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A B S T R A C T 

Deep learning is highly effective in dealing with complex tasks such as image 
classification and recognition. However, finding the optimal architecture's 
hyperparameters for Convolutional Neural Networks (CNNs) to achieve the 
best performance and parameter regularization can be challenging. 
Metaheuristic optimization algorithms can be utilized to find solutions in 
this context. In this research, a computerized CNN was adjusted using an 
improved Salp Swarm Algorithm (SSA) to enhance crucial CNN settings, like 
dropout rate, hidden units, learning rate, and batch size. The refined design 
was tested on two standard datasets. MNIST and Fashion MNIST. The 
outcomes displayed model performance achieving accuracy levels of 99.6% 
for MNIST and 94.08% for Fashion MNIST. This tuned system outperformed 
the existing practices by 0.2% and 0.04% for each dataset while also cutting 
down on computational expenses. The fusion of SSA with CNNs displayed 
adaptability and resilience opening up possibilities, in image classification 
and consistently delivering outstanding outcomes. 
 

MSC. 

https://doi.org/10.29304/jqcsm.2024.16.11450

1. introduction  

Deep Learning (DL) falls under the umbrella of machine learning. Relies, on Artificial Neural Networks (ANNs) to learn 
from data and enhance performance on specific tasks [1]. These networks imitate the structure and functionality of 
the brain enabling them to process information and make decisions in a manner. DL can be viewed as a group of 
interconnected classifiers each tasked with recognizing features or patterns within the input data [2]. These 
classifiers use regression in conjunction with activation functions to extract more advanced features ultimately 
producing the desired output. It should be emphasized that achieving optimal performance from CNNs relies greatly 
on fine-tuning their hyperparameters [3, 4]. These settings, including the learning rate, batch size, and kernel size, 
dictate how the network functions and directly affects its overall performance [5, 6]. Consequently, finding the ideal 
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combination of these hyperparameters necessitates the use of efficient techniques that can effectively explore the 
extensive hyperparameters space to uncover this optimal configuration. Metaheuristic optimization algorithms like 
Gray Wolf Optimizer (GWO), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC) have proven to be 
valuable tools in this regard [7-9].  

In this research, we delve into how effective SSA, is in tuning the hyperparameters of CNN architectures. Opting 
for SSA is a choice because of its established advantages; rapid convergence, comprehensive exploration of solution 
spaces, and an algorithm that facilitates the identification of optimal configurations. Additionally, its simple 
mathematical framework makes it easier to implement and comprehend [10]. To validate SSA's performance, we 
conducted experiments on the MNIST and fashion MNIST datasets, pitting them against other optimization methods 
[11, 12]. The results will not only reveal SSA's effectiveness and efficiency in optimizing CNN hyperparameters but 
also offer valuable insights for further research on deep learning model optimization. 

This paper is structured as follows: Section 2 delves into existing research relevant to our work. Section 3 lays the 
theoretical groundwork, introducing CNNs and SSA. The proposed approach is then meticulously described in Section 
4. Section 5 presents comprehensive evaluation experiments, followed by a thorough analysis and visualization of 
results in Section 6. Finally, Section 7 draws insightful conclusions and wraps up the paper.  

2. Related Works 

Recent trends in evolutionary algorithms and reinforcement learning approaches have shown promise in developing 
and applying diverse techniques for autonomously setting hyperparameters and selecting the structure of CNNs. 
These methods aim to eliminate the need for tedious grid search and manual parameter tweaking, thereby reducing 
computational costs and saving valuable time during network construction. In this section, we delve into some of the 
latest research within this field, exploring the innovative methods that are shaping the future of automated CNN 
design. 

In [13] proposes using a Genetic Algorithm (GA) to optimize several CNN parameters. They investigated a variety 
of GA parameters and ranges, and their exhaustive search culminated in an approximation of the global optimum. 
Notably, even training with a large dataset did not achieve optimal accuracy, suggesting potential limitations in the 
chosen parameter space. In [14], it explores using distributed Particle Swarm Optimization (DPSO) to optimize CNNs 
hyperparameters. Their method utilizes an encoding technique, for CNNs customizing update operations for each 
element. This allows an automated search to find the CNNs model. Additionally, they use a distributed framework to 
speed up optimization and reduce processing time. However, obtaining results might involve using several elements 
potentially raising computational expenses. In another study, an automated strategy is introduced that combines 
algorithms (tree growth and firefly) to optimize hyperparameters and create CNN structures [15]. While effective the 
computational requirements of these methods restricted the analysis to a dataset than intended. Another proposal 
suggests employing Decreasing Weight Particle Swarm Optimization (LDWPSO) to fine-tune CNNs hyperparameters 
[16]. The goal is to enhance the LeNet 5 architecture. Yet the authors acknowledge the necessity for research and 
validation to confirm its effectiveness. Moreover, it is crucial to investigate the drawbacks of LDWPSO, in CNNs 
optimization related to convergence speed and computational expenses. 

Furthermore, another approach is presented for categorizing the Fashion MNIST dataset by combining features 
extracted from level co-matrices “GLCMs” Histograms of Oriented Gradients (HOGs) and Support Vector Machines 
(SVMs) resulting in an impressive accuracy rate of 91.59% [17]. In [18] introduces the idea of Activation Functions 
(CAFs). Suggests the Parameter Free Rectified Exponential Unit (PFREU), as a specific CAF example. Their paper then 
demonstrates the effectiveness of CAFs for data classification by applying them to two architectures: ResNet-110 on 
CIFAR-10 and LeNet-5 on Fashion-MNIST. In [19] IntelliSwAS is a technique for optimizing Deep Neural Network 
(DNN) architectures for both classification and regression tasks. To improve the search process, the authors leverage 
Directed Acyclic Graphs Recurrent Neural Networks DAGRNN [20], a machine learning model specifically designed to 
predict network architecture quality. While IntelliSwAS successfully identified high-performing CNNs cells (building 
blocks of the network), manually integrating them into larger CNNs architectures remained a bottleneck. In [21] 
proposes a Hybrid Particle Swarm Optimization and Grey Wolf Optimization (HPSGW) algorithm to enhance the 
performance of CNNs models by optimizing their hyperparameters.  

The researcher in [22] introduces a Simple Deterministic Selection Genetic Algorithm (SDSGA) for optimizing the 
hyperparameters of two popular machine learning models: CNNs and the Random Forest (RF) algorithm. In [23] 
proposes a 15-convolutional-layer Multiple CNN (MCNN15). The authors in [24] investigate the performance of CNNs 
and ANNs for image classification on the Fashion-MNIST apparel dataset, evaluating the effect of different optimizers. 

In [25] advantages established deep learning architectures like VGG16 and ResNet to achieve high classification 
accuracy. The authors further propose an approximate dynamic learning rate update algorithm to promote faster 
convergence and shorten training time. In [26] employs the Local Autonomous Competitive Harmony Search (LACHS) 
algorithm to optimize the classification accuracy of a VGGNet on both Fashion-MNIST and CIFAR-10 datasets. The 
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researchers in [27] introduce a novel Q-learning Reinforcement Learning (RL)-based Optimization Algorithm (ROA) 
for optimizing CNN hyperparameters. The paper tests the proposed ROA on two datasets: MNIST and CIFAR-10. In 
[11] focuses on implementing a deep CNNs model to improve recognition accuracy for the MNIST handwritten digit 
dataset. 

Table 1. outlines the limitations and effectiveness of different approaches for optimizing CNN hyperparameters. 
 

Table 1: Related Works. 

Ref Method(s) 
Parameters for 

optimization 
Limitations Datasets Acc. % 

[13] 
2019 

GA 
Learning rate, dropout, 
batch size, no. of layers 

• The investigation was time-

consuming due to the extensive 

dataset 

MNIST 99.4 

[14] 
2020 

 

PSO 

)DPSO) 

Kernel size, type of 
pooling, Activ. Fun. in FC, 
dropout, Learning rate 

• Increasing computational 
complexity may occur when 
numerous particles are necessary 
for achieving satisfactory results. 

MNIST, 
Fashion-
MNIST 

99.3, 
92.92 

[15] 
2020 

Tree growth & 
firefly 
algorithms 

No. of Conv, no. of FC, 
kernel size, no. of kernel, 
FC-layer size 

• Employ a solitary dataset to 

assess the precision of the 

approach. 

 

MNIST 99.18 

[16] 
2020 

PSO (LDWPSO) 

No. of kernels, kernel 
size, Activ. Fun., no. of 
neurons, batch size, 
optimizer 

• The method employs a 

straightforward CNN 

architecture (LeNet-5). 

• Comparisons with alternative 

optimization methods or CNN 

architectures are missing. 

MNIST 98.95 

[18] 
2021 

CAF Activ. Fun. 

• In comparison to other cutting-

edge Activ. Fun. , there is none. 

• No theoretical analysis exists 

regarding CAF. 

• The efficacy impact of 
hyperparameters has not been 
investigated. 

Fashion-
MNIST 

91.21 

[19] 
2022 

PSO 
(IntelliSwAS) 

Conv., 
depthwise-separable 
Conv., dilated 
Conv. 

• Identified CNN cells of superior 
quality; however, their 
integration into more extensive 
CNN architectures necessitated 
manual effort 

MNIST 95.0 

[21] 
2022 

PSO&GWO 
)HPSGW) 

No. of kernel, kernel 
size, batch size, 
no. of epochs 

• A limited number of CNN 

hyperparameters can be 

optimized. 

• High cost of computation 

MNIST 99.4 

[22] 
2022 

GA 
SDSGA 

Learning rate, batch size 
• Diversity may be diminished by 

selection, and a fixed mutation 
rate might not apply to all issues 

MNIST 99.2 

[23] 
2022 

MCNN15 
No. of the kernel, 
kernel size, batch size, 
no. of neurons 

• No assessment of model efficacy 
or comparison to the current 
state of the art is provided 

Fashion-
MNIST 

94.04 

[24] 
2022 

ANN and 
CNN 

Optimizer 

• Challenges in managing intricate 

or innovative visuals 

• Varies in response to 

hyperparameter selections . 

Fashion-
MNIST 

91.0 
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3. Tools 

This section introduces the main tools: SSA and CNNs, which are employed in our proposed methodology. 

3.1. Convolution neural networks (CNNs) 

CNNs have emerged as a leading class of deep neural networks in computer vision, achieving cutting-edge results in 
various tasks and revolutionizing the field, such as automotive safety, handwriting recognition, face detection, video 
surveillance, semantic segmentation, and speech recognition [28-33].  

CNNs leverage the inherent spatial structure in images for superior performance compared to traditional neural 
networks. Their multi-stage architecture combines linear and non-linear operations. The initial feature extraction 
stage utilizes a series of convolutional (Conv.) layers, each followed by a pooling layer and activation function, 
enabling both local feature extraction and hierarchical representation building. In contrast, the classification stage 
employs several FC layers [34] to map these features to output categories. 

 Weight sharing lies at the heart of CNNs' success, significantly reducing the number of learnable parameters and 
enhancing their ability to learn generalizable patterns while avoiding overfitting. However, this efficiency comes at a 
cost: training CNNs demands substantial data, requiring considerable time, expertise, and manual construction. To 
address this data requirement, researchers have developed various optimization techniques to fine-tune 
hyperparameters and structures [35]. 

To avoid building CNNs from scratch, some researchers leverage transfer learning (TL), an approach that 
repurposes information from a pre-trained model to achieve superior intrusion detection performance compared to 
other models [36]. Within TL for deep learning models, fine-tuning can further enhance effectiveness. This technique 
involves retraining a subset of the pre-trained model's top layers on the new dataset while keeping the majority of 
the frozen (weight-preserved) layers intact [37]. Popular models suitable for TL include DenseNet, MobileNetV3, 
EfficientNet, VGG, GoogleNet, and Inception-ResNet. 

The network's architecture comprises a carefully orchestrated stack of layers, each designed to process incoming 
data, extract meaningful features, and ultimately classify it according to the problem at hand. These layers include: 

• Extra effort and financial 
investment in computation . 

[25] 
2023 

approximate 
dynamic 
learning rate 
update 
algorithm, 
ResNet, 
and VGG16 
 

Learning rate 

• Particularly with small samples, 
deep network hierarchies, and 
intricate parameters can overfit, 
thereby limiting training time . 

Fashion-
MNIST 

93 

[26] 
2023 

LACHS 

No. of kernel, 
Kernel size, Activ. Fun. 
in Conv., no. of 
Neurons, learning rate. 
batch size, Momentum 

• The absence of a comparative 
analysis with other 
hyperparameters optimization 
techniques complicates the 
assessment of LACHS's utility and 
superiority. 

Fashion-
MNIST 

93.34 

[27] 
2023 

Reinforcement 
Learning (RL) 
algorithm 

no. of kernel, 
Kernel sizes, Activ. Fun., 
no. of 
neurons, learning rate 

• It lacks comparison with other 
state-of-the-art studies. 

MNIST 98.97 

[11] 
2023 

deep CNN 

Batch sizes, kernel sizes, 
batch normalization, 
Activ. Fun., and learning 
rate 

• Model efficacy or comparison did 

not try another benchmark. 
MNIST 99.4 
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3.1.1.  Input layer 

 The input layer, positioned at the leftmost edge of the network's architecture, serves as the entry point for raw image 
data. It encodes and presents this visual information to the subsequent layers for further processing. 

3.1.2. Convolutional layers (Conv. layers) 

Convolutional layers form the heart of CNNs, housing a collection of learned kernels (filters, weights) that 
meticulously extract diverse features from images. This extraction is achieved through a process known as 
convolution, in which each kernel meticulously scans the input image to uncover specific patterns. Each kernel 
specializes in detecting distinct features, such as edges, textures, or object parts, resulting in a rich tapestry of feature 
maps that illuminate the image's key characteristics [38]. 

Multiple convolutional kernels within CNNs allow them to detect a range of spatial patterns in images. This 
automatic feature extraction eliminates the need for manual engineering, a significant advantage. Its hyperparameters 
are set before using a convolutional layer, defining the output dimensions and number of connections in the resulting 
feature maps. These key hyperparameters include: 

•   Number of filters: determines the depth of the output feature maps. 
•   Filter size: defines the spatial dimensions of the kernels. 
•   Padding: specifies the amount of zero padding added to the input data. 
•   Stride: controls the step size of the kernel's movement across the input. 

Following any trainable layer (i.e., convolutional or fully connected) in a CNN architecture comes a non-linear 
activation layer. These layers introduce non-linearity into the network, enabling it to learn complex concepts, unlike 
a purely linear model [8]. Sigmoid, hyperbolic tangent (tanh) and Rectified Linear Unit (ReLU) are common activation 
functions in CNNs. ReLU is the most popular due to its computational efficiency and ability to mitigate vanishing 
gradients. 

3.1.3. Pooling layers 

Pooling layers play a crucial role in CNNs by reducing the spatial dimensions of feature maps while preserving their 
essential characteristics. This significantly decreases computational demands and boosts the model's robustness to 
minor spatial variations. There are two types of pooling: max pooling (keeps the highest value) and average pooling 
(calculates mean). Each layer requires two hyperparameters adjustments before training: 

•   Pooling size: Defines the spatial dimensions of the pooling region. 
•   Stride: Determines the step size by which the pooling window moves across the feature map. 

Following feature extraction, the extracted features feed into the next layer, usually an FC layer. This layer 
integrates information from the pooling layers to generate predictions for the input image. Before entering the FC 
layer, the previous layer's output must be transformed into a one-dimensional vector. This flattening process converts 
multi-dimensional feature maps into a format compatible with fully connected layers. 

3.1.4. Fully connected layers (FC) 

Connected (FC) layers, positioned close, to the end of a CNNs play a role in converting extracted features into either 
regression values or probabilities for different classes. They achieve this by connecting every neuron in the preceding 
layer with every neuron in the following layer allowing them to combine high-level features for predictions. 
Nevertheless, FC layers also bring about hyperparameters that need initialization and regularization to prevent 
overfitting. These include:  

•    Number of layers: While having hidden layers may enhance performance, it also raises the risk of overfitting. It's 
practice to start with two or three layers and adjust as necessary. 

•    Number of neurons: The complexity of the task determines the number of neurons assigned to each hidden layer. 
Tasks that are more intricate and require predictions will need several neurons. For instance, in image 
classification, the output layer may have neurons representing classes. In contrast, in object detection, it might 
contain neurons, for both calculating bounding box coordinates and determining class probabilities. 

•     Activation function: This function dictates how each neuron output is transformed. ReLU is a choice because of its 
efficiency and its ability to address vanishing gradients. 

•    Regularization: Methods such, as dropout, which randomly deactivates a portion of neurons during training can 
aid in averting overfitting by diminishing model intricacy and promoting generalization. 
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3.1.5. Output layer 

The last layer outputs class predictions or regression values (e.g., probabilities). The choice of activation function (e.g., 
softmax for classification) depends on the task.  

Layer count varies based on resources and task complexity. Training uses backpropagation (iteratively adjusting 
weights based on errors). 

While powerful in learning spatial features, handling big data, and generalizing well, CNNs face challenges in their 
high computational cost and need for large datasets [39].   

3.2. Salp Swarm Algorithm (SSA) 

Inspired by the chain formation behavior of marine salps, the SSA is a population-based metaheuristic algorithm for 
optimization. Salps adjust their velocities and positions based on a combination of randomness, the current best 
solution, and its local neighbors, guiding the entire population towards better solutions [9]. 

SSA demonstrates effectiveness in diverse optimization tasks like parameter estimation, engineering design, and 
function optimization. Compared to other metaheuristics like PSO, GA, and Differential Evolution (DE), SSA offers 
several advantages [40]: 

•   Less parameter tuning: Requires fewer parameters to adjust, making it easier to optimize. 
•   Simple implementation: Straightforward implementation facilitates understanding and application. 
•   Robustness: Resists noise and outliers, making it suitable for unpredictable data. 
•   Efficiency: Scales well to large-scale optimization problems. 

Fig. 1 visually illustrates the SSA pseudocode. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Pseudocode of SSA [9]. 

3.3. Good-Point Set (GPS) 

Good-point set are a method for selecting well-distributed points as initial samples for population-based optimization 
algorithms [41]. Unlike random initialization, GPS aim to provide uniform coverage that spans the entire objective 
function landscape. Popular GPS sampling strategies include Sobol sequences, Halton sequences, Hammersley 
sequences, and Latin Hypercube sampling. These low-discrepancy sequences cover the parameter space more 
efficiently by reducing gaps and clustering. Initializing the population with GPS promotes diversity, allowing for 
broader exploration and quicker convergence of stochastic optimization algorithms. This enhances the likelihood of 
discovering the global optimum. In summary, GPS initialize optimization algorithms more intelligently than 
randomization does, improving coverage through strategic, uniform sampling of the search space. 

Fig. 2 outlines the mathematical procedure for introducing the GPS. 
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1: Create a point = (r1, r2 , ⋯ , rD) , 𝑟𝑖 =  {2 𝑐𝑜𝑠
2𝜋𝑖

𝑝
} , where 1 ≤ i≤ D, p represents the minimum prime number 

content with p ≥ 2*D +3. 

2: Let 𝑃𝑛(𝑘) = , where {𝑟𝑖 ∗ 𝑘} is the decimal fraction of  𝑟1 ∗ 𝑘  , k=1, 2, …, SN, then set the points {P1, P2, …, PSN} is 
referred to as a good point set. 

3: The map is defined as follows: 

 Xij=Lbj+ {ri*k}*(Ubj- Lbj), 

which means the good point is mapped to search space. 

 
Fig. 2.  Pseudocode of the GPS [42]. 

4.  The proposed approach  

To optimize CNN classification performance, we propose a new enhancement to the SSA for the architecture's 
hyperparameters selection. Our approach identifies the best settings for key parameters influencing the training 
process and model accuracy. We strategically focus on four crucial hyperparameters: 
Dropout rate, hidden units, learning rate (which has a significant and wide-ranging impact on network behavior), and 
batch size. 

To overcome the challenge of constraining the candidate solution population by the number of network weights, 
we leverage multiple iterations of the CNN architectures. Each iteration represents a different combination of values 
assigned to the chosen hyperparameters. Subsequently, we utilize the SSA to individually train each variant with a 
diverse set of candidate solutions. 

4.1. Representation of individuals 

To gauge the scalability and robustness of our CNNs-SSA approach, we implemented extensive training and evaluation 
across diverse CNN architecture, datasets, and hyperparameters settings. This iterative process yielded the optimal 
hyperparameters and configurations with defined lower and upper bounds presented in Table 2 Within our 
framework, a four-dimensional vector corresponding to the chosen CNN hyperparameters represents each individual 
(candidate solution). 
 

Table 2: CNNs structure hyperparameters. 
 

Hyperparameters Range 

Dropout rate 0.2, 0.3, 0.4 
hidden units 64, 128, 256, 512 
learning rate 0.01, 0.001, 0.0001, 1e-05 
batch size 32, 64, 128 

 

4.2.  Initial population based on GPS 

While replacing a random search space distribution with a uniform one could improve SSA effectiveness, it risks 
neglecting essential areas. Therefore, for wider solution space coverage in most scenarios, the initial distribution 
should be further refined. This study introduces a hybrid approach: the initial population is generated half-randomly 
and the remaining half leverages the GPS method for a more targeted exploration. 

4.3. Fitness assessment 

To measure the quality of an individual, we utilize the following objective function: 
 

F = a × MSE + b × ep/epmx                                                                                       (1) 
 

Where ep and epmx are current and maximum epochs respectively. a and b  [0,1] and a+b =1. 
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This objective function, F, strikes a balance between model accuracy and speed. It achieves this by weighing the 
quality of the result with factor a and the epoch status with factor b. These factors, constrained to sum to 1, allow fine-
tuning the priority between minimizing training error and encouraging training progression, thereby preventing both 
overfitting and stagnation. 

5.  Experimental results 

5.1. Parameters Setting 

Table 3 provides an overview of the parameters employed in this research, categorizing them into two sections: CNNs 
Training and SSA. The first category defines the core CNN architecture, including parameters like the number of 
convolutional layers, number of kernels per layer, kernel size, activation function for convolutional layers, stride and 
padding values, pooling size, number of pooling layers, specifications for hidden layers (number of neurons, etc.), 
activation function for fully-connected layers, activation function for the output layer, loss function, optimizer 
selection, evaluation metrics, and specified epoch (training iterations). 

  The second category governs the behavior of the SSA algorithm, encompassing the number of salps (population 
size), and the maximum number of iterations. 

 
Table 3: Hyperparameters for current work. 

 

 

5.2. Datasets 

To benchmark our methodology's effectiveness, we selected the widely used MNIST and Fashion-MNIST datasets. 
Their popularity in the deep learning community, manageable sizes, and diverse content ensured thorough evaluation 
across different domains. 

5.2.1. The MNIST dataset 

The MNIST dataset, a cornerstone benchmark for image classification, features 70,000 greyscale images of 
handwritten digits, each pixelated canvas measuring 28×28 [43]. Divided into 60,000 training and 10,000 testing 
samples, MNIST boasts pre-centered and normalized data, further bolstered by a validation set split from the training 
data (55,000/5,000) [11]. While the training set fuels model development, the test set rigorously evaluates its 

CNNs parameters  Values 

No. of Conv. layers 3 

No. of kernels 1,2,3 

Kernel size 512,256,256 

Act. Fun. for Conv. layers Relu 

Batch Normalization 2 

No. of pooling layers 2 

Max Pooling size 3 

Padding Same 

Stride 1 

No. Hidden layers 3 

Activ. Fun. for FC layers Relu 

Activ. Fun. for the out. layer softmax 

Loss function Categorical-cross-entropy 

Optimizer Adam 

Metrics accuracy 

Epochs 50 

SSA parameters values 

No.  of salps 10 

Max-generations 100 
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performance. This standardization allows researchers to directly compare their findings, fostering collaboration and 
progress in the field. 

5.2.2. The Fashion-MNIST dataset 

Fashion-MNIST mirrors its predecessor, offering 70,000 grayscale images of fashion items, neatly categorized into ten 
classes with 7,000 samples each. Each image, like its MNIST counterpart, occupies a 28×28 pixel canvas. The dataset 
divides neatly into a 60,000-image training set and a 10,000-image test set, making it a perfect substitute for the 
original MNIST due to its identical dimensions, data format, and split structure [12]. 

6. Results and analyses 

Leveraging Google Colab Pro+ with its generous 500 monthly compute units, our GPU T4-powered environment, and 
Python 3 hardware acceleration facilitated the smooth execution of our method within 12-15 hours. To display its 
effectiveness, we compare our approach's accuracy against established methods on MNIST and Fashion-MNIST 
datasets, further highlighting the optimal architectures uncovered through this work. Detailed comparisons can be 
found in Figures 3 and 4. 
 
 

 

  

 

 

 

 

 

 

 

 

Fig. 3. A comparison of the accuracy of the MNIST dataset of the current work and various models. 

As can be seen from Fig. 3, the CNNs-SSA technique shines on MNIST, achieving a remarkable 99.60% accuracy, 
edging past well-established rivals like PSO and deep CNNs. This slight, yet statistically significant advantage (further 
testing recommended) marks a promising advance in image classification. While other methods like GA and PSO 
variants come close, CNNs-SSA stands out, demonstrating its potential for wider application beyond MNIST. Exploring 
generalizability to more complex datasets and delving deeper into its internal workings will refine and solidify its 
claim as a top contender in the increasingly competitive field of image classification. 
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Fig. 4. A comparison of the accuracy of the Fashion-MNIST dataset of the current work and various models. 

Fig. 4 convincingly demonstrates the superior performance of the CNNs-SSA method on the Fashion-MNIST 
dataset. It achieves the highest recorded accuracy (94.08%), surpassing well-established techniques like PSO (DPSO), 
CAF, multi-optimizers, and LACHS by margins ranging from 0.74% to 3.08%. Notably, even though its efficiency is 
comparable to MCNN15 (94.04%), CNNs-SSA's distinctive accuracy advantage highlights its potential for diverse 
image classification tasks, especially those with intricate categories like Fashion-MNIST. 

We conducted a statistical analysis to compare the performance of CNNs with SSA and other optimization 
techniques. This analysis aimed to determine which architecture is superior. To do this, we used the Mann-Whitney 
U test as a nonparametric method [44, 45]. The test analyzed the accuracy values of both architectures. 

We set the null hypothesis (H0) that both architectures yield the same accuracy (μ0 = μ1). The alternative 
hypothesis (H1) stated that the CNN with SSA achieves higher accuracy than those with other techniques (μ1 > μ0). We 
set a significance level of 99% (α = 0.01). 
 

Table 4: Statistical analyses (MNIST dataset) 
 

Ref. Methods P-Value  

[13] GA 0.002 
[14] PSO (DPSO) 0.001 
[44] SI (tree growth & firefly) algorithms 0.001 
[16] PSO(LDWPSO) < 0.000 
[19] PSO (IntelliSwAS) < 0.000 
[21] PSO&GWO (HPSGW) < 0.000 
[22] GA (SDSGA) < 0.000 
[27] Reinforcement Learning (RL) algorithm < 0.000 
[11] Deep CNN < 0.000 
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Table 5: Statistical analyses (Fashion-MNIST dataset) 

Ref. Methods P-Value 

[14] PSO (DPSO) 0.008 
[18] CAF 0.005 
[23] MCNN15 0.003 
[24] ANN and CNN 0.002 
[25] Approximate dynamic learning rate Update algorithm, ResNet, and VGG16 0.001 
[26] LACHS 0.001 

The results of the Mann-Whitney U test are presented in Tables 4 and 5 for both the MNIST and Fashion-MNIST 
datasets. For both datasets, the p-values are less than the chosen significance level (p < 0.01). Based on these findings, 
we reject the H0 and conclude that for these specific datasets, auto-tuned CNNs with SSA outperform those with other 
optimization techniques in terms of accuracy. 

Table 6 respectively displays the individuals (hyperparameters configurations) that achieved the highest 
accuracies on the MNIST and Fashion-MNIST evaluations. 

Table 6: Optimal selection for the MNIST and Fashion-MNIST datasets. 

 

 
 
 

7. Conclusion  

This work introduces CNNs-SSA, a new strategy for optimizing CNNs by leveraging an enhanced SSA. CNNs-SSA excels 
in balancing accuracy, computational speed, and training duration, as demonstrated by its outstanding performance 
on MNIST and Fashion-MNIST datasets. Notably, it outperforms computationally demanding algorithms, making it 
well suited for practical settings with limited resources and time constraints. This approach paves the way for 
seamless integration of CNNs into real-world applications, particularly those facing resource limitations. Future 
research could explore the applicability of SSA-based optimization to diverse deep learning architectures and tasks 
beyond computer vision. Additionally, delving deeper into the theoretical underpinnings of SSA and refining 
hyperparameters optimization strategies could unlock its broader potential in machine learning applications. 
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