Mine-Prime Submodules

Ali Sabah Sadip*, Haibat Karim Mohammadali \(b\)

\(a\)- Republic of Iraq, Ministry of Education, Directorate General of Education in Diyala, alisabahsadickali@gmail.com

\(b\)- Department of Mathematics / College of Computer Science and Mathematics / Tikrit University / Iraq, dr.mohammadali2013@gmail.com.

Abstract

Let \(O\) be commutative rings with identity, and all modules are (left) unitary of an \(O\) – module. A proper submodule \(P\) of an \(O\) – module \(G\) is called prime submodule, if for any \(r \in \text{Ann}(P)\) and \(m \in G\), implies that either \(mr \notin P\) or \(PG \subseteq P\). As strong from prime submodule we introduce in that paper the concept of Mine-Prime submodules and gave same basic properties, examples and characterizations of this concept. Moreover we study the behavior of Mine-Prime submodules in class of multiplication modules, furthermore we prove that by examples the residual of Mine-Prime submodules not to be Mine-Prime ideal of \(O\) so we gave under certain conditions several characterizations of Mine-Prime submodules.

MSC.

Introduction

Famous concept to start with in this paper was prime submodule this concept was first introduce by Dauns \([1]\). Many research interesting generalized prime submodules such as (semiprime, quasi prime) submodules see \([2, 3]\).

I recent time this concept was generalized by (nearly prime, nearly semiprime, nearly quasi prime) submodules by see \([4, 5, 6]\).

As strong from prime submodule the introduce the concept of (restrict nearly semiprime, restrict nearly prime) submodules see \([7, 8]\).

In this paper we introduce new strong from of prime submodule which we called Mine-Prime submodule we study this concept extensively.

*Corresponding author: Ali Sabah Sadiq

Email addresses: alisabahsadickali@gmail.com

Communicated by ‘sub editor’
This concept consist three parts, part one deal with reeling well-know definition, propositions that we need in the sequel. Part two corned with introduce the definition of Mine-Prime submodules and gave several importation, characterization, basic proposition and example with of this concept.

Finally part three devoted to gave many characterization of Mine-Prime submodule in some types of module such as (multiplication, projective, faithful, content, ... modules)

1. **Basic Concepts and Prelminaes**

This part deal with reeling well-know definition, propositions that we need in the sequel.

"Recall that a proper ideal S of a ring O is called a prime ideal, if whenever $xy \in S$, for $x, y \in O$ implies that either $x \in S$ or $y \in S$[9]."

"A proper submodule P of an O-module G is called prime submodule if $\alpha x \in P$ for $\alpha \in O$, $x \in G$ implies that either $x \in P$ or $\alpha \in [P:O G]$ [1]."

"Recall that the residual of a submodule P of an O-module G denoted by $[P:O G]$ is an ideal of O defined by $[P:O G] = \{\alpha \in O: \alpha G \subseteq P\}[10]$."

"A submodule P of an O-module G is called maximal submodule if $P \subseteq D \subseteq G$, then $D = G$ [11]."

"the Jacobson radical of O-module G denoted by $J(G)$ is the intersection of all maximal submodule of G [11]".

"A proper submodule P of an O-module G is called nearly prime submodule, if whenever $\alpha x \in P$ for $\alpha \in O$, $x \in G$ implies that either $x \in P$ or $\alpha \in [P:O G]$ [5]."

"Recall that for any submodule S of a ring O is multipilcatively closed subset of O if $1eS$ and $xyeS$ for every x, yeS. And if P is a submodule of an O-module G and S is multipilcatively closed subset of O, then $P_S = \{m \in G: \exists t \in S$ such that $tm \in P\}$ is a submodule of G and $P \subseteq P_S$ [12]".

Proposition 1.1 [9, Th. (5.1)]

"Let S be a proper ideal of a ring O. Then S is maximal ideal if and only if $S + (a) = O$ for any $a \notin S$."

"Recall that a submodule P of an O-module G is called small if $P + D = G$ implies that $D = G$ for any proper submodule D of G [13]".

Proposition 1.2[14, Coro. (9.1.5)(a)]

"If $U: G \rightarrow G'$ be O-epimorphism and $KerU$ is a small submodule of G, then $U(J(G)) = J(G')$ and $U^{-1}(J(G')) = J(G)$".

"We say a non-zero O-module G is called hollow if every proper submodule of G is small [13]".

"Recall that a submodule $[P:O G] = \{x \in G: \exists t \in S \subseteq P\}$, where S is an ideal of O and P is a submodule of G such that $P \subseteq [P:O G]$ and $[P:O G] = P, [S:O] = S$." [15, p.16]

"Recall that G is an multiplication O-module is, if every submodule P of G is of the form $P = SG$ for some ideal S of O, G is a multiplication O-module if $P = [P:O G]$ [16]".

"Recall that for any submodule P and D of a multiplication O-module G with $P = SG$ and $D = JG$ for some ideals S and J of O. The product $PD = SG.JG = SG$, that is $PD = SD$. In particular $PG = SGG = SG = P$. Also for any $x \in G$ we have $P = Sx$ and $x \in Oc$ as a submodule of G [17]".

"Recall that O-module G is projective if every O-epimorphism f from O-module G' into O-module G'' and for any O-homomorphism g from O-module G into O-$module G''$ there exists an O-homomorphism h from O-module G into O-module G' such that $f \circ h = g$ [14]".
Proposition 1.3 [11, Pr. (17.10)]
"If G is a projective O-module, then $J(O)G = J(G)$".

"Recall that G is an faithful O-module G if \(\text{ann}_O(G) = (0) \), where \(\text{ann}_O(G) = \{ r \in O : rG = (0) \} \), and \([0 :_OG] = \text{ann}_O(G) \) [14]."

Proposition 1.4 [18, Re. p14]
"If G is multiplication faithful O-module, then $J(O)G = J(G)$".

"Recall that an O-module G is called content module if \((\cap_{i \in I} S_i)G = \cap_{i \in I} S_i G \) for each family of ideals S_i in O [19]."

Proposition 1.5 [18, Pr. (1.11)]
"If G is content module, then $J(O)G = J(G)$".

"Recall that a ring O is called a good ring if $J(G) = J(O)G$ for any O-module G [14]."

"Recall that an O-module G is finitely generated if $G = Ov_1 + Ov_2 + \cdots + Ov_n$ where $v_1, v_2, \ldots, v_n \in G$ [14]."

Proposition 1.6 [19, Co. (S)]
"Let G be multiplication finitely generated O-module with $SG \neq G$ for all maximal ideal S of O, then $J(G) = J(O)G$".

Proposition 1.7 [20, Co. of Th. (9)]
"Let G be generated multiplication finitely O-module and S, J are ideals of O. Then $SG \subseteq JG$ if and only if $S \subseteq J + \text{ann}_O(G)$".

2. Basic Properties Mine-Prime

In this part of this research we introduce the definition of Mine-Prime submodule and we give some properties, characterizations of this concept.

Definition 2.1

A proper submodule P for an $O -$ module G is called Mine-Prime (for short MP) submodule, if for any $rmeP$, for $r \in O$, meG, implies that either $meP \cap J(G)$ or $rG \subseteq P \cap J(G)$.

And we called an ideal S of a ring O is MP ideal of if S is $MP O$-submodule for an $O -$ module O.

Remarks, and examples 2.2

1. Let $O = Z, G = Z_4$, the submodule $P = (2)$ is MP submodule of Z_4. Thus for each seZ, meZ_4, if $smeP$, impales that either $meP \cap J(G) = (2) \cap (2) = (2) \cap (2) = (2)$ or $s \in [P \cap J(Z_4) \cap Z_4] = [(2) \cap Z_4] = 2Z$.

2. Every MP submodule for an $O -$ module V is Prime submodule for G, but the opposite is not true.

Proof: it is clear that every MP submodule for an $O -$ module G is prime submodule.

For the converse consider the example:

Let $G = Z_{12}, O = Z$, the submodule $P = (2)$ it is clearly that P is prime submodule. But P isnot MP submodule of Z_{12}, since $2.2eP$, for $2eZ, 2eZ_{12}$ but $2 \notin P \cap J(G) = (\bar{6})$ and $2Z_{12} \not\subset (\bar{6})$

3- Every MP submodule for $O -$ module G is nearly prime submodule for G, but contrariwise isn't true.
Proof: it is clear that every MP submodule for an $O -$module G is nearly prime submodule.

For the converse consider the example:

Let $G = Z_{12}, O = Z,$ and the submodule $P = \langle 2 \rangle$ it's nearly prime submodule of Z_{12}. Thus for each $s \in Z, x \in Z_{12},$ if $s x e P$, implies that either $x e + J(G) = \langle 2 \rangle + \langle 6 \rangle = \langle 2 \rangle$ or $s e [P + J(G); z G] = \langle 2 \rangle; z G]$ = 2Z. But P is not MP submodule of G (by Remarks and Examples 2.2 (2))

4. If P and D are proper submodules of an O-module G with $D \not\subseteq P$, and P is MP submodule for G, then D is not to is MP submodule for G. The following example explain that:

Let $G = Z_4, O = Z$, the submodule $P = \langle 2 \rangle$ is MP submodule of G (by Remarks and Examples 2.2 (1)) and $D = \langle 0 \rangle$ is submodule of G such that $D \not\subseteq P$, but D is not MP submodule of G, since $2 \not\in D \cap J(G) = \langle 0 \rangle$ and $2Z_4 \not\subseteq \langle 0 \rangle$.

Proposition 2.3

Let G is an $O -$module, and P is submodule for G. Then P is MP submodule for M if and only if for any submodule D for G and any ideal S of O with $SD \subseteq P$, implies that either $D \subseteq P \cap (G)$ or $S \subseteq [P \cap (G); \phi]$.

Proof

(\Rightarrow) Suppose $SD \subseteq P$, for D is submodule for G and S is an ideal of O, with $D \not\subseteq P \cap (G)$, then $\exists x e D$ and $x \not\in P \cap (G)$. Since $SD \subseteq P$ then for any $a e S, axeP$. But P is MP submodule for G and $x \not\in P \cap (G)$ then $ae [P \cap (G); \phi]$, hence $S \subseteq [P \cap (G); \phi]$.

(\Leftarrow) Suppose $r e P$, for reO, xeG, then $(r)(x) \subseteq P$, so by hypothesis either $(x) \subseteq P \cap (G)$ or $(r) \subseteq [P \cap (G); \phi]$. That is either $xeP \cap (G)$ or $r e [P \cap (G); \phi]$. Hence P is MP submodule for G.

As direct application of Proposition 2.3 we gave the following corollaries.

Corollary 2.4

Let G is an $O -$module, and P is submodule for G. Then P is MP submodule for G if and only if for any submodule D for G and any $s e O$ with $s D \subseteq P$, implies that either $D \subseteq P \cap (G)$ or $se [P \cap (G); \phi]$.

Corollary 2.5

Let G is an $O -$module, and P is submodule for M. Then P is MP submodule for G if and only if for any $se O$ with $s G \subseteq P$, implies that either $G \subseteq P \cap (G)$ or $se [P \cap (G); \phi]$.

Corollary 2.6

Let G is an $O -$module, and P is submodule for G. Then P is MP submodule for G if and only if for any ideal S of $O, m \in G$ with $Sm \subseteq P$, implies that either $m \in P \cap (G)$ or $S \subseteq [P \cap (G); \phi]$.

Proposition 2.7

Let P is a proper submodule for an $O -$module G, and $[P \cap (G); \phi] G$ is a prime ideal of O. Then P is MP submodule for G if and only if $P(S) \subseteq P \cap (G)$ for each multiplicatively closed subset S of O such that $S \cap [P \cap (G); \phi] G = \phi$.

Proof

(\Rightarrow) Suppose P is MP submodule for G, and let $x e P(S)$, then there exists $se S$ such that $s x e P$. But P is MP submodule for G, so either $xeP \cap (G)$ or $se [P \cap (G); \phi]$. But if $se [P \cap (G); \phi]$, implies that $se S \subseteq [P \cap (G); \phi] = \phi$, which is a contradiction. Thus $xeP \cap (G)$ and hence $P(S) \subseteq P \cap (G)$.
Suppose \(rxeP \), for \(r \in O, x \in G \), such that \(x \notin P \cap (G) \) and \(r \notin [P \cap (G);_O G] \). But \(S \) is a multiplicatively closed subset for \(O \), then \(S = \{1, r, r^2, r^3, \ldots\} \), and since \([P \cap (G);_O G] \) is a prime ideal of \(O \), then \(S \cap [P \cap (G);_O G] = \emptyset \). But \(x \notin P \cap (G) \), implies that \(x \notin P \) and hence \(rx \notin P \) which is a contradiction. Thus, either \(xeP \cap (G) \) or \(re[P \cap (G);_O G] \), therefore \(P \) is MP submodule for \(G \).

Proposition 2.8

Let \(G \) be an \(O - \)module, and \(P \) is submodule for \(G \) with \([P \cap (G);_O G] \) is a maximal ideal for \(O \). Then \(P \) is MP submodule for \(G \).

Proof

Let \(saeP \), for \(saO, xeG \), with \(s \notin [P \cap (G);_O G] \). Since \([P \cap (G);_O G] \) is a maximal ideal of \(O \), by Proposition 1.1 \(O = \langle s \rangle + [P \cap (G);_O G] \), wherever \(\langle s \rangle \) is ideal of \(O \) generated by \(s \), we obtain \(\exists \ a \in O \) and \(\exists \ b \in [P \cap (G);_O G] \) such that \(1 = as + b \), hence \(x = asx + bxeP \cap (G) \). Hence \(P \) is an MP submodule for \(G \).

Proposition 2.9

Let \(G \) be an \(O - \)module, and \(P \) is a proper submodule for \(G \), with \([D;_O G] \notin [P \cap (G);_O G] \), and \(P \cap (G) \) is a proper submodule of \(D \) for each submodule \(D \) for \(M \) such that \([P \cap (G);_O G] \) is a prime ideal of \(O \). Then \(P \) is MP submodule for \(G \).

Proof

Suppose \(rxeP \), for \(reO, xeG \), and \(x \notin P \cap (G) \). Then \(P \cap (G) = P \cap (G) + \langle x \rangle = D \) and so \([D;_O G] \notin [P \cap (G);_O G] \), then there exists \(ae[D;_G G] \) and \(a \notin [P \cap (G);_O G] \). That is \(aG \subseteq D \) and \(aG \notin P \cap (G) \). Thus \(aG \subseteq D \), implies that \(raG \subseteq r(P \cap (G) + \langle x \rangle) \subseteq P \cap (G) \). It follows that \(ra \in [P \cap (G);_O G] \). But \([P \cap (G);_O G] \) is a prime ideal of \(O \) and \(a \notin [P \cap (G);_O G] \) then \(re[P \cap (G);_O G] \). Hence \(P \) is an MP submodule for \(G \).

Proposition 2.10

Let \(G \) be an \(O - \)module, and \(P \) be a submodule of \(G \) with \(j(G) \subseteq P \). Then \(P \) is an MP submodule of \(G \) if and only if \([P;_G S] \) is an MP submodule of \(G \), for every nonzero ideal \(S \) of \(O \).

Proof

\((\Rightarrow)\) Suppose that \(P \) is MP submodule of \(G \), and let \(rm \in [P;_G S] \), for \(r \in O, m \in G \), and \(S \) is an ideal of \(O \), then \(r(m) \subseteq P \). But \(P \) is MP submodule of \(G \), then by Corollary 2.4 either \((m) \subseteq P \cap (G) \) or \(rG \subseteq P \cap (G) \). But \(rG \subseteq P \cap (G) \), implies that \(P \cap (G) \subseteq P \). Thus \(\langle m \rangle \subseteq P \cap (G) \), it follows that either \(m \notin [P;_G S] \) or \(rG \subseteq P \). That is either \(m \notin [P;_G S] \cap (G) \) or \(rG \subseteq P \subseteq [P;_G S] \cap (G) \). Hence \([P;_G S] \) is MP submodule of \(G \).

\((\Leftarrow)\) Suppose \([P;_G S] \) is MP submodule of \(G \), for every nonzero ideal \(S \) of \(O \), hence \(\cup S = O \), we \([P;_G O] = P \) is an MP submodule of \(G \).

Proposition 2.11

Let \(O : G \rightarrow G \) be an \(O - \)epimorphism and \(KerU \) is small submodule of \(G \), and \(P \) be an MP submodule of \(G \). Then \(U^{-1}(P) \) is a MP submodule of \(G \).

Proof

\((\Rightarrow)\) Suppose that \(P \) is an MP submodule of \(G \), and let \(rm \in [P;_G S], \) for \(r \in O, m \in G \), and \(S \) is an ideal of \(O \), then \(r(m) \subseteq P \). But \(P \) is MP submodule of \(G \), then by Proposition 1.2, either \((m) \subseteq P \cap (G) \) or \(rG \subseteq P \cap (G) \). But \(rG \subseteq P \), implies that \(P \cap (G) \subseteq P \). Thus \(\langle m \rangle \subseteq P \cap (G) \), it follows that either \(m \notin [P;_G S] \) or \(rG \subseteq P \). That is either \(m \notin [P;_G S] \cap (G) \) or \(rG \subseteq P \subseteq [P;_G S] \cap (G) \). Hence \([P;_G S] \) is MP submodule of \(G \).

\((\Leftarrow)\) Suppose \([P;_G S] \) is MP submodule of \(G \), for every nonzero ideal \(S \) of \(O \), hence \(\cup S = O \), we \([P;_G O] = P \) is an MP submodule of \(G \).

Proposition 2.12

Let \(O : G \rightarrow G' \) be an \(O - \)epimorphism and \(KerU \) is small submodule of \(G \). If \(P \) is a MP submodule of \(G \) with \(KerU \subseteq P \). Then \(U(P) \) is a MP submodule of \(G' \).

Proof
$U(P)$ is proper submodule of G', if not $U(P) = G'$, that is for each $x \in G, U(x) \in G' = U(P)$, it follows that $\exists b \in P$ s.t $U(b) = U(x)$, hence $U(b-x) = 0$, then $b - x \in Ker U \subseteq P$, hence $x \in P$, that is $G \subseteq P$, but $P \subseteq G$, it follows $P = G$ contradiction since P is a proper submodule of G.

Let $sx' \in U(P)$, for $s \in O, x' \in G'$. Since U is epimorphism there exist none zero $x \in G$ such that $U(x) = x'$, so $sx' = sx \in U(P)$, then there exist none zero $b' \in P$ s.t $U(b') = U(b)$, implies that $U(rx - b') = 0$, hence $rx - b' \in Ker U \subseteq P$, implies that $x \in P$. But P is a MP submodule of G, then either $x \in P \cap (G)$ or $sG \subseteq P \cap (G)$, it follows that either $x' = U(x) \in U(P) \cap U((G))$ or $sU(G) \subseteq U(P) \cap U((G))$. Hence by Proposition 1.2 , we have either $x' \in U(P) \cap (G')$ or $sG' \subseteq U(P) \cap (G')$. That is $U(P)$ is a MP submodule of G'.

The following corollaries are a direct application of Proposition 1.2.

Corollary 2.13

Let G be a hollow O-module and $U : G \rightarrow G'$ be a O-epimorphism, and P is a MP submodule of G with $Ker U \subseteq P$. Then $U(P)$ is a MP submodule of G'.

Corollary 2.14

Let P be a submodule of a hollow O-module G and C be a submodule of G with $C \subseteq P$. If P is O-module of G, then P/C is a O-module of G.

Proof

Follow from Corollary 2.13 by setting $y: G \rightarrow G/C$ be an epimorphism with $Ker y = C \subseteq P$.

3: Characterizations of Mine-Prime submodules in some types of module.

We start this part by following characterization of Mine-Prime submodule in class of multiplication module.

Proposition 3.1

Let G be a multiplication O-module, and P is proper submodule of G. Then P is MP submodule of G if and only if whenever $LD \subseteq P$ for L, D are submodules of G, implies that either $D \subseteq P \cap (G)$ or $L \subseteq P \cap (J(M))$.

Proof

(\Rightarrow) Suppose that P is O-module of G, and $LD \subseteq P$ for L, D are submodules of G. Since G is multiplication, then $L = SG, D = JG$ for some ideal S, J of O. That $S(JG) \subseteq P$. Since P is O-module of G, then by proposition 2.3 either $JG \subseteq P \cap (G)$ or $SG \subseteq P \cap (J(G))$. It follows either $D \subseteq P \cap (J(G))$ or $L \subseteq P \cap (J(G))$.

(\Leftarrow) Suppose $SD \subseteq P$ for D is a submodule of G, and S is ideal of O. Since G is a multiplication, then $D = QG$ for some ideal Q of O. That $S(QG) \subseteq P$, take $C = SG$, so $CD \subseteq P$. By hypothesis, we have either $D \subseteq P \cap (G)$ or $C \subseteq P \cap (J(G))$. Thus either $D \subseteq P \cap (J(G))$ or $SG \subseteq P \cap (J(G))$. Hence by proposition 2.3 P is O-module of G.

We gave the corollaries a direct application of Proposition 3.1.

Corollary 3.2

Let G be multiplication O-module,. Then P is MP submodule of G if and only if where $x_1, x_2 \subseteq P$ for $x_1, x_2 \in G$, implies that either $x_1 \subseteq P \cap (G)$ or $x_2 \subseteq P \cap (J(G))$.

Corollary 3.3

Let G be a multiplication O-module, and $x \in G$, implies that either $x \subseteq P \cap (G)$ or $x \subseteq P \cap (J(G))$.

Corollary 3.4

Let G be a multiplication O-module,. Then P is MP submodule of G if and only if whenever $xD \subseteq P$ for D is submodules of G and $x \in G$, implies that either $x \subseteq P \cap (G)$ or $x \subseteq P \cap (J(G))$.

Remark3.5

The residuals of MP submodule of an O-module G need n't to be MP ideal of O.

The following example shows that:

Consider the $O = Z, G = Z_4$, the submodule $P = \langle 2 \rangle$ of Z_4 is a MP submodule by part (1) of remarks and examples 2.2. But $[P:O,G] = \langle 2 \rangle$ is not MP ideal of O, since $2.2 \in \langle 2 \rangle$ for $2.2 \in O$, but $2 \notin \langle 2 \rangle \cap (J(O)) = \langle 2 \rangle \cap (O) = \langle 0 \rangle$ and $2 \notin [(\langle 2 \rangle \cap (O)):O] = [(0):O] = \langle 0 \rangle$.

Proposition 3.6

Let G be a projective multiplication O-module. Then the proper submodule P is MP submodule of G if and only if $[P_{:O}G]$ is MP ideal of O.

Proof

(\Rightarrow) Let $S \subseteq [P_{:O}G]$ for S and Q are ideals of O, implies that $SQG \subseteq P$. Since G is multiplication, then $SQG = LK$ by taking $L = SG$, $K = QG$ are submodules of G, hence $LK \subseteq P$. But P is MP submodule of multiplication O-module G, then by proposition 3.1 either $L \subseteq P \cap J(G)$ or $K \subseteq P \cap J(G)$. Since G is multiplication, then $P = [P_{:O}G]$ is projective then by Proposition 1.3 $J(G) = J(O)$. Thus either $SG \subseteq [P_{:O}G]G \cap J(O)G$ or $QG \subseteq [P_{:O}G]G \cap J(O)G$. It follows that either $S \subseteq [P_{:O}G] \cap J(G)$ or $Q \subseteq [P_{:O}G] \cap J(G) = [P_{:O}G] \cap J(O)$. By Proposition 2.3 $[P_{:O}G]$ is MP ideal of O.

(\Leftarrow) Let $LK \subseteq P$ where L and K are submodules of G. Since G is a multiplication, then $L = SG$ and $K = QG$ for some ideals S and Q of O, that is $SQG \subseteq P$, implies that $SQ \subseteq [P_{:O}G]$, but $[P_{:O}G]$ is MP ideal of O, then by proposition 2.3 either $Q \subseteq [P_{:O}G] \cap J(G)$ or $S \subseteq [P_{:O}G] \cap J(O) = [P_{:O}G] \cap J(O)$. Hence either $QG \subseteq [P_{:O}G]G \cap J(O)G$ or $SG \subseteq [P_{:O}G]G \cap J(O)G$. Since G is projective then by Proposition 1.3 $J(G) = J(O)$. Either $QG \subseteq P \cap J(G)$ or $SG \subseteq P \cap J(G)$. That is either $K \subseteq P \cap J(G)$ or $L \subseteq P \cap J(G)$. By proposition 3.1 P is MP submodule of G.

Proposition 3.7

A proper submodule P of faithful multiplication O-module G is MP submodule of G if and only if $[P_{:O}G]$ is MP ideal of O.

Proof

(\Rightarrow) Suppose that P is MP submodule of G, and let $rS \in [P_{:O}G]$ for $r \in O$, and S is an ideal of O, implies that $r(SG) \subseteq P$. But P is MP submodule of G, then by Corollary 2.4 either $SG \subseteq P \cap J(G)$ or $rG \subseteq P \cap J(G)$. Since G is multiplication, then $P = [P_{:O}G]$ is multiplication, and G is faithful multiplication, then by Proposition 1.4 $J(G) = J(O)$. Thus either $SG \subseteq [P_{:O}G]G \cap J(O)G$ or $rG \subseteq [P_{:O}G]G \cap J(O)G$. It follows that either $S \subseteq [P_{:O}G] \cap J(O)$ or $r \in [P_{:O}G] \cap J(O) = [P_{:O}G] \cap J(O)$. Hence by Corollary 2.4 $[P_{:O}G]$ is MP ideal of O.

(\Leftarrow) Let $mD \subseteq P$ for $m \in G$ and D is submodule of G. Since G is multiplication, then $m = Om = SG$ and $D = JG$ for some ideals S, J of O, that is $SJG \subseteq P$, implies that $SJ \subseteq [P_{:O}G]$, but $[P_{:O}G]$ is MP ideal of O, then by proposition 2.3 either $J \subseteq [P_{:O}G] \cap J(G)$ or $S \subseteq [P_{:O}G] \cap J(O) = [P_{:O}G] \cap J(O)$. Hence either $JG \subseteq [P_{:O}G]G \cap J(O)G$ or $SG \subseteq [P_{:O}G]G \cap J(O)G$. Hence G is faithful multiplication, then by Proposition 1.4 either $JG \subseteq P \cap J(G)$ or $SG \subseteq P \cap J(G)$. That is either $D \subseteq P \cap J(G)$ or $m \subseteq P \cap J(G)$. Thus by Corollary 3.4 P is MP submodule of G.

Proposition 3.8

Let G be content multiplication O-module, a proper submodule P of G is MP submodule of G if and only if $[P_{:O}G]$ is MP ideal of O.

Proof

(\Rightarrow) Suppose that P is MP submodule of G, and let $Qa \subseteq [P_{:O}G]$ for Q is ideal of O and $a \in O$, so $Q(aG) \subseteq P$. But P is MP submodule of G, then by proposition 2.3 either $aG \subseteq P \cap J(G)$ or $QG \subseteq P \cap J(G)$. Since G is multiplication, then $P = [P_{:O}G]$ is multiplication, and G is content O-module then by Proposition 1.5 $J(G) = J(O)$. Thus either $aG \subseteq [P_{:O}G]G \cap J(O)G$ or $QG \subseteq [P_{:O}G]G \cap J(O)G$. It follows that either $a \subseteq [P_{:O}G] \cap J(O)$ or $Q \subseteq [P_{:O}G] \cap J(O) = [P_{:O}G] \cap J(O)$. Hence by Corollary 2.4 $[P_{:O}G]$ is MP ideal of O.

(\Leftarrow) Let $mD \subseteq P$ for L is submodule of G and $m \in G$. Since G is multiplication, then $L = SG$ and $m = Om = JG$ for some ideals S, J of O, that is $SJG \subseteq P$, implies that $SJ \subseteq [P_{:O}G]$, but $[P_{:O}G]$ is MP ideal of O, then by proposition 2.3 either $J \subseteq [P_{:O}G] \cap J(G)$ or $S \subseteq [P_{:O}G] \cap J(O) = [P_{:O}G] \cap J(O)$. Hence either $JG \subseteq [P_{:O}G]G \cap J(O)G$ or $SG \subseteq [P_{:O}G]G \cap J(O)G$. Hence G is content module then by Proposition 1.5 either $JG \subseteq P \cap J(G)$ or $SG \subseteq P \cap J(G)$. That is either $m \subseteq P \cap J(G)$ or $L \subseteq P \cap J(G)$. Thus by Corollary 3.3 P is MP submodule of G.

Proposition 3.9

Let G be multiplication module over good ring O, and P be a proper submodule of G. Then P is MP submodule of G if and only if $[P_{:O}G]$ is MP ideal of O.

Proof

(\Rightarrow) Suppose P is MP submodule of G, and let $rs \in [P_{:O}G]$ for $r, s \in O$, implies that $r(sG) \subseteq P$. But P is MP submodule of G, by Corollary 2.4 either $sG \subseteq P \cap J(G)$ or $rG \subseteq P \cap J(G)$. Since G is multiplication, then $P = [P_{:O}G]$ is multiplication, and O is a good ring then $J(G) = J(O)$. Thus either $sG \subseteq [P_{:O}G]G \cap J(O)G$ or $rG \subseteq [P_{:O}G]G \cap J(O)G$. It follows that either $s \subseteq [P_{:O}G] \cap J(O)$ or $r \in [P_{:O}G] \cap J(O) = [P_{:O}G] \cap J(O)$. Hence $[P_{:O}G]$ is MP ideal of O.
Let $x_1x_2 \subseteq P$ for $x_1, x_2 \in G$. Since G is a multiplication, then $x_1 = O_{x_1} = SG, x_2 = O_{x_2} = JG$ for some ideals S, J of O, follows that is $S[J] \subseteq P$, implies that $S[J] \not\subseteq [P_{i_0} G]$, but $[P_{i_0} G]$ is MP ideal of O, then by proposition 2.3 either $J \subseteq [P_{i_0} G] \cap J(O)$ or $S \subseteq [P_{i_0} G] \cap J(O) \cap O = [P_{i_0} G] \cap J(O)$. Hence either $JG \subseteq [P_{i_0} G]G \cap J(O)G$ or $SG \subseteq [P_{i_0} G]G \cap J(O)G$. Hence O is a good ring either $JG \subseteq P \cap J(G)$ or $SG \subseteq P \cap J(G)$. That is either $x_2 \subseteq P \cap J(G)$ or $x_1 \subseteq P \cap J(G)$. By Corollary 3.2 P is MP submodule of G.

Proposition 3.10

Let G be a multiplication finitely generated O-module, with $JG \not\subseteq G$, for all maximal ideal J of O, and P be a proper submodule of G. Then P is MP submodule of G if and only if $[P_{i_0} G]$ is MP ideal of O.

Proof

The same proof of Proposition 3.9, and using of Proposition 1.6 we can obtain the result.

Proposition 3.11

Let G be a projective finitely generated multiplication O-module, and B is an ideal of O with $ann_O(G) \subseteq U$. Then U is MP ideal of O if and only if UG is MP submodule of G.

Proof

(\Rightarrow) Let $DK \subseteq UG$, for D, K are submodules of G. Since G is a multiplication, then $D = SG, K = JG$ for some ideals S, J of O, that is $S[J] \not\subseteq UG$. Hence either $JG \subseteq [P_{i_0} G] \cap J(O)G$ or $SG \subseteq [P_{i_0} G] \cap J(O)G$. Since G is a multiplication then by Proposition 3.9, it follows that either $K \subseteq UG \cap J(G)$ or $D \subseteq UG \cap J(G)$. By proposition 3.1 UG is MP submodule of G.

(\Leftarrow) Let $S[J] \subseteq U$, for S and J are ideals in O, implies that $S[JG] \subseteq UG$. But UG is MP submodule of G, then by proposition 2.3 either $(JG) \subseteq UG \cap J(G)$ or $S \subseteq [UG \cap J(G)]_O$, that is either $JG \subseteq UG \cap J(G)$ or $SG \subseteq UG \cap J(G)$. But G is a projective then Thus either $JG \subseteq UG \cap J(O)G$ or $SG \subseteq UG \cap J(O)G$, it follows that either $J \subseteq U \cap J(O)$ or $S \subseteq U \cap J(O) \cap O$. By proposition 2.3 U is MP ideal of O.

Proposition 3.12

Let G be multiplication finitely generated module over a good ring O, and U is an ideal of O with $ann_O(G) \subseteq U$. Then U is MP ideal of O if and only if UG is MP submodule of G.

Proof

(\Rightarrow) Let $x_1x_2 \subseteq UG$, for $x_1, x_2 \in G$. Since G is a multiplication, then $x_1 = O_{x_1} = SG, x_2 = O_{x_2} = JG$ for some ideals S, J of O, that is $S[J] \not\subseteq UG$. But G is multiplication finitely generated O-module then by Proposition 1.7 $S[J] \subseteq U + ann_O(G)$, since $ann_G(G) \subseteq U$, implies that $U + ann_O(G) = U$ implies that $S[J] \subseteq U$. But U is MP ideal of O then by Proposition 2.3 either $JG \subseteq UG \cap J(O)G$ or $SG \subseteq UG \cap J(O)G$. Since G is a good ring then $JG \subseteq J(O)G$. Hence either $JG \subseteq UG \cap J(G)$ or $SG \subseteq UG \cap J(G)$. That is either $x_2 \subseteq UG \cap J(G)$ or $x_1 \subseteq UG \cap J(G)$. Therefore by Corollary 3.2 UG is MP submodule of G.

(\Leftarrow) Let $rS \subseteq U$, for $r \in O$, and S is an ideal of O, implies that $r(SG) \subseteq UG$. Since UG is MP submodule of G, then by Corollary 2.4 either $(SG) \subseteq UG \cap J(O)G$ or $r \subseteq [UG \cap J(G)]_O$, that is either $SG \subseteq UG \cap J(G)$ or $rG \subseteq UG \cap J(G)$. But O is a good ring then $J(O)G = J(G)$. Hence either $JG \subseteq UG \cap J(G)$ or $SG \subseteq UG \cap J(G)$. That is either $S \subseteq B \cap J(O)$ or $r \in B \cap J(O) \subseteq [B \cap J(O)]_O$. Hence by Corollary 2.4 B is MP ideal of O.

Proposition 3.13

Let G be a multiplication finitely generated O-module with $JG \not\subseteq G$ for all maximal ideal J of O, and U is an ideal of O with $ann_O(G) \subseteq U$. Then U is MP ideal of O if and only if UG is MP submodule of G.

Proof

(\Rightarrow) Let $aD \subseteq UG$, for $a \in O$, and D is submodule of G. Since G is multiplication, then $D = SG$ for some ideal S of O, that is $SG \subseteq UG$. Since G is a multiplication finitely generated O-module then by Proposition 1.7 $aS \subseteq U + ann_O(G)$, since $ann_O(G) \subseteq U$, implies that $U + ann_O(G) = U$ and hence $aS \subseteq U$. By hypothesis U is MP ideal of O by Corollary 2.4 either $S \subseteq U \cap J(O)$ or $a \in [U \cap J(O)]_O = U \cap J(O)$. Thus either $SG \subseteq UG \cap J(O)G$ or $aG \subseteq UG \cap J(O)G$. Since G is a multiplication finitely generated module with $JG \not\subseteq G$ for all maximal ideal J of O then by Proposition 1.6 $J(G) = J(O)G$. Hence either $SG \subseteq UG \cap J(G)$ or $aG \subseteq UG \cap J(G)$. That is either $D \subseteq UG \cap J(G)$ or $a \in [UG \cap J(G)]_O$. Therefore by Corollary 2.4 UG is MP submodule of G.

Let $a \in U$, for $a \in O$, implies that $o(aG) \subseteq UG$. Since UG is MP submodule of G, then by Corollary 2.4 either $aG \subseteq UG \cap J(G)$ or $a \in [UG \cap J(G);o]G$. That is either $aG \subseteq UG \cap J(G)$ or $aG \subseteq UG \cap J(G)$. By Proposition 1.6 $J(G) = J(O)G$. Hence either $aG \subseteq UG \cap J(O)G$ or $rG \subseteq UG \cap J(O)G$, it follows either $a \in U \cap J(O)$ or $r \in U \cap J(O) \subseteq [U \cap J(O);o]0$. Therefore U is MP ideal of O.

Proposition 3.14

Let G be multiplication finitely generated content module and U is ideal of O with $ann_O(G) \subseteq U$. Then U is MP ideal of O if and only if UG is MP submodule of G.

Proof

(\Rightarrow) Let $x_1, x_2 \subseteq UG$, for $x_1, x_2 \in G$. Since G is a multiplication, then $x_1 = Ox_1 = SG, x_2 = Ox_2 = JG$ for some ideals S, J of O, that is $SG \subseteq UG$. But G is multiplication finitely generated O-module by Proposition 1.7 $SJ \subseteq U + ann_O(G)$, since $ann_O(G) \subseteq U$, implies that $U + ann_O(G) = U$ and hence $SJ \subseteq U$. But U is MP ideal of O by Proposition 2.3 either $J \subseteq U \cap J(O)$ or $S \subseteq [U \cap J(O);o]0 = U \cap J(O)$. Thus either $JG \subseteq UG \cap J(O)G$ or $SG \subseteq UG \cap J(O)G$. Since G be a content module then by Proposition 1.5 $J(O)G = J(G)$. Hence either $JG \subseteq UG \cap J(G)G$ or $SG \subseteq UG \cap J(G)G$. That is either $x_1 \subseteq UG \cap J(G)G$ or $x_2 \subseteq UG \cap J(G)G$. Therefore by Corollary 3.2 UG is MP submodule of G.

(\Leftarrow) Let $s \subseteq U$, for $a \in O$, and S is an ideal of O, implies that $a(SG) \subseteq UG$. Since UG is MP submodule of G, then by Corollary 2.4 either $(SG) \subseteq UG \cap J(G)G$ or $a \in [UG \cap J(G);o]G$. That is either $SG \subseteq UG \cap J(G)$ or $aG \subseteq UG \cap J(G)$. But G be a content module then by Proposition 1.5. Thus either $SG \subseteq UG \cap J(O)G$ or $aG \subseteq UG \cap J(O)G$, it follows that either $S \subseteq U \cap J(O)$ or $a \subseteq U \cap J(O) \subseteq [U \cap J(O);o]0$. Hence by Corollary 2.4 U is MP ideal of O.

Proposition 3.15

Let G be a faithful finitely generated multiplication O-module. Then U is MP ideal of O if and only if UG is MP submodule of G.

Proof

(\Rightarrow) Let $x_1, x_2 \subseteq UG$, for $x_1, x_2 \in G$. Since G is a multiplication, then $x_1 = Ox_1 = SG, x_2 = Ox_2 = JG$ for some ideals S, J of O, that is $SG \subseteq UG$. But G is finitely generated multiplication O-module then by Proposition 1.7 $SJ \subseteq U + ann_O(G)$, since G is faithful then $ann_O(G) = (0)$, implies that $SJ \subseteq U$. But U is MP ideal of O by Proposition 2.3 either $J \subseteq U \cap J(O)$ or $S \subseteq [U \cap J(O);o]0 = U \cap J(O)$. Thus either $JG \subseteq UG \cap J(O)G$ or $SG \subseteq UG \cap J(O)G$. But G is faithful multiplication, by Proposition 1.4 $J(G) = J(O)G$. Hence either $JG \subseteq UG \cap J(G)$ or $SG \subseteq UG \cap J(G)$. That is either $x_1 \subseteq UG \cap J(G)G$ or $x_2 \subseteq UG \cap J(G)G$. Therefore by Corollary 3.2 UG is MP submodule of G.

(\Leftarrow) Let $ra \subseteq U$, for $r, a \in O$, implies that $r(aG) \subseteq UG$. But UG is MP submodule of G, then by Corollary 2.4 either $aG \subseteq UG \cap J(G)$ or $r \in [UG \cap J(G);o]G$. That is either $aG \subseteq UG \cap J(G)$ or $rG \subseteq UG \cap J(G)$. Hence G is faithful multiplication O-module by Proposition 1.4 either $aG \subseteq UG \cap J(O)G$ or $rG \subseteq UG \cap J(O)G$, it follows that either $a \subseteq U \cap J(O)$ or $r \subseteq U \cap J(O) \subseteq [U \cap J(O);o]0$. Therefore U is MP ideal of O.

Proposition 3.16

Let G be finitely generated projective multiplication O-module and P be a proper submodule of G then the statements that follow are equivalent:

1. P is MP submodule of G.
2. $P_{\cdot o}G$ is MP ideal of O.
3. $P = UG$ for some MP ideal U of O with $ann_O(G) \subseteq U$.

Proof

It follows by Propositions [Proposition 3.6 and Proposition 3.11].

Proposition 3.17

Let G be content finitely generated multiplication O-module, and P be a proper submodule of G then the statement that follow are equivalent:

1. P is MP submodule of V.
2. $[P_{\cdot o}V]$ is MP ideal of O.
3. $P = UG$ for some MP ideal U of O with $ann_O(G) \subseteq U$.

Proof

It follows by Propositions [Proposition 3.8 and Proposition 3.14].

Proposition 3.18
Let G be faithful multiplication finitely generated O-module, and P be a proper submodule of G, then the statements that follow are equivalent:

1. P is MP submodule of G.
2. $[P_{O}G]$ is MP ideal of O.

Proof

It follows by Propositions [Proposition 3.7 and Proposition 3.15]

Proposition 3.19

Let G be finitely generated multiplication module over good ring O, and P be a proper submodule of G. Then the statements that follow are equivalent:

1. P is MP submodule of G.
2. $[P_{O}G]$ is MP ideal of O.
3. $P = UG$ for some MP ideal U of O with $ann_{O}(G) \subseteq U$.

Proof

It follows by Propositions [Proposition 3.9 and Proposition 3.12].

Proposition 3.20

Let G be finitely generated multiplication module with $SG \neq G$ for all maximal ideal S of O, and P be a proper submodule of G. Then the statements that follow are equivalent:

1. P is MP submodule of G.
2. $[P_{O}G]$ is MP ideal of O.
3. $P = UG$ for some MP ideal U of O with $ann_{O}(G) \subseteq U$.

Proof

It follows by Propositions [Proposition 3.10 and Proposition 3.13].

References