algorithm for fine-tuning hyper-parameters of
convolutional neural networks," Swarm and Evolutionary Computation, vol. 49, pp. 114-123, 2019. doi:
http://dx.doi.org/10.1016/j.swevo.2019.06.002.

[7] A. Darwish, D. Ezzat, and A. E. Hassanien, "An optimized model based on convolutional neural networks and orthogonal
learning particle swarm optimization algorithm for plant diseases diagnosis," Swarm and evolutionary computation, vol. 52,
p. 100616, 2020, doi: http://dx.doi.org/10.1016/j.swevo.2019.100616.

Dataset
Dropout

rate
hidden
units

learning
rate

batch size

MNIST 0.4 256 0.0001 64
Fashion-MNIST 0.2 128 0.0001 32

ttps://doi.org/10.1016/j.cosrev.2021.100379.
ttp://dx.doi.org/10.37917/ijeee.18.2.1.
ttp://dx.doi.org/10.11591/ijece.v12i5.pp5427-5434.
ttp://dx.doi.org/10.1016/j.swevo.2019.06.002.
http://dx.doi.org/10.1016/j.swevo.2019.100616

134 Entesar H. Abdulsaed et al, Journal of Al-Qadisiyah for Computer Science and Mathematics VOL16(1) 2024, PP Comp. 124-136

[8] L. Alzubaidi et al., "Review of deep learning: concepts, CNN architectures, challenges, applications, future directions," J Big
Data, vol. 8, no. 1, p. 53, 2021, doi: 10.1186/s40537-021-00444-8.

[9] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S. M. Mirjalili, "Salp Swarm Algorithm: A bio-inspired
optimizer for engineering design problems," Advances in engineering software, vol. 114, pp. 163-191, 2017, doi:
https://doi.org/10.1016/j.advengsoft.2017.07.002.

[10] H. Zhang et al., "Differential evolution-assisted salp swarm algorithm with chaotic structure for real-world problems,"
Engineering with Computers, vol. 39, no. 3, pp. 1735-1769, 2023, doi: https://doi.org/10.1007/s00366-021-01545-x.

[11] H. Shao, E. Ma, M. Zhu, X. Deng, and S. Zhai, "MNIST Handwritten Digit Classification Based on Convolutional Neural Network
with Hyperparameter Optimization," Intelligent Automation & Soft Computing, vol. 36, no. 3, 2023.
https://doi.org/10.32604/iasc.2023.036323

[12] H. Xiao, K. Rasul, and R. Vollgraf, "Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms,"
arXiv preprint arXiv:1708.07747, 2017. doi: https://doi.org/10.48550/arXiv.1708.07747.

[13] J.-H. Yoo, H.-i. Yoon, H.-G. Kim, H.-S. Yoon, and S.-S. Han, "Optimization of hyper-parameter for CNN model using genetic
algorithm," in 2019 1st International conference on electrical, control and instrumentation engineering (ICECIE), Kuala
Lumpur, Malaysia, 2019: IEEE, 2019, pp. 1-6, doi: 10.1109/ICECIE47765.2019.8974762.

[14] Y. Guo, J.-Y. Li, and Z.-H. Zhan, "Efficient Hyperparameter Optimization for Convolution Neural Networks in Deep Learning:
A Distributed Particle Swarm Optimization Approach," Cybernetics and Systems, vol. 52, no. 1, pp. 36-57, 2020, doi:
10.1080/01969722.2020.1827797.

[15] N. Bacanin, T. Bezdan, E. Tuba, I. Strumberger, and M. Tuba, "Optimizing Convolutional Neural Network Hyperparameters
by Enhanced Swarm Intelligence Metaheuristics," Algorithms, vol. 13, no. 3, 2020, doi: 10.3390/a13030067.

[16] T. Serizawa and H. Fujita, "Optimization of convolutional neural network using the linearly decreasing weight particle
swarm optimization," arXiv preprint arXiv:2001.05670, 2020, doi: https://doi.org/10.48550/arXiv.2001.05670.

[17] K. Greeshma and J. V. Gripsy, "Image classification using HOG and LBP feature descriptors with SVM and CNN," Int J Eng Res
Technol, vol. 8, no. 4, pp. 1-4, 2020.

[18] Y. Ying, N. Zhang, P. He, and S. Peng, "Improving convolutional neural networks with competitive activation function,"
Security and Communication Networks, vol. 2021, pp. 1-9, 13 May 2021 2021, Art no. 1933490 doi:
https://doi.org/10.1155/2021/1933490.

[19] S. C. Nistor and G. Czibula, "IntelliSwAS: Optimizing deep neural network architectures using a particle swarm-based
approach," Expert Systems with Applications, vol. 187, p. 115945, 2022. https://doi.org/10.1016/j.eswa.2021.115945

[20] E. E. Moodie and D. A. Stephens, "Comment: Clarifying endogeneous data structures and consequent modelling choices
using causal graphs," 2020. https://doi.org/10.1214/20-sts777.

[21] J. R. Challapalli and N. Devarakonda, "A novel approach for optimization of convolution neural network with hybrid particle
swarm and grey wolf algorithm for classification of Indian classical dances," Knowledge and Information Systems, vol. 64,
no. 9, pp. 2411-2434, 2022. https://doi.org/10.1007/s10115-022-01707-3

[22] I. D. Raji, H. Bello-Salau, I. J. Umoh, A. J. Onumanyi, M. A. Adegboye, and A. T. Salawudeen, "Simple deterministic selection-
based genetic algorithm for hyperparameter tuning of machine learning models," Applied Sciences, vol. 12, no. 3, p. 1186,
2022. https://doi.org/10.3390/app12031186

[23] O. Nocentini, J. Kim, M. Z. Bashir, and F. Cavallo, "Image classification using multiple convolutional neural networks on the
fashion-MNIST dataset," Sensors, vol. 22, no. 23, p. 9544, 2022. https://doi.org/10.3390/s22239544.

[24] S. R. Sumera, N. Anjum, and K. Vaidehi, "Implementation of CNN and ANN for Fashion-MNIST-Dataset using Different
Optimizers," Indian Journal of Science and Technology, vol. 15, no. 47, pp. 2639-2645, 2022.
https://doi.org/10.17485/ijst/v15i47.1821.

[25] S.-Y. Shin, G. Jo, and G. Wang, "A Novel Method for Fashion Clothing Image Classification Based on Deep Learning," Journal
of Information and Communication Technology, vol. 22, no. 1, pp. 127-148, 2023, doi:
https://doi.org/10.32890/jict2023.22.1.6.

[26] D. Liu, H. Ouyang, S. Li, C. Zhang, and Z.-H. Zhan, "Hyperparameters Optimization of Convolutional Neural Network Based
on Local Autonomous Competition Harmony Search Algorithm," Journal of Computational Design and Engineering, p.
qwad050, 2023. https://doi.org/10.1093/jcde/qwad050

[27] F. M. Talaat and S. A. Gamel, "RL based hyper-parameters optimization algorithm (ROA) for convolutional neural network,"
Journal of Ambient Intelligence and Humanized Computing, vol. 14, no. 10, pp. 13349-13359, 2023.
https://doi.org/10.1007/s12652-022-03788-y

[28] N. Altwaijry and I. Al-Turaiki, "Arabic handwriting recognition system using convolutional neural network," Neural
Computing and Applications, vol. 33, no. 7, pp. 2249-2261, 2021. https://doi.org/10.1007/s00521-020-05070-8

[29] L. Ren, J. Dong, X. Wang, Z. Meng, L. Zhao, and M. J. Deen, "A data-driven auto-CNN-LSTM prediction model for lithium-ion
battery remaining useful life," IEEE Transactions on Industrial Informatics, vol. 17, no. 5, pp. 3478-3487, 2020.
https://doi.org/10.1109/tii.2020.3008223

[30] A. H. Ashraf et al., "Weapons detection for security and video surveillance using cnn and YOLO-v5s," CMC-Comput. Mater.
Contin, vol. 70, pp. 2761-2775, 2022. https://doi.org/10.32604/cmc.2022.018785

[31] M. Zamir et al., "Face Detection & Recognition from Images & Videos Based on CNN & Raspberry Pi," Computation, vol. 10,
no. 9, p. 148, 2022. https://doi.org/10.3390/computation10090148

[32] C. Li, W. Xia, Y. Yan, B. Luo, and J. Tang, "Segmenting objects in day and night: Edge-conditioned CNN for thermal image
semantic segmentation," IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 7, pp. 3069-3082, 2020.
https://doi.org/10.1109/tnnls.2020.3009373

https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1007/s00366-021-01545-x
ttps://doi.org/10.48550/arXiv.1708.07747.
https://doi.org/10.48550/arXiv.2001.05670
https://doi.org/10.1155/2021/1933490
https://doi.org/10.32890/jict2023.22.1.6

Entesar H. Abdulsaed et al., Journal of Al-Qadisiyah for Computer Science and Mathematics VOL16(1) 2024, PP Comp. 124-136 135

[33] M. A. Haque, A. Verma, J. S. R. Alex, and N. Venkatesan, "Experimental evaluation of CNN architecture for speech
recognition," in First International Conference on Sustainable Technologies for Computational Intelligence: Proceedings of
ICTSCI 2019, 2020: Springer, pp. 507-514. https://doi.org/10.1007/978-981-15-0029-9_40

[34] R. S. Khudeyer and N. M. Almoosawi, "Combination of machine learning algorithms and Resnet50 for Arabic Handwritten
Classification," Informatica, vol. 46, no. 9, 2023 https://doi.org/10.31449/inf.v46i9.4375.

[35] J. Fregoso, C. I. Gonzalez, and G. E. Martinez, "Optimization of convolutional neural networks architectures using PSO for
sign language recognition," Axioms, vol. 10, no. 3, p. 139, 2021.

[36] X. Li, Z. Hu, M. Xu, Y. Wang, and J. Ma, "Transfer learning based intrusion detection scheme for Internet of vehicles,"
Information Sciences, vol. 547, pp. 119-135, 2021. https://doi.org/10.1016/j.ins.2020.05.130

[37] O. D. Okey, D. C. Melgarejo, M. Saadi, R. L. Rosa, J. H. Kleinschmidt, and D. Z. Rodríguez, "Transfer learning approach to IDS
on cloud IoT devices using optimized CNN," IEEE Access, vol. 11, pp. 1023-1038, 2023.
https://doi.org/10.1109/access.2022.3233775

[38] N. M. Almoosawi and R. S. Khudeyer, "ResNet-34/DR: a residual convolutional neural network for the diagnosis of diabetic
retinopathy," Informatica, vol. 45, no. 7, 2021. https://doi.org/10.31449/inf.v45i7.3774

[39] E. Abdulsaed, M. Alabbas, and R. Khudeyer, "Hyperparameter Optimization for Convolutional Neural Networks using the
Salp Swarm Algorithm," Informatica, vol. 47, no. 9, 2023. https://doi.org/10.31449/inf.v47i9.5148

[40] H. Faris, S. Mirjalili, I. Aljarah, M. Mafarja, and A. A. Heidari, "Salp swarm algorithm: theory, literature review, and application
in extreme learning machines," Nature-inspired optimizers: theories, literature reviews and applications, pp. 185-199, 2020.
https://doi.org/10.1007/978-3-030-12127-3_11

[41] A. Q. Obaid and M. Alabbas, "Hybrid Variable-Length Spider Monkey Optimization with Good-Point Set Initialization for
Data Clustering," Informatica, vol. 47, no. 8, 2023, doi: https://doi.org/10.31449/inf.v47i8.4872.

[42] D. Liu, S. Zhang, B. Wang, and Z. Li, "Seagull algorithm based on good point set and dual hybrid strategy," in International
Conference on Cloud Computing, Performance Computing, and Deep Learning (CCPCDL 2023), 2023, vol. 12712: SPIE, pp. 79-
84. https://doi.org/10.1117/12.2678849

[43] N. Bacanin, T. Bezdan, E. Tuba, I. Strumberger, and M. Tuba, "Optimizing convolutional neural network hyperparameters
by enhanced swarm intelligence metaheuristics," Algorithms, vol. 13, no. 3, p. 67, 2020.
https://doi.org/10.3390/a13030067

[44] B. Rosner and D. Grove, "Use of the Mann–Whitney U‐test for clustered data," Statistics in medicine, vol. 18, no. 11, pp. 1387-
1400, 1999. https://doi.org/10.1002/(sici)1097-0258(19990615)18:11<1387::aid-sim126>3.0.co;2-v

[45] S. Ioannou, H. Chockler, A. Hammers, A. P. King, and A. s. D. N. Initiative, "A study of demographic bias in CNN-based brain
MR segmentation," in International Workshop on Machine Learning in Clinical Neuroimaging, 2022: Springer, pp. 13-22, doi:
https://doi.org/10.48550/arXiv.2208.06613.

https://doi.org/10.31449/inf.v47i8.4872
https://doi.org/10.48550/arXiv.2208.06613

