
Journal of Al-Qadisiyah  for Computer Science and Mathematics V VOL.16(1) 2024, pp Math. 84–92.16(1) 2024, pp Math. 84–92 
 
 
 
 
 
 
 
 
 
 
 
 

 

∗Corresponding author Nureddin Majed Al-haliji 

Email addresses: na8590864@gmail.com 

Communicated by ‘sub etitor’ 

Sinc approximation for solving fourth-order pseudo-Poisson 

equations 

Nureddin Majed Al-haliji* 

Department of Mathematics, South Tehran Branch, Islamic Azad University, Tehran, Iran .Email: na8590864@gmail.com 

 

A R T I C L E  I N F O 

Article history: 

Received: 2 /3/2024 

Rrevised form: 20 /3/2024 

Accepted : 28 /3/2024 

Available online: 30 /3/2024 
 

Keywords: 

Sinc approximation 

Pseudo-Poisson problem 

numerical approximation 

Galerkin method 

 

A B S T R A C T 

In this article, we will investigate the Galerkin sinc approximation to solve the single pseudo-

Poisson problem and in this method we will reach a linear system. We will solve this system by 

carefully choosing the length of the steps and the number of nodal points and with two 

methods; the first method, which is the usual method, is theoretically flawed and not practical 

and computationally efficient. Therefore, to solve the mentioned system, we introduce the 

orthogonalization technique, which solves both theoretical and computational problems. 

Numerical approximation is obtained whose accuracy is exponential and of order 

𝑂(exp⁡(−𝑐⁡√𝑁) where N is a transaction parameter and c is a constant independent of N. In the 

final part, we give some numerical examples of individual pseudo-Poisson problems to 

demonstrate the efficiency of the method. 
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1. Introduction 

     Boundary value problems have received considerable attention in various fields of science and engineering. These 
problems are difficult to solve because of the presence of singularities, so many schemes have been proposed to 
overcome this difficulty. However, among the existing techniques, sinc-Galerkin and sinc-collocation methods are 
suitable for handling singularities based on some transformations applied to boundary value problems [1, 2]. In the 
papers [3, 4, 5] a general framework for first order differential equations  and numerical solution of special second 
order ODE-based problems has been introduced. A quadrature method is based on combining two rules of the same 
precision level for numerical solution of the double integral in physical sciences is presented [6]. Collocation methods 
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for solving special kind of integral equations are obtained [7]. The methods of numerical solution of different types of 
ordinary and partial differential equations have also been studied in recent years [8-11]. Convergence rate estimation 
for functions having a singularity at an endpoint with poly-Sinc discontinuous Galerkin methods is discussed in [12]. 
A non-classical sinc-collocation method for the solution of singular boundary value problems arising in physiology is 
discussed in [13].  Numerical solution of third-order boundary value problems using non-classical sinc-collocation 
method is expressed in [14]. Numerical methods using sinc nystrom formula are proposed and analyzed for second 
kind Fredholm integral equations over infinite intervals [15]. 

2. Preliminaries 

     Consider the following relation, 

𝑆(𝑘. ℎ)(𝑥) =
sin(

𝜋(𝑥−𝑘ℎ)

ℎ
]

𝜋(𝑥−𝑘ℎ)

ℎ

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 

     This is cardinal (Whittaker) function. It is used to introduce the sink function, where h is a positive number and k 

is an integer. S(k.h)(x) is called the eminence of the sinc function with step length. For the defined and bounded 

function f∈(-∞.∞), the cardinal function of function  f  is defined as follows: 

𝐶(𝑓, ℎ)(𝑥) = ∑ 𝑓(𝑘ℎ)𝑆(𝑘. ℎ)(𝑥).

∞

𝑘=−∞

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 

     From the aspect of derivation, integration, etc., the cardinal function plays the same role for sinc methods as 

polynomials for most classical numerical methods. Polynomials, many operators on 𝐶(𝑓, ℎ) are implicitly transferred 

and each of these results leads to one of the explicit approximation methods. The function 𝐶(𝑓, ℎ) is equivalent to 

many approximation formulas such as the trapezoid rule, many techniques obtained from the field of signal 

processing, etc. 

Definition 1. Suppose the function f is defined in real numbers and h>0 is given. We define the following series, 

𝐶(𝑓, ℎ)(𝑥) ≡ ∑ 𝑓(𝑘ℎ)𝑠𝑖𝑛𝑐(
𝑥 − 𝑘ℎ

ℎ
)

∞

𝑘=−∞

 

which we have from relation (1). 

𝑠𝑖𝑛𝑐 (
𝑥 − 𝑘ℎ

ℎ
) ≡ {

sin(𝜋(𝑥 − 𝑘ℎ)/ℎ)

𝜋(𝑥 − 𝑘ℎ)/ℎ)
,        𝑥 ≠ 𝑘ℎ

1,                                  𝑥 = 𝑘ℎ

 

Wherever the series (2) converges, it is called cardinal function f. 

Theorem 1. Suppose 𝜙′𝐹 ∈ 𝐵(𝐷) and ℎ > 0. Let ϕ be a one-to-one cosine mapping from the domain D to Ds. Suppose 

Γ = (ℝ) ,  𝑤𝑘 = 𝜓(𝑘ℎ),  𝜓 = 𝜙−1 then for each 𝜉 ∈ Γ the limit of the relation 

ϵ(𝜙′𝐹)(𝜉) ≡ 𝐹(𝜉) − ∑ 𝐹(𝑤𝑘)𝑠𝑖𝑛𝑐(
𝜙(𝜉) − 𝑘ℎ

ℎ
)

∞

𝑘=−∞

 

as follows: 

‖𝜖(𝜙′𝐹)‖∞ ≤
𝑁(𝜙′𝐹, 𝐷)

2𝜋𝑑𝑠𝑖𝑛ℎ(𝜋𝑑/ℎ)
 

In addition, suppose there are constant values β.α and C that 

|𝐹(𝜉)| ≤ 𝐶 {
exp⁡(−𝛼|𝜙(𝜉)|,      𝜉 ∈ Γ𝛼
exp⁡(−𝛽|𝜙(𝜉)|,      𝜉 ∈ Γ𝑏
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If we consider the following choices. 

𝑁 = [|
𝛼

𝛽
𝑀 + 1|], 

ℎ = (
𝜋𝑑

𝛼𝑀
)
1/2

≤
2𝜋𝑑

ln⁡(2)
 

Then for every ξ∈Γ we have: 

𝜖𝑀,𝑁(𝜙′𝐹)(𝜉) ≡ 𝐹(𝜉) − 𝐶𝑀.𝑁(𝐹, ℎ, 𝜙)(𝜉) 

𝐶𝑀,𝑁(𝐹, ℎ, 𝜙)(𝜉) ≡∑ 𝐹(𝜔𝑘)𝑠𝑖𝑛𝑐(
𝜙(𝜉) − 𝑘ℎ

ℎ
)

∞

𝑘=−∞
 

And also 

‖𝜖𝑀.𝑁(𝜙′𝐹)‖∞ ≤ 𝐾5𝑀
1/2𝑒𝑥𝑝(−(𝜋𝑑𝛼𝑀)1/2) 

which 𝐾5 is a constant dependent on d, F, ϕ and D. 

3. Solving fourth-order pseudo-Poisson equations 

     By choosing appropriate weight functions with sinc approximation method as basis function for solving the single 

pseudo-Poisson equation was first used by F. Stenger and arrived at a simple linear system. This method has 

exponential convergence Here we solve the single pseudo-Poisson problem using the sinc Galerkin method. 

  We are now investigating the equation of the fourth-order pseudo-Poisson problem 

4 4

1 1 2 24 4
( , ) , ( , ) ( , ) ( , ),

0x y

u u
f x y x y a b a b

x y

u u u
 

  
+ =    


 = = =


⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

(3)

 

In [6], Smith has discussed the one-dimensional state of this problem using the sinc-Galerkin method; and the 

numerical approximation accuracy of order ( )d NO e  −
 has been achieved. 

Here we solve (3) by the sinc collocation method and using the orthogonalization technique. 

Suppose ( , )Nv x y  is defined by below relation with the choice of 1 2h h h= =  and
1 2N N N= = , 

1 2

1 2

2
1

1 1 2 2 1 2

( , ) ( ) ( ).
N N

k k
kN k

k N k N k k

v
v x y S x S y

g g=− =−

=    

which  
1 2k kv  is determined by the following relation: 

1 2 1 2

2
1 1 2 1 2

1 21 2

(4)
(4) ( ) ( )

N N
k i i k

kk i i i i

k N k Nk k

v v
S x S y f

g g=− =−

+ =   

 The matrix representation of the above equation is as follows: 

1 1
,

( ) ( )

t

x yS D U UD S W
g x g y

  
+ =  

   
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that 
xS and yS are m m matrices whose ik-th rank is (4) ( )S x

k i
 and (4)

( )S y
k i

, respectively. U and W matrices 

are also f
ik

and ikv with (ik). 

From previous relations we have: 

(4) (4) (0) (1) (1) (2) (2) (3) (3) (4) (4)

2 3 4

1 1 1 1
( ) ,k i i ki i ki i ki i ki i i kiS x g a a a g

h h h h
     = + + + +  

Where 

(1) (4)

(2) 2 2

(3) 3 2

4 6 4 ,

6 12 3 4 ,

4 6 ,

a g g g g

a g g g

a g g

   

     

  

     = + + +

      = + + +

   = +

 

and ( )j
ki
  (j=0,...,4) are defined by following relations, 

 

                                                             
( )0 1 ,

0 ,
jl

if j l

if j l


=
= 


    

                                                        ( )
(1)

0

1
j l

jl

if j l

if j l
j l

 −

=


= −
− 

−

           

                                                      

2

(2)

2

3

2( 1)

( )

jl j l

if j l

if j l
j l




−


− =


= 
−− 

 −

 

                                  
( )3

2 2

3

0

( 1)
6 ( )

( )

j l
jl

if j l

j l if j l
j l




−

=


= −
 − − −   −

    

                               

4

(4)

2 2

4

5

( 1)
24 4 ( )

( )

jl j l

if j l

j l if j l
j l






−


=


= 

−  − − −   −

                      

 

Put 

( )
3
2( ) ( )g x x

−
=                                                                                       (4) 
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Then, 
(3)( ) 0a x = . 

Using (4) and 

3 1

2 2
1

,
4

 
− −

 
  = − 

 
 we will have 

(1)( ) 0a x = and 

5

2(2) 5
( )

2
( ) xa x = − .  

 

Then, 

5
(4) 29

16
g =   

And from the above equality we have: 

5
(4) (4) (2) (0)2 42

4

1 5 9
( )

2 16k i i ki ki ki
S x h h

h
   

 
 
 

= − +  

Similarly we will have: 

5
(4) (4) (2) (0)2 42

4

1 5 9
( )

2 16
ik i ki ki ki

S y h h
h

   
 

  
 

= − +  

by choosing 

( )
3
2( ) ( )g y y

−
=  

We will have, 

4
x yA Y Y A h W+ =   

Where 

 

(5)                                              
( ) ( )

( ) ( )

2 2

2 2

,

,

( ) ( )

( ) ( )

x

y

A D x AD x

A D y AD y 

 

 

 =

=
   

 

(6)                                            

1 1

2 2

1 1

2 2

( ) ( ) ,

( ) ( ) ,

Y D x UD y

W D x WD y

 

 

− −

− −

   
 =    

  

   
  =    

  

 

And 

( ) (4) 2 (2) 4 (0) (4) 2 (2) 4 (0)5 9 5 9

2 16 2 16
ik ki ki kiA a h h I h I h I  

 
= = − + = − + 

 
 

Since the definite matrix 
(4)I  is positive [6], we can show; with the same method as mentioned before, that both 

matrices xA and yA are symmetric and positive definite. And under the assumption that we have 1 2h h h= = and 
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1 2N N N= = , we have 
4

y xA k A= . Therefore, a method similar to the orthogonalization technique mentioned 

earlier can also be used for the pseudo-Poisson problem; In this case, matrix Y  becomes as follows: 

( )
4

4ik

i k

h
Y y

k 

 
 = =  

+ 
 

Also, the positive parameter  should be chosen so that, 

( )
3

2( , ) ( )( )u x y C x a b y
+

 − −  

 
4. Numerical results 

In this section, we use the sinc approximation method to numerically solve single fourth-order pseudo-Poisson problems. In 

the examples of this section, the exact solution has undetermined fourth derivatives on the boundary. 

The positive parameter  should be chosen so that the exact solution u(x,y) applies in the following condition: 

                                                           
( )( )( )

1

2( , )u x y C x a b y
+

 − −                             (7) 

We take the parameter h equal to

1

2d

N





 
 
 

, where d is chosen equal to 
2


in the investigated problems. 

The absolute value of the maximum error between the numerical approximation ( )( , )Nv x y
 
and the exact solution 

( )( , )u x y at nodal points sinc with 
g

E and the absolute value of the maximum error in 100 equidistant points with 

u
E , which are equidistant points ( ),i jx y   and 1 1 1( )

100
i

i
x a b a= + − , 2 2 2( )

100
j

j
y a b a= + − are chosen. 

Example 1. Consider the following fourth-order pseudo-Poisson problem 

                    
4 4

2 3 3 3

4 4
( , ) , ( , ) (1 ) ( 1) (4 ) ,

u u
f x y u x y x y y

x y

 
+ = = − − −

 
 

that ( 1,1) (1,4) = −  and 
3

2
 = . The results are shown in Table 1 . 

Example 2. Consider the following fourth-order pseudo- Poisson problem 

                              
4 4

3 3 3

4 4
( , ) , ( , ) sin ( ) ln ( ),

u u
f x y u x y y x y

x y

 
+ = =

 
 

Where . (0, ) (0,1) =    

The exact answer of ( , )u x y has a singular point of 0y = . 

We select parameter  as 
3

2
. The results are shown in Table 2. 
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          Table 1 - The results of example 1 

         u
E          g

E   
         h             N    

9.5118D-1     9.5118D-1     1.282550      2    

5.9729D-2     2.7328D-2     0.906900      4    

3.7935D-3     3.0343D-3    0.641275      8    

7.3851D-5     7.3851D-5    0.453450      16   

9.4706D-6     9.3745D-6    0.320637      32   

 

 

 

 Table 2 - The results of example 2 

         u
E           g

E  
         h             N    

8.3871D-3      5.8964D-3      1.282550      2    

2.9605D-3      2.8201D-3      0.906900      4    

5.4531D-4      5.4495D-4      0.641275      8    

2.9605D-5      2.9301D-5      0.453450      16   

2.6026D-7      2.5942D-7      0.320637      32   

 

Example 3. Consider the following fourth-order pseudo- Poisson problem 

( )( ) ( )( )
4 4 7 10

2 3
4 4

( , ) , ( , ) 1 2 ,
u u

f x y u x y x x y y
x y

 
+ = = − −

 
 

Where, (0,1) (0,2) =  . This example presents a higher order of singularities, where u has undefined fifth derivatives on 

the boundary  . We select the parameter 
11

6
 =  . The gained results are shown in Table 3. 
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          Table 3 - The results of example 3 

        u
E         g

E  
h             N      

8.5673D-4      8.5673D-4      1.160110     2      

3.4646D-5      1.3176D-5      0.820322     4      

1.4810D-6      1.0888D-6      0.580055     8      

1.6013D-8      1.5501D-8      0.410161     16     

3.4871D-10    3.4867D-10    0.290027     32     

4. Conclusion 

  This method is efficient in dealing with singularity and work well in contact with fourth-order pseudo-Poisson type 

of problems, because the singularity of the equation occurs at the end point of the interval. Numerical approximation 

is obtained whose accuracy is exponential and of order 𝑂(exp⁡(−𝑐⁡√𝑁) where N is a transaction parameter and c is a 

constant independent of N. 
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