Journal of Al-Qadisiyah for computer science and mathematics Vol.5 No.2 vear 2013

page 1-7

Some properties of two — fuzzy pre — Hilbert space Noori F.AL — Mayahi & Layth S.Ibrahaim Department of Mathematics, College of Computer Science and Mathematics, University of AL – Qadissiya

Recived: 18 / 6 /2013 Revised: 1 /9 / 2013 Accepted: 2 /9 / 2013

We introduce the definition of a two-fuzzy pre Hilbert space (two-fuzzy **ABSTRACT**: inner product space) and discuss some properties of this spaces ,and we use the definition of two-fuzzy pre Hilbert space to introduce the definitions of (level complete in two-fuzzy Hilbert , fuzzy orthogonality) . Also, introduce some important theorems with their proofs. Moreover, crisp inner product and orthogonality are established .

: fuzzy set, Two-fuzzy pre-Hilbert space, α-norm, **Keywords**

Mathematics Subject Classification: 30C45

1. INTRODUCTION

The concept of fuzzy set was introduced by Zadeh [2] in 1965 as an extension of the classical notion of set. A satisfactory theory of 2-norm on a linear space has been introduced and developed by Gahler in [4]. The concept of fuzzy norm and α -norm were introduced by Bag and Samanta and the notions of convergent and Cauchy sequences were also discussed in [6]. Zhang [1] has defined fuzzy linear space in a different way. RM. Somasundaram and ThangarajBeaula defined the notion of fuzzy 2-normed linear space (F(X), N) or 2- fuzzy ,2-normed linear space. Some standard results in fuzzy 2-normed linear spaces were extended . The famous closed graph theorem and Riesz Theorem were also established in 2-fuzzy 2-normed linear space. In [5] , we have introduced the new concept of 2-fuzzy inner product space on F(X), the set of all fuzzy sets of X. In this paper studysome properties of two-pere-fuzzy Hilbert spaces and results are discussed about the two concepts.

2. Preliminaries

Definition 2.1.[3]. Let F(X) be a vector space over the complex field C. The fuzzy subset η defined as a mapping from $F(X) \times F(X) \times C \rightarrow [0,1]$ such that for all $f, g, h \in F(X), \alpha \in C$

- (1) For $s,t \in C, \eta(f+g,h,|t|+|s|) \ge \min\{\eta(f,h,|t|),\eta(g,h,|s|)\}$
- (2) For $s, t \in C, \eta(f, g, |st|) \ge \min\{\eta(f, f, |s|^2), \eta(g, g, |t|^2)\}$
- (3) For $t \in C$, $\eta(f,g,t) = \eta(g,f,t)$

Journal of Al-Qadisiyah for computer science and mathematics

Vol.5 No.2 year 2013

$$(4) \ \eta(\alpha f,g,t) = \eta(f,g,\frac{1}{|\alpha|}), \alpha(\neq 0) \in C, t \in C.$$

(5)
$$\eta(f,f,t) = 0$$
, for all $t \in C/\mathbb{R}^+$

(6)
$$\eta(f,f,t) = 1$$
 for all $t > 0$ if and only if $f = 0$

 $(7) \eta(f,f,): \mathbb{R} \to I(=[0,1])$ is a monotonic non-decreasing function of R and $\lim \eta(f,f,t) = 1$ as $t \to \infty$

Then η is said to be two - fuzzy pre-Hilbert (2 - FPHS) on F(X) and the pair $(F(X), \eta)$ is called a two-fuzzy pre-Hilbert space (2-FPHS).

Definition 2.2. [5].Let(F(X), η) be a 2-FPHS satisfying the condition

 $\{\eta(f,f,t^2)>0, when t>0\}$ implies that =0. Then for all $\alpha\in(0,1)$,

define $||f||_{\alpha} = \inf\{t : \eta(f, f, t^2) \ge \alpha\}$ a crisp norm on F(X), called the a-norm on F(X) generated by η . Now using these definitions let us define fuzzy norm on F(X) and verify the conditions as follows:

Theorem 2.3.[5]. Let η be a two-fuzzy inner product on F(X). Then

 $N: F(X) \times \mathbb{R} \to [0,1]$ defined by

$$N(f,t) = \begin{cases} \eta(f,f,t^2) & when \ t \in \mathbb{R}, t > 0 \\ 0 & when \ t \in \mathbb{R}, t < 0 \end{cases}$$

is a fuzzy norm on F(X).

(N1) By define N(f,t) = 0, for all $t \in \mathbb{R}$ and $t \leq 0$.

Proof: (N2) Again from (6), for all t > 0, $\eta(f, f, t^2) = 1$ if and only if f = 0 therefore it follows that N(f, t) = 1 if and only if f = 0.

(N3) For all t > 0 and $c \neq 0$,

$$N(cf,t) = \eta(cf,cf,t^2) = \eta(f,cf,\frac{t^2}{|c|}) = \eta(f,f,\frac{t^2}{|c|^2}) = N(f,\frac{t}{|c|}).$$

(N4) To prove that $N(f + g, s + t) \ge min\{N(f, s), N(g, t)\}$ for every

 $s,t \in \mathbb{R}$, $f,g \in F(X)$, let us consider the following cases:

(a)
$$s + t < 0$$
,

(b)
$$s = t = 0$$
; $s > 0$, $t < 0$ or $s < 0$, $t > 0$,

(c)
$$s + t > 0$$
; $s, t \ge 0$.

Let us prove (c).

$$N(f + g, s + t) = \eta(f + g, f + g, (s + t)^{2})$$

=\eta(f + g, f + g, s^{2} + st + st + t^{2})

$$\geq \eta(f,f,s^2) \wedge \eta(g,g,t^2) \wedge \eta(f,g,st)$$

$$\geq \eta(f, f, s^2) \wedge \eta(g, g, t^2)$$

$$=N(f,s)+N(g,t)$$

(a) and (b) follows immediately.

(N5) From (7) $\eta(f, f, .)$ is a monotonic non-decreasing function and tends to 1 as $t \to \infty$ to. Thus N(f, .) is a monotonic non-decreasing function and tends to 1 as $t \to \infty$ to.

Theorem 2.4.[5]. (Parallelogram Law) Let n be a two- fuzzy inner product on F(X), $\alpha \in (0,1)$ and $\|\cdot\|_{\alpha}$ be the α -norm generated from 2-FIP η on F(X). Then $\|f-g\|_{\alpha}^2 + \|f+g\|_{\alpha}^2 = 2(\|f\|_{\alpha}^2 + \|g\|_{\alpha}^2)$

Journal of Al-Qadisiyah for computer science and mathematics

Vol.5 No.2 year 2013

Theorem 2.5.[5] If a two - fuzzy pre-Hilbert space $(F(X), \eta)$ is strictly convex, and if $\eta(f, g, t) = ||f||_{\alpha} ||g||_{\alpha}$ then f and g are linearly dependent

Theorem 2.6.[5]. Let $(F(X), \eta)$ be a two-fuzzy pre-Hilbert space. If

 $\eta(f,h,t) = n(g,h,t)$ for all $h \in F(X)$ then f and g are dependent.

Definition 2.7.[5]. A sequence $\{f_n\}$ in a fuzzy two-normed linear space (F(X), N) is called a Cauchy sequence with respect to a-norm if $\lim \|f_n - f_m\| = 0$ as $n, m \to \infty$.

Definition 2.8. [5]. A sequence $\{f_n\}$ in a fuzzy two-normed linear called a convergent sequence with respect to α -norm if there exists $f \in F(X)$ such that if

$$\lim \|f_n - f_m\| = 0$$
as $n, m \to \infty$

Definition 2.9.[5]. A fuzzy two-normed linear space (F(X), N) is said to be complete if every Cauchy sequence converges.

Definition 2.10.[5] A complete fuzzy 2-normed linear space (F(X), N) is called two-fuzzy Banach space.

Definition 2.11.[5] A complex 2-fuzzy Banach space (F(X), N) is said to be 2-fuzzy Hilbert space if its norm is induced by the two-fuzzy inner product.

Theorem 2.12. [5] A closed convex two-fuzzy subset C of a two-fuzzy Hilbert space F(X) contains a unique element in F(X) with smallest a-norm.

Definition 2.13.[5] Let F(X) be a vector space over the complex field C. Let η be a two-fuzzy inner product on F(X). Let

$$N(f,t) = \begin{cases} \eta(f,f,t^2) & when \ t \in \mathbb{R}, t > 0 \\ 0 & when \ t \le 0 \end{cases}$$

be the fuzzy norm induced by the two-fuzzy inner product. Let

$$||f||_{\alpha} = \inf\{t > 0 : N(f,t) \ge \alpha\}.$$

If $\| \cdot \|_{\alpha}$ a satisfies parallelogram law then define α -two-inner product as

$$\langle f,g\rangle_{\alpha}=F_{\alpha}+iG_{\alpha},$$

where
$$F_{\alpha} = \frac{1}{4}(\|f + g\|_{\alpha}^2 - \|f - g\|_{\alpha}^2)$$
 and

$$G_{\alpha} = \frac{1}{4}(\|f + ig\|_{\alpha}^{2} - \|f - ig\|_{\alpha}^{2}), \alpha \in (0,1) \dots (\#).$$

3. Main results:

In this section, some of the basic results related to this work are given .

Theorem 3.1. Every two-fuzzy pre-Hilbert space is a two-fuzzy normed space.

Proof: let $(F(X), \eta, *)$ be a fuzzy pre-Hilbert space. Define

$$N\left(f,t\right) = \begin{cases} \eta\left(f,f,t^{2}\right) & , t > 0 \\ 0 & , t \leq 0 \end{cases} \quad \text{For all } f,g \in F(X), t \in R.$$

The axioms (1, 3, 4,5,6) in Definition (3.3.1) satisfied Now to prove (2)

$$N(f + g, t + s) = \eta(f + g, f + g, (t + s)^{2})$$

$$= \eta(f+g, f+g, t^2+ts+ts+s^2)$$

$$\geq \eta(f+g,f+g,t^2) \wedge \eta(f+g,f+g,s^2) \wedge \eta(f+g,f+g,ts)$$

$$\geq \eta(f, f, t^2) \wedge \eta(g, g, s^2) = N(f, t) * N(g, s).$$

Therefore (F(X), N, *) is a two-fuzzy normed space.

Journal of Al-Qadisiyah for computer science and mathematics Vol.5 No.2 year 2013

The relation between two-fuzzy metric space and two-fuzzy pre-Hilbert space is given in next theorem .

Theorem 3.2. Every two-fuzzy pre-Hilbert space is a two-fuzzy metric space.

Proof: Let (X, F, *) be a fuzzy pre-Hilbert space.

Defined
$$M(f,g,t) = \begin{cases} \eta(f-g,f-g,t^2) & ,t>0\\ 0 & ,t\leq 0 \end{cases}$$

for all $f, g, h \in F(X)$ and $t, s \in R$.

(1)
$$M(f,g,t) = \eta(f-g,f-g,t^2) > 0$$
 for all $t > 0$

(2)
$$M(f,g,t) = 1 \iff M(f,g,t) = \eta(f-g,f-g,t^2) = 1$$

$$\Leftrightarrow f - g = 0 \Leftrightarrow f = g \text{ for all } t > 0;$$

(3)
$$M(f,g,t) = \eta(f-g,f-g,t^2) = \eta(g-f,g-f,t^2) = M(g,f,t);$$

(4)
$$M(f,g,t) * M(g,h,s) = \eta(f-g,f-g,t^2) \wedge \eta(g-h,g-h,s^2)$$

$$\leq \eta(f-g,f-g,t^2) \wedge \eta(g-h,g-h,s^2) \wedge \eta(f-g,f-g,ts)$$

$$= \eta(f - g, f - g, t^2 + s^2 + st) = \eta(f - g, f - g, (t + s)^2)$$

= $M(f, h, t + s);$

(5)
$$M(f,g,\bullet) = \eta(f-g,f-g,t^2):(0,\infty) \to [0,1]$$
 is continuous.

Therefore (F(X), M, *) is a two-fuzzy metric space.

The proof of the next theorem is straightforward it is omitted .

Theorem 3.3. Let F(X) be a linear space over the complex field C. Let η be a two-fuzzy inner product on F(X)

(i) For
$$f,g,h \in F(X)$$
 and $t,s \in C,\eta(f,g+h,t+s) \ge \eta(f,g,t) \land \eta(f,h,s)$.

(ii) For
$$\lambda \in C$$
 and $\lambda \neq 0$, $\eta(f, \lambda g, t) = \eta(\lambda f, g, t)$.

(iii)
$$\forall t \in \mathbb{R}$$
 and $t > 0$, $\eta(0,0,t) = 1 \ge \eta(f,g,t)$, $\forall f,g \in F(X)$.

Remark 3.4.

(i) let
$$f \in F(X)$$
, $\eta(f, f, t^2) > 0 \implies f = 0$

(ii)
$$\forall f, g \in F(X) \text{ and } p, q \in \mathbb{R}$$
,

$$\eta(f+g, f+g, 2q^2) \wedge \eta(f-g, f-g, 2p^2) \ge \eta(f, f, p^2) \wedge \eta(g, g, q^2)$$

3.5. Minimizing vector

Definition 3.5.1. Let $(F(X), \eta)$ be a two-fuzzy pre-Hilbert satisfying (Remark3.4). F(X) is said to be level complete (I-complete) if for any $\alpha \in (0,1)$, every Cauchy sequence converges in F(X) w.r.t the $\alpha-norm$, $\|\cdot\|_{\alpha}$, generated by the fuzzy norm N which is induced by two - fuzzy inner product η .

Theorem 3.5.2. Let $(F(X), \eta)$ be a two- FPH space satisfying (Remark3.4) and $M(\neq \emptyset)$ be a convex subset of F(X) which is level complete. Let $f \in F(X)$. Then for each $\alpha \in (0,1)$, $\exists \ a \ unique \ g_0^\alpha \in M$ such that $m_{g_0^\alpha}^{(\alpha)} = inf_{g \in M} \left\{ m_g^{(\alpha)} \right\}$, where

 $m_g^{(\alpha)} = \Lambda \{t \in \mathbb{R}^+, N(f,t) \ge \alpha\}$, N being the fuzzy norm induced by the two- FIP function η .

Proof:

Observe that for each $\alpha \in (0,1)$ and $g \in M$,

Journal of Al-Qadisiyah for computer science and mathematics Vol.5 No.2 year 2013

 $m_g^{(\alpha)}=\inf\{t\in\mathbb{R}^+:N(f-g,t)\geq\alpha\}\,\|f-g\|_{\alpha}$ where $\|\cdot\|_{\alpha}$ the $\alpha-norm$ induced from the fuzzy norm N which is obtained from the two-fuzzy inner product η . By Definition 2-3-14, $(F(X),\langle\cdot,\rangle_{\alpha})$ is an two-fuzzy pre-Hilbert space for each $\alpha\in(0,1)$, where $\langle\cdot,\cdot\rangle_{\alpha}$ is given by (#). Also M is level complete and convex. So for each $\alpha\in(0,1)$, M is a convex complete subset of $(F(X),\langle\cdot,\cdot\rangle_{\alpha})$.

Hence by the minimizing vector theorem in crisp two- pre-Hilbert space we get the result.

3.6. Tow-Fuzzy Orthogonality

This section deals with the concept of two-fuzzy pre-Hilbert space and some of its properties.

Definition 3.6.1.[5] Let $(F(X), \eta)$ be two-fuzzy inner product space. If $f, g \in F(X)$ be such that $\langle f, g \rangle_{\alpha} = 0$, for all $\alpha \in (0,1)$ then f and g are two-fuzzy orthogonal to each other and is denoted by $f \perp_{\alpha} g$. With the help of this many more results can be established.

Definition 3.6.2. Let $\alpha \in (0,1)$ and $(F(X),\eta)$ be a 2-FPH space satisfying (Remark 3.3.16). Now if $f,g \in F(X)$ be such that $\langle f,g \rangle_{\alpha} = 0$, then we say that f,g are $\alpha-\text{fuzzy}$ orthogonal to each other and is denoted by $f \perp_{\alpha} g$. Let M be a subset of V and $x \in V$. Now if $\langle f,g \rangle_{\alpha} = 0 \ \forall \ g \in M$, then we say that f is $\alpha-\text{fuzzy}$ orthogonal to M and is denoted by $f \perp_{\alpha} M$

Lemma 3.6.3.(orthogonality) Let $(F(X), \eta)$ be a two - FPH space satisfying(Remark3.4).. Let $Y(\neq \emptyset)$ be a subspace of F(X) which is level complete and $f \in F(X)$ be fixed. Then for each $\alpha \in (0,1)$, $h^{\alpha}(=f-g_0^{\alpha})$ is a-fuzzy orthogonal to Y, where $g_0^{\alpha} \in Y$ is such that $m_{g_0^{\alpha}}^{(\alpha)} = inf_{g \in M} \left\{ m_g^{(\alpha)} \right\}$

Proof:

As $(F(X), \langle , \rangle_{\alpha})$ is a crisp two- pre-Hilbert space and Y is closed w.r.t the $\alpha - norm$, $\| \cdot \|_{\alpha}$, the result follows.

Definition 3.6.4. Let $(F(X), \eta)$ be a 2 - FPH space satisfying (Remark 3.4). Now if $f, g \in F(X)$ be such that $\langle f, g \rangle_{\alpha} = 0$, $\forall \alpha \in (0,1)$, then we say that f, g are fuzzy orthogonal to each other and is denoted by $f \perp g$.

Thus $f \perp g$ iff $f \perp_{\alpha} g$, $\forall \alpha \in (0,1)$.

Theorem 3.6.5.Let $(F(X), \eta)$ be a two-FPH space satisfying (Remark3.4). such that $\eta(f, f, \bullet)$ is strictly increasing and lower semi continuous for any $f \in F(X)$. Then for $f, g \in F(X), f \perp g \ iff \ \eta(f+g, f+g, t^2) = \eta(f-g, f-g, t^2)$ And $\eta(f+ig, f+ig, t^2) = \eta(f-ig, f-ig, t^2), \forall \ t > 0$.

Proof:The condition is necessary.

Journal of Al-Qadisiyah for computer science and mathematics

Vol.5 No.2 year 2013

From (i)we get
$$||f + g||_{\alpha} = ||f - g||_{\alpha} \forall \alpha \in (0,1) \dots (iii)$$

$$\Lambda\{t>0; N(f+g,t)\geq \alpha\}=\Lambda\{s>0; N(x-y,s)>\alpha\}, \forall \alpha\in(0,1)$$

$$\Rightarrow \Lambda\{t > 0; \eta(f+g,f+g,t^2) \geq \alpha\} =$$

$$\Lambda$$
{ $s > 0$; $\eta(f - g, f - g, s^2) \ge \alpha$ }, $\forall \alpha \in (0,1)$.

Now if possible let $\eta(f+g,f+g,s^2) \neq \eta(f-g,f-g,s^2)$ for some s>0.

Without loss of generality let

$$\eta(f+g, f+g, s^2) > \eta(f-g, f-g, s^2)$$
 for some $s > 0 = \alpha_0$ (say)

Then by our assumption that $\eta(f, f, \bullet)$ is strictly increasing and lower semi continuous $\forall f \in F(X)$, we get:-

So,
$$\eta(f + g, f + g, t^2) = \eta(f - g, f - g, t^2), t > 0$$

Similarly from (ii) we can prove that

 $\eta(f+ig,f+ig,t^2)=\eta(f-ig,f-ig,t^2)\ \forall t>0$ The sufficiency of the conditions readily follows.

Theorem 3.6.6. Let $(F(X), \eta)$ be a two -FPH space satisfying (Remark 3.4). and $\alpha \in (0,1)$. If $\eta(f,f,\bullet)$ is strictly increasing and continuous $\forall f \in F(X)$, then $f \perp_{\alpha} g \ iff$

$$\{(\eta(f+g,f+g,t^2) \geq \alpha iff \eta(f-g,f-g,t^2) \geq \alpha, \forall t > 0) \text{ and } (\eta(f+ig,f+ig,t^2) \geq \alpha iff \eta(f-ig,f-ig,t^2) \geq \alpha, \forall t > 0)\}.$$

Proof: Let $f \perp_{\alpha} g$

Then
$$\langle f, g \rangle_{\alpha} = 0 = F_{\alpha} + iG_{\alpha}$$

$$\Longrightarrow F_{\alpha} = 0$$

and $G_{\alpha} = 0$

$$\Rightarrow \|\ddot{f} + i g\|_{\alpha} = \|f - i g\|_{\alpha} \dots \dots \dots \dots \dots (ii)$$

Now from (i) we have,

$$L = \Lambda \{t > 0; \eta(f + g, f + g, t^2) \ge \alpha\} = \Lambda \{s > 0; \eta(f - g, f - g, s^2) \ge \alpha\} = M$$

If possible let $\eta(f+g,f+g,p^2) \ge \alpha$ and $\eta(f-g,f-g,p^2) < \alpha$ for some $p \in \mathbb{R}^+$ and p > 0.

Then $\exists r,s$ such that $\eta(f-g,f-g,p^2) < r < s < \alpha \leq \eta(f+g,f+g,p^2)$

We consider the following cases.

If
$$\eta(f+g, f+g, p^2) > \alpha > \eta(f-g, f-y, p^2)$$
,

Then M>p>L (Since η is strictly increasing and continuous and hence upper semi continuous $\forall f\in F(X)$), which can not hold.

If
$$\eta(f + g, f + g, p^2) = \alpha > \eta(f - g, f - g, p^2)$$
,

Then L = p < M (Since η is strictly increasing and continuous and hence lower semi continuous $\forall f \in F(X)$, which also can not hold.

Thus
$$\eta(f+g,f+g,t^2) \ge \alpha iff \ \eta(f-g,f-g,t^2) \ge \alpha Vt > 0$$

Similarly we can prove that

Journal of Al-Qadisiyah for computer science and mathematics Vol.5 No.2 year 2013

 $\eta(f+g,f+ig,t^2) \ge \alpha \ iff \ \eta(f-g,f-ig,t^2) \ge \alpha, \forall t>0$ The converse part readily follows.

REFERENCES

- [1] J. Zhang, The continuity and boundedness of fuzzy linear operators in fuzzy normed space, J.Fuzzy Math. 13(3) (2005) 519-536.
- [2] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.
- [3] RM. Somasundaram and ThangarajBeaula, Some Aspects of 2-fuzzy 2-normed linear spaces, Bull. Malays. Math. Sci. Soc. 32(2) (2009) 211-222.
- [4] S. Gahler, Lineare 2-normierte Raume, Math. Nachr. 28 (1964) 1-43.
- [5] ThangarajBeaula, R. Angeline SargunaGifta. Some aspects of 2-fuzzy inner product space. Annals of Fuzzy Mathematics and Informatics Volume 4, No. 2, (October 2012), pp. 335-342
- [6] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11(3) (2003) 687-705.