

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

Mine-Prime Submodules

Ali Sabah Sadip^a, Haibat Karim Mohammadali^b

- a- Republic of Iraq, Ministry of Education, Directorate General of Education in Diyala, alisabahsadickali@gmail.com
- b- Department of Mathematics / College of Computer Science and Mathematics / Tikrit University / Iraq, dr.mohammadali2013@gmail.com.

ARTICLEINFO

Article history: Received: 19 /03/2024 Rrevised form: 14 /04/2024 Accepted : 20 /05/2024 Available online: 30 /06/2024

Keywords:

Prime submodules, Nearly Prime submodule , Mine- Prime submodules, Multiplication, Jacobson radical of submodules.

ABSTRACT

Let *O* be commutative rings with identity, and all modules are (left) unitary O – module. A proper submodule *P* of an O – module G is called prime submodule, if for any $rm\epsilon P$, for $r\epsilon O$, $m\epsilon G$, imples that either $m\epsilon P$ or $rG \subseteq P$. As strong from of prime sub modules we introduce in that paper the concept of Mine-Prime submodules and gave same basic properties , example and characterizations of this concept. Moreover we study be haver of Mine-Prime submodules in class of of multiplication modules, furthermore we prove that by examples the residual of Mine-Prime submodules not to be Mine-Prime ideal of O so we gave under sertion conditions several characterizations of Mine-Prime submodules

MSC..

https://doi.org/ 10.29304/jqcsm.2024.16.21534

Introduction

Famous concept to start with in this paper was prime submodule this concept was first introduce by Dauns [1]. Many research interesting generalized prime submodules such as (semiprime , quasi prime) submodules see [2, 3].

I recent time this concept was generalized by (nearly prime, nearly semiprime, nearly quasi prime) submodules by see [4, 5, 6].

As strong from prime submodule the introduce the concept of (restrict nearly semiprime, restrict nearly prime) submodules see [7,8]

In this paper we introduce new strong from of prime submodule wich we called Mine-Prime submodule we study this concept extensively.

^{*}Corresponding author: Ali Sabah Sadiq

Email addresses: alisabahsadickali@gmail.com

This concept consist three parts , part one deal with reeling well-know definition , propositions that we need in the sequel. Part two corned with introduce the definition of Mine-Prime submodules and gave several importation , characterization , basic proposition and example with of this concept.

Finally part three devoted to gave many characterization of Mine-Prime submodule in some types of module such as (multiplication , projective, faithful, content,) modules

1. Basic Concepts and Prelminaees

This part deal with reeling well-know definition, propositions that we need in the sequel.

"Recall that a proper ideal *S* of a ring *O* is called a prime ideal, if whenever $xy \in S$, for $x, y \in O$ implies that either $x \in S$ or $y \in S$ [9]".

" A proper submodule *P* of an *O*-module *G* is called prime submodule if $ox \in P$ for $o \in O, x \in G$ implies that either $x \in P$ or $o \in [P:_o G]$ [1]".

"Recall that the residual of a submodule *P* of an *O*-module *G* denoted by $[P:_0 G]$ is an ideal of *O* defined by $[P:_0 G] = \{o \in O: oG \subseteq P\}[10]$ ".

" A submodule *P* of an *O*-module *G* is called maximal submodule if $P \subsetneq D \subseteq G$, then D = G [11]".

" the Jacobson radical of O-module G denoted by J(G) is the intersection of all maximal submodule of G [11]".

" A proper submodule *P* of an *O*-module *G* is called nearly prime submodule, if whenever $ox \in P$ for $o \in O$, $x \in G$ implies that either $x \in P + J(G)$ or $o \in [P+J(G):_O G]$ [5]".

"Recall that a subset *S* of a ring *O* is multiplicatively closed subset of *O* if 1 ϵ *S* and $xy\epsilon$ *S* for every $x, y\epsilon$ *S*. And if *P* is a submodule of an *O*-module *G* and *S* is multiplicatively closed subset of *O*, then $P_S = \{m \in G : \exists t \in S \text{ such that } tm \in P\}$ is a submodule of *G* and $P \subseteq P_S$ [12]".

Proposition1.1 [9, Th. (5.1)]

"Let *S* be a proper ideal of a ring *O*. Then *S* is maximal ideal *if and only if* $S + \langle a \rangle = 0$ *for any* $a \notin S$ ".

"Recall that a submodule *P* of an *O*-module *G* is called small if P + D = G implies that D = G for any proper submodule *D* of *G* [13]".

Proposition 1.2[14, Coro. (9.1.5)(a)]

"If $\mathfrak{V}: G \to G'$ be 0-epimorphism and $Ker\mathfrak{V}$ is a small submodule of G, then $\mathfrak{V}(J(G)) = J(G')$ and $\mathfrak{V}^{-1}(J(G')) = J(G)$ ".

"We say a non-zero *O*-module *G* is called hollow if every proper submodule of *G* is small [13]".

"Recall that a submodule $[P_G S] = \{x \in G : xS \subseteq P\}$, where *S* is an ideal of *O* and *P* is a submodule of *G* such that $P \subseteq [P_G S]$ and $[P_G O] = P$, [S:O] = S." [15, p.16]

"Recall that *G* is an multiplication *O*-module *G* is, if every submodule *P* of *G* is of the form P = SG for some ideal *S* of *O*, *G* is a multiplication *O*-module if $P = [P:_{O} G] G [16]$ ".

"Recall that for any submodule *P* and *D* of a multiplication *O*-module *G* with P = SG and D = JG for some ideals *S* and *J* of *O*. The product PD = SG.JG = SJG, that is PD = SD. In particular PG = SGG = SG = P. Also for any $x \in G$ we have P = Sx and x = Ox as a submodule of *G* [17]".

"Recall that *O*-module *G* is projective if every *O*-epimorphism *f* from *O*-module *G*' into *O*-module *G*" and for any *O*-homomorphism *g* from *O*-module *G* into *O*- module *G*" there exists an *O*-homomorphism *h* from *O*-module *G* into *O*-module *G*' such that $f \circ h = g$ [14]".

Proposition1.3 [11, Pr. (17.10)]

"If *G* is a projective *O*-module, then J(O)G = J(G)".

"Recall that *G* is an faithful *O*-module *G* if $ann_0(G) = (0)$, where $ann_0(G) = \{r \in 0 : rG = (0)\}$, and $[0:_0 G] = ann_0(G) [14]$ ".

Proposition 1.4 [18, Re. p14]

"If *G* is multiplication faithful *O*-module, then J(O)G = J(G)."

"Recall that an *O*-module *G* is called content module if $(\bigcap_{i \in I} S_i)G = \bigcap_{i \in I} S_i G$ for each family of ideals S_i in *O* [19]".

Proposition1.5[18, Pr. (1.11)]

"If *G* is content module, then J(0)G = J(G)."

"Recall that a ring O is called a good ring if J(G) = J(O)G for any O-module G [14]."

"Recall that an *O*-module *G* is finitely generated if $G = 0v_1 + 0v_2 + \dots + 0v_n$ where $v_1, v_2, \dots, v_n \in G$ [14]".

Proposition 1.6 [19, Co. (5)]

"Let *G* be multiplication finitely generated *O*-module with $SG \neq G$ for all maximal ideal *S* of *O*, then J(G) = J(O)G."

Proposition1.7 [20, Co. of Th. (9)]

"Let *G* be generated multipilcation finitely *O*-module and *S*, *J* are ideals of *O*. Then $SG \subseteq JG$ if and only if $S \subseteq J + ann_0(G)$."

2.Basic Properties Mine-Prime

In this part of this research we intraduce the definition of Mine-Prime submodule ,and we give some properties , characterizations of this concept.

Definition 2.1

A proper submdule *P* for an *O* – module *G* is called Mine-Prime (for short *MP*) submdule, if for any $rm\epsilon P$, for $r\epsilon O$, $m\epsilon G$, implies that either $m\epsilon P \cap J(G)$ or $rG \subseteq P \cap J(G)$.

And we called an idael S of a ring O is MP idael of if S is MP O-submdule for an O – module O.

Remarks, and examples 2.2

1. Let O = Z, $G = Z_4$, the submdule $P = \langle \overline{2} \rangle$ is *MP* submdule of Z_4 . Thus for each $s \in Z$, $m \in Z_4$, if $sm \in P$, impales that either $m \in P \cap J(G) = \langle \overline{2} \rangle \cap \langle \overline{2} \rangle = \langle \overline{2} \rangle$ or $s \in [P \cap J(Z_4):_Z Z_4] = [\langle \overline{2} \rangle:_Z Z_4] = 2Z$.

2. Every *MP* submdule for an *O* – module V is Prime submodul for *G*, but the opposite is not true

Proof: it is clear that every *MP* submdule for an O – module G is prime submdule

For the converse consider the example:

Let $G = Z_{12}$, O = Z, the submdule $P = \langle \overline{2} \rangle$ it is clearly that P is prime submodule. But P isnot MP submdule of Z_{12} , since $2.\overline{2}\epsilon P$, for $2\epsilon Z$, $\overline{2}\epsilon Z_{12}$ but $\overline{2} \notin P \cap J(G) = \langle \overline{6} \rangle$ and $2Z_{12} \notin \langle \overline{6} \rangle$

3- Every *MP* submdule for O – module *G* is nearly prime submdule for *G*, but contrariwise isn't true.

Proof: it is clear that every MP submdule for an *O* –module *G* is nearly prime submdule

For the converse consider the example

Let $G = Z_{12}$, O = Z, and the submdule $P = \langle \overline{2} \rangle$ it's nearly prime submdule of Z_{12} . Thus for each $s \in Z$, $x \in Z_{12}$, if $sx \in P$, impales that either $x \in P + J(G) = \langle \overline{2} \rangle + \langle \overline{6} \rangle = \langle \overline{2} \rangle$ or $s \in [P + J(G):_Z G] = [\langle \overline{2} \rangle:_Z G] = 2Z$. But *P* isnot MP submdule of *G* (by Remarks and examples 2.2 (2))

4. If *P* and *D* are proper submdules of an *O*-module *G* with $D \subsetneq P$, and *P* is *MP* submdule for *G*, then *D* is not to is *MP* submdule for *G*. The following example explain that:

Let $G = Z_4$, O = Z, the submdule $P = \langle \overline{2} \rangle$ is *MP* submdule of *G* (by Remarks and examples 2.2 (1)) and $D = \langle \overline{0} \rangle$ is submdule of *G* such that $D \subsetneq P$, but *D* is not *MP* submdule of *G*, since $2.\overline{2}\epsilon D$, for $2\epsilon Z, \overline{2}\epsilon Z_4$ but $\overline{2} \notin D \cap J(G) = \langle \overline{0} \rangle$ and $2Z_4 \notin \langle \overline{0} \rangle$.

Proposition 2.3

Let *G* is an *O* – module, and *P* is submdule for *G*. Then *P* is *MP* submdule for *M* ,*if* and only if for any submdule *D* for *G* and any idael *S* of *O* with $SD \subseteq P$, implies that either $D \subseteq P \cap J(G)$ or $S \subseteq [P \cap J(G):_O G]$.

Proof

(⇒) Suppose $SD \subseteq P$, for *D* is submdule for *G* and *S* is an idael of *O*, with $D \not\subseteq P \cap J(G)$, then $\exists x \in D$ and $x \notin P \cap J(G)$. Since $SD \subseteq P$ then for any $a \in S$, $ax \in P$. But *P* is MP submdule for *G* and $x \notin P \cap J(G)$ then $a \in [P \cap J(G):_0 G]$ hence $S \subseteq [P \cap J(G):_0 G]$.

(⇐) Suppose $rx \in P$, for $r \in O$, $x \in G$, then $(r)(x) \subseteq P$, so by hypothesis either $(x) \subseteq P \cap J(G)$ or $(r) \subseteq [P \cap J(G):_{O} G]$. That is either $x \in P \cap J(G)$ or $r \in [P \cap J(G):_{O} G]$. Hence *P* is MP submdule for *G*.

As direct application of Proposition 2.3 we gave the following corollaries.

Corollary 2.4

Let *G* is *O* – module ,and *P* is submdule for *G*. Then *P* is *MP* submdule for *G* if and only if for any submdule *D* for *G* and any $s \in O$ with $sD \subseteq P$, implies that either $D \subseteq P \cap J(G)$ or $s \in [P \cap J(G):_O G]$.

Corollary2.5

Let *G* is *O* – module ,and *P* is submdule for M. Then *P* is MP submdule for *G* if and only if for any $s \in O$ with $sG \subseteq P$, implies that either $G \subseteq P \cap J(G)$ or $s \in [P \cap J(G):_O G]$.

Corollary 2.6

Let *G* is *O* – module ,and *P* is submdule for *G*. Then *P* is *MP* submdule for *G* if and only if for any ideal *S* of *O*, $m \in G$ with $Sm \subseteq P$, implies that either $m \in P \cap J(G)$ or $S \subseteq [P \cap J(G):_O G]$.

Proposition 2.7

Let *P* is a proper submdule for an *O* – module *G*, and $[P \cap J(G):_O G]$ is a prime idael of *O*. Then *P* is MP submdule for *G* if and only if $P(S) \subseteq P \cap J(G)$ for each multiplicatively closed subset *S* of *O* such that $S \cap [P \cap J(G):_O G] = \phi$.

Proof

(⇒) Suppose *P* is MP submdule for *G*, and let $x \in P(S)$, then there exists $s \in S$ such that $sx \in P$. But *P* is *MP* submdule for *G*, so either $x \in P \cap J(G)$ or $s \in [P \cap J(G):_0 G]$. But if $s \in [P \cap J(G):_0 G]$, imples that $s \in S \cap [P \cap J(G):_0 G] = \phi$, which is a contradiction. Thus $x \in P \cap J(G)$ and hence $P(S) \subseteq P \cap J(G)$.

(⇐) Suppose $rx \in P$, for $r \in O$, $x \in G$, such that $x \notin P \cap J(G)$ and $r \notin [P \cap J(G):_O G]$. But *S* is a multiplicatively closed subset for *O*, then $S = \{1, r, r^2, r^3, ...\}$, and since $[P \cap J(G):_O G]$ is a prime idael of *O*, then $S \cap [P \cap J(G):_O G] = \phi$. But $x \notin P \cap J(G)$, imples that $x \notin P(S)$ and hence $rx \notin P$ which is a contradiction. Thus, either $x \in P \cap J(G)$ or $r \in [P \cap J(G):_O G]$, therefore *P* is MP submdule for *G*.

Proposition 2.8

Let *G* is O – module ,and *P* is submdule for *G* with $[P \cap J(G):_O G]$ is a maximal ideal for *O*. Then *P* is MP submdule for *G*.

Proof

let $sx \in P$, for $s \in O$, $x \in G$, with $s \notin [P \cap J(G):_O G]$. Since $[P \cap J(G):_O G]$ is maximal ideal of O, by Proposition 1.1 $O = \langle s \rangle + [P \cap J(G):_O G]$, wherever $\langle s \rangle$ is ideal of O generated by s, we obtain $\exists a \in O$ and $b \in [P \cap J(G):_O G]$ such that 1 = as + b, hence $x = asx + bx \in P \cap J(G)$. Hence P is MP submdule for G.

Proposition 2.9

Let *G* is an O – module, and *P* is a proper submdule for *G*, with $[D:_O G] \not\subseteq [P \cap J(G):_O G]$, and $P \cap J(G)$ is a proper submdule of *D* for each submdule *D* for M such that $[P \cap J(G):_O G]$ is a prime ideal of *O*. Then *P* is MP submdule for *G*.

Proof

Suppose $rx \in P$, for $r \in O$, $x \in G$, and $x \notin P \cap J(G)$. Then $P \cap J(G) \subsetneq P \cap J(G) + \langle x \rangle = D$ and so $[D:_O G] \not\subseteq [P \cap J(G):_O G]$, then there exists $a \in [D:_O G]$ and $a \notin [P \cap J(G):_O G]$. That is $aG \subseteq D$ and $aG \not\subseteq P \cap J(G)$. Thus $aG \subseteq D$, imples that $raG \subseteq$ $r(P \cap J(G) + \langle x \rangle) \subseteq P \cap J(G)$. It follows that $ra \in [P \cap J(G):_O G]$. But $[P \cap J(G):_O G]$ is a prime idael of O, and $a \notin [P \cap J(G):_O G]$ then $r \in [P \cap J(G):_O G]$. Hence P is MP submdule for G.

Proposition 2.10

Let *G* be an *O*-module, and *P* be a submodule of *G* with $J(G) \subseteq P$. Then *P* is an MP submodule of *G* if and only if $[P:_G S]$ is MP submodule of *G*, for every nonzero ideal, *S* of *O*.

Proof

(⇒) Suppose that *P* is MP submodule of *G*, and let $rm \in [P:_G S]$, for $r \in O$, $m \in G$, and *S* is an ideal of *O*, then $r(mS) \subseteq P$. But *P* is MP submodule of *G*, then by Corollary 2.4 either $(mS) \subseteq P \cap J(G)$ or $rG \subseteq P \cap J(G)$), but $J(G) \subseteq P$, implies that $P \cap J(G) \subseteq P$. Thus either $(mS) \subseteq P$ or $rG \subseteq P$, it follows that either $m \in [P:_G S]$ or $rG \subseteq P \subseteq [P:_G S]$. That is either $m \in [P:_G S] \cap J(G)$ or $rG \subseteq P \subseteq [P:_G S] \cap J(G)$. Hence $[P:_G S]$ is MP submodule of *G*.

(\Leftarrow) Suppose [$P:_G S$] is MP submodule of G, for every nonzero ideal S of O, hence ,put S = O, we [$P:_G O$] = P is MP submodule of G.

Proposition2.11

Let $\mathcal{V}: G \to G'$ be O - epimorphism and $Ker\mathcal{V}$ is small submodule of G, and P be MP submodule of G'. Then $\mathcal{V}^{-1}(P)$ is a MP submodule of G.

Proof

Let $rx \in \mathfrak{V}^{-1}(P)$ for $r \in O, x \in G$ with $x \notin \mathfrak{V}^{-1}(P) \cap J(G)$, it follows $\mathfrak{V}(x) \notin P \cap \mathfrak{V}(J(G)) = P \cap J(G')$ by Proposition 1.2. Now, since $rx \in \mathfrak{V}^{-1}(P)$, implies that $r \mathfrak{V}(x) \in P$. But P is a MP submodule of G' and $\mathfrak{V}(x) \notin P \cap J(G')$, it follows $r \in [P \cap J(G'):_O G']$, that is $r G' \subseteq P \cap J(G')$, hence $r \mathfrak{V}(G) = \mathfrak{V}(rG) \subseteq P \cap J(G')$. Implies that $rG \subseteq \mathfrak{V}^{-1}(P) \cap J(G)$ by Proposition 1.2. Thus $\mathfrak{V}^{-1}(P)$ is a MP submodule G.

Proposition 2.12

Let $\mathcal{U}: G \to G'$ be an *O*-epimorphism and $Ker\mathcal{V}$ small submodule of *G*. If *P* is a MP submodule of *G* with $Ker\mathcal{V} \subseteq P$. Then $\mathcal{U}(P)$ is a MP submodule of *G'*.

Proof

 $\mathfrak{V}(P)$ is proper submodule of G', if not $\mathfrak{V}(P) = G'$, that is for each $x \in G, \mathfrak{V}(x) \in G' = \mathfrak{V}(P)$, it *follows that* $\exists b \in P$ s.t $\mathfrak{V}(b) = \mathfrak{V}(x)$, hence $\mathfrak{V}(b - x) = 0$, then $b - x \in Ker\mathfrak{V} \subseteq P$, hence $x \in P$, that is $G \subseteq P$, but $P \subseteq G$, it follows P = G contradiction since P is a *proper submodule* of G.

Let $sx' \in \mathcal{V}(P)$, for $s \in O$, $x' \in G'$. Since \mathcal{V} is epimorphism there exist none zero $x \in G$ such that $\mathcal{V}(x) = x'$, so $sx' = s\mathcal{V}(x) = \mathcal{V}(sx) \in \mathcal{V}(P)$, then there exist none zero $b' \in P$ s.t. $\mathcal{V}(sx) = \mathcal{V}(b')$, implies that $\mathcal{V}(rx - b') = 0$, hence $rx - b' \in Ker \ \mathcal{V} \subseteq P$, implies that $rx \in P$. but P is a MP submodule of G, then either $x \in P \cap J(G)$ or $sG \subseteq P \cap J(G)$, it follows that either $x' = \mathcal{V}(x) \in \mathcal{V}(P) \cap \mathcal{V}(J(G))$ or $s\mathcal{O}(G) \subseteq \mathcal{V}(P) \cap \mathcal{V}(J(G))$. Hence by Proposition 1.2. we have either $x' \in \mathcal{V}(P) \cap J(G')$ or $sG' \subseteq \mathcal{V}(P) \cap J(G')$. That is $\mathcal{V}(P)$ is a MP submodule of G'.

The following corollaries a direct application of Proposition 2.12.

Corollary 2.13

Let *G* be hollow *O*-module and $\mathfrak{V} : G \to G'$ be a *O*-epimorphism , and *P* is a MP submodule of *G* with $Ker\mathfrak{V} \subseteq P$. Then $\mathfrak{V}(P)$ is MP submodule of *G'*.

Corollary2.14

Let *P* be a submodule of *a hollow O*-module *G* and *C* be a submodule of *G* with $C \subseteq P$. If *P* is MP submodule of *G*, then $\frac{P}{C}$ is MP submodule of $\frac{G}{C}$.

Proof

Follow from Corollary 2.13 by setting $\gamma: G \to \frac{G}{C}$ be an epimorphism with $Ker \gamma = C \subseteq P$.

3: Characterizations of Mine-Prime submodules in some types of module.

We start this part by following characterization of Mine-Prime submodule in class of multipilcation module.

Proposition 3.1

Let *G* be a multiplication *O*-module, and *P* is proper submodule of *G*. Then *P* is MP submodule of *G* if and only if whenever $LD \subseteq P$ for *L*, *D* are submodules of *G*, implies that either $D \subseteq P \cap J(G)$ or $L \subseteq P \cap J(M)$

Proof

(⇒) Suppose that *P* is MP submodule of *G*, and $LD \subseteq P$ for *L*, *D* are submodules of *G*. Since *G* is multiplication, then L = SG, D = JG for some ideal *S*, *J* of *O*. That $S(JG) \subseteq P$. Since *P* is MP submodule of *G*, then by proposition 2.3) either $JG \subseteq P \cap J(G)$ or $SG \subseteq P \cap J(G)$. It follows either $D \subseteq P \cap J(G)$ or $L \subseteq P \cap J(G)$.

(⇐) Suppose $SD \subseteq P$ for *D* is a submodule of *G*, and *S* is ideal of *O*. Since *G* is a multiplication, then D = QG for some ideal *Q* of *O*, that is $S(QG) \subseteq P$, take C = SG, so $CD \subseteq P$. By hypothesis, we have either $D \subseteq P \cap J(G)$ or $C \subseteq P \cap J(G)$. Thus either $D \subseteq P \cap J(G)$ or $SG \subseteq P \cap J(G)$. Hence by proposition 2.3 *P* is MP submodule of *G*.

We gave the corollaries a direct application of Proposition 3.1.

Corollary 3.2

Let *G* be multiplication *O*-module,. Then *P* is MP submodule of *G* if and only if where $x_1x_2 \subseteq P$ for $x_1, x_2 \in G$, implies that *either* $x_1 \subseteq P \cap J(G)$ or $x_2 \subseteq P \cap J(G)$

Corollary 3.3

Let *G* be a multiplication *O*-module, Then *P* is MP submodule of *G* if and only if whenever $Dx \subseteq P$ for *D* is submodules of *G* and $x \in G$, implies that either $x \subseteq P \cap J(G)$ or $D \subseteq P \cap J(G)$

Corollary 3.4

Let G be a multiplication O-module, Then P is MP submodule of G if and only if whenever $xD \subseteq P$ for $x \in G$ and D is a submodules of G, implies that either $D \subseteq P \cap J(G)$ or $x \subseteq P \cap J(G)$.

Remark3.5

The residuals of MP submodule of an *O*-module *G* need n't to be MP *ideal* of *O*.

Thefollowing example shows that:

Consider the O = Z $G = Z_4$, the submodule $P = \langle \overline{2} \rangle$ of Z_4 is a MP submodule by part (1) of remarks and examples 2.2. But $[P:_0 G] = \langle 2 \rangle$ is not MP ideal of O, since $2.2 \in \langle 2 \rangle$ for $2, 2 \in O$, but $2 \notin \langle 2 \rangle \cap J(O) = \langle 2 \rangle \cap \langle 0 \rangle = \langle 0 \rangle$ and $2 \notin [\langle 2 \rangle \cap J(O):_0 O] = [\langle 0 \rangle:_0 O] = \langle 0 \rangle$.

Proposition 3.6

Let G is a projective multiplication O-module G the proper submodule P is MP submodule of G if and only if $[P:_{o} G]$ is MP ideal of O.

Proof

(⇒) Let $SJ \subseteq [P:_0 G]$ for *S* and *Q* are ideals of *O*, implies that $SQG \subseteq P$. Since *G* is multiplication, then SQG = LK by taking L = SG, K = QG are submodules of *G*, hence $LK \subseteq P$. But *P* is MP submodule of multiplication *O*-module *G*, then by proposition 3.1 either $L \subseteq P \cap J(G)$ or $K \subseteq P \cap J(G)$. since *G* is multiplication, then $P = [P:_0 G]G$, since *G* is projective then by Proposition 1.3 J(G) = J(O)G Thus either $SG \subseteq [P:_0 G]G \cap J(O)G$ or $QG \subseteq [P:_0 G]G \cap J(O)G$, it follows that either $S \subseteq [P:_0 G] \cap J(O)$ or $Q \subseteq [P:_0 G] \cap J(O) = [[P:_0 G] \cap J(G):_0 O]$. By Proposition 2.3 $[P:_0 G]$ is MP ideal of *O*.

(⇐) Let $LK \subseteq P$ where *L* and *K* are submodules of *G*. Since *G* is a multiplication, then L = SG and K = QG for some, ideals *S* and *Q* of *O*, that is $SQG \subseteq P$, implies that $SQ \subseteq [P:_0 G]$, but $[P:_0 G]$ is MP ideal of *O*, then by proposition 2.3 either $Q \subseteq [P:_0 G] \cap J(O)$ or $S \subseteq [[P:_0 G] \cap J(O):_0 O] = [P:_0 G] \cap J(O)$. Hence either $QG \subseteq [P:_0 G]G \cap J(O)G$ or $SG \subseteq [P:_0 G]G \cap J(O)G$. since *G* is projective then by Proposition 1.3 J(G) = J(O)G. either $QG \subseteq P \cap J(G)$ or $SG \subseteq P \cap J(G)$ or $L \subseteq P \cap J(G)$. By proposition 3.1 *P* is MP submodule of *G*.

Proposition3.7

A proper submodule *P* of faithful multiplication *O*-module *G* is MP submodule of *G* if and only if $[P:_{o} G]$ is MP ideal of *O*.

Proof

(⇒) Suppose that *P* is MP submodule of *G*, and Let $rS \in [P:_0 G]$ for $r \in O$, and *S* is an ideal of *O*, implies that $r(SG) \subseteq P$. But *P* is MP submodule of *G*, then by Corollary 2.4 either $SG \subseteq P \cap J(G)$ or $rG \subseteq P \cap J(G)$ Since *G* is multiplication, then $P = [P:_0 G]G$, and since *G* is faithful multiplication, then by Proposition 1.4 J(G) = J(O)G. Thus either $SG \subseteq [P:_0 G]G \cap J(O)G$ or $rG \subseteq [P:_0 G]G \cap J(O)G$, it follows that either $S \subseteq [P:_0 G] \cap J(O)$ or $r \in [P:_0 G] \cap J(O) = [[P:_0 G] \cap J(O):_0 O]$. Hence by Corollary 2.4 $[P:_0 G]$ is MP ideal of *O*.

(⇐) Let $mD \subseteq P$ for $m \in G$ and D is submodule of G. Since G is multiplication, then m = Om = SG and D = JG for, some ideals S, J of O, that is $SJG \subseteq P$, implies that $SJ \subseteq [P:_0 G]$, but $[P:_0 G]$ is MP ideal of O, then by proposition 2.3 either $J \subseteq [P:_0 G] \cap J(O)$ or $S \subseteq [[P:_0 G] \cap J(O):_0 O] = [P:_0 G] \cap J(O)$. Hence either $JG \subseteq [P:_0 G]G \cap J(O)G$ or $SG \subseteq [P:_0 G]G \cap J(O)G$. Hence G is faithful multiplication, then by Proposition 1.4 either $JG \subseteq P \cap J(G)$ or $SG \subseteq P \cap J(G)$ or $m \subseteq P \cap J(G)$. Thus by Corollary 3.4 P is MP submodule of G.

Proposition 3.8

Let *G* a content multiplication O-module, a proper submodule *P* of *G* is MP submodule of *G* if and only if $[P:_{O} G]$ is MP ideal of *O*.

Proof

(⇒) Suppose that *P* is MP submodule of *G*, and Let $Q a \subseteq [P_{:_0} G]$ for *Q* is ideal of *O* and $a \in O$, so $Q(aG) \subseteq P$. But *P* is MP submodule of *G*, then by proposition 2.3 either $aG \subseteq P \cap J(G)$ or $QG \subseteq P \cap J(G)$. Since *G* is multiplication, then $P=[P_{:_0} G]G$, and *G* is content *O*-module then by Proposition 1.5 J(G) = J(O)G. Thus either $aG \subseteq [P_{:_0} G]G \cap J(O)G$ or $QG \subseteq [P_{:_0} G]G \cap J(O)G$, it follows that either $a \in [P_{:_0} G] \cap J(O)$ or $Q \subseteq [P_{:_0} G] \cap J(O) = [[P_{:_0} G] \cap J(O)_{:_0} O]$. Hence by Corollary 2.4 $[P_{:_0} G]$ is MP ideal of *O*.

(⇐) Let $Lm \subseteq P$ for *L* is submodule of *G* and $m \in G$. Since *G* is multiplication, then L = SG and m = Om = JG for some ideals *S*, *J* of *O*, that is $SJG \subseteq P$, implies that $SJ \subseteq [P:_0 G]$, but $[P:_0 G]$ is MP ideal of *O*, then by proposition (2.3) either $J \subseteq [P:_0 G] \cap J(O)$ or $S \subseteq = [[P:_0 G] \cap J(O):_0 O] = [P:_0 G] \cap J(O)$. Hence either $JG \subseteq [P:_0 G]G \cap J(O)G$ or $SG \subseteq [P:_0 G]G \cap J(O)G$. Hence *G* is content module by Proposition 1.5 either $JG \subseteq P \cap J(G)$ or $SG \subseteq P \cap J(G)$. That is either $m \subseteq P \cap J(G)$ or $L \subseteq P \cap J(G)$. Thus by Corollary 3.3 *P* is MP submodule of *G*.

Proposition 3.9

Let *G* be multiplication module over good ring *O*, and *P* be a proper *submodule* of *G*. Then *P* is MP submodule of *G* if and only if $[P:_O G]$ is MP ideal of *O*.

Proof

(⇒) Suppose *P* is MP submodule of *G*, and Let $rs \in [P:_0 G]$ for $r, s \in O$, implies that $r(sG) \subseteq P$. But *P* is MP submodule of *G*, by Corollary 2.4 either $sG \subseteq P \cap J(G)$ or $rG \subseteq P \cap J(G)$ Since *G* is multiplication, then $P = [P:_0 G]G$, and *O* is a good ring then J(G) = J(O)G. Thus either $sG \subseteq [P:_0 G]G \cap J(O)G$ or $rG \subseteq [P:_0 G]G \cap J(O)G$, it follows that either $s \in [P:_0 G] \cap J(O)$ or $r \in [P:_0 G] \cap J(O) = [[P:_0 G] \cap J(O):_0 O]$. Hence $[P:_0 G]$ is MP ideal of *O*.

(⇐) Let $x_1x_2 \subseteq P$ for $x_1, x_2 \in G$. Since *G* is a multiplication, then $x_1 = Ox_1 = SG$, $x_2 = Ox_2 = JG$ for some ideals *S*, *J* of *O*, follows that is $SJG \subseteq P$, implies that $SJ \subseteq [P:_0 G]$, but $[P:_0 G]$ is MP ideal of *O*, then by proposition 2.3 either $J \subseteq [P:_0 G] \cap J(O)$ or $S \subseteq [[P:_0 G] \cap J(O):_0 O] = [P:_0 G] \cap J(O)$. Hence either $JG \subseteq [P:_0 G]G \cap J(O)G$ or $SG \subseteq [P:_0 G]G \cap J(O)G$. Hence *O* is a good ring either $JG \subseteq P \cap J(G)$ or $SG \subseteq P \cap J(G)$. That is either $x_2 \subseteq P \cap J(G)$ or $x_1 \subseteq P \cap J(G)$. By Corollary 3.2 *P* is MP submodule of *G*.

Proposition 3.10

Let *G* be a multiplication finitely generated *O*-module, with $JG \neq G$, for all maximal ideal *J* of *O*, and *P* be a proper submodule of *G*. Then *P* is MP submodule of *G* if and only if $[P:_O G]$ is MP ideal of *O*.

Proof

The same proof of Proposition 3.9, and using of Proposition 1.6 we can obtain the result.

Proposition 3.11

Let *G* be a projective finitely generated multiplication *O*-module, and *B* is an ideal of *O* with $ann_0(G) \subseteq U$. Then *U* is MP ideal of *O* if and only if *UG* is MP submodule of *G*.

Proof

(⇒) Let $DK \subseteq UG$, for D, K are submodules of G. Since G is a multiplication, then D = SG, K = JG for some ideals S, J of O, that is $SJG \subseteq UG$. But G is a finitely generated multiplication O-module then by Proposition 1.7 $SJ \subseteq U + ann_O(G)$, but $ann_O(G) \subseteq U$, implies that $U + ann_O(G) = U$, thus $SJ \subseteq U$. By assumption U is MP ideal of O then by proposition 2.3 either $J \subseteq U \cap J(O)$ or $S \subseteq [U \cap J(O):_O O] = U \cap J(O)$, it follows that either $JG \subseteq UG \cap J(O)G$ or $SG \subseteq UG \cap J(O)G$. Since G is a projective then by Proposition 1.3, it follows that either $K \subseteq UG \cap J(G)$ or $D \subseteq UG \cap J(G)$. By proposition 3.1 UG is MP submodule of G.

(⇐) Let $SJ \subseteq U$, for *S* and *J* are ideals in *O*, implies that $S(JG) \subseteq UG$. But *UG* is MP submodule of *G*, then by proposition 2.3 either $(JG) \subseteq UG \cap J(G)$ or $S \subseteq [UG \cap J(G):_0 G]$. That is either $JG \subseteq UG \cap J(G)$ or $SG \subseteq UG \cap J(G)$. But *G* is a projective then Thus either $JG \subseteq UG \cap J(O)G$ or $SG \subseteq UG \cap J(O)G$, it follows that either $J \subseteq U \cap J(O)$ or $S \subseteq U \cap J(O)$ or $S \subseteq U \cap J(O)$. By proposition 2.3 *U* is MP ideal of *O*.

Proposition 3.12

Let G be multiplication finitely generated module over a good ring O, and U is an ideal of O with $ann_0(G) \subseteq U$. Then U is MP ideal of O if and only if UG is MP submodule of G.

Proof

(⇒) Let $x_1x_2 \subseteq UG$, for $x_1, x_2 \in G$. Since *G* is a multiplication, then $x_1 = Ox_1 = SG$, $x_2 = Ox_2 = JG$ for some ideals *S*, *J* of *O*, that is $SJG \subseteq UG$. But *G* is multiplication finitely generated *O*-module then by Proposition 1.7 $SJ \subseteq U + ann_O(G)$, since $ann_O(G) \subseteq U$, implies that $U + ann_O(G) = U$ implies that $SJ \subseteq U$. But *U* is MP ideal of *O* then by Proposition 2.3 either $J \subseteq U \cap J(O)$ or $S \subseteq [U \cap J(O):_O O] = U \cap J(O)$. Thus either $JG \subseteq UG \cap J(O)G$ or $SG \subseteq UG \cap J(O)G$. Since *O* is good ring then J(O)G = J(G). Hence either $JG \subseteq UG \cap J(G)$ or $SG \subseteq UG \cap J(G)$. That is either $x_1 \subseteq UG \cap J(G)$ or $x_2 \subseteq UG \cap J(G)$. Therefore by Corollary 3.2 *UG* is MP submodule of *G*.

(⇐) Let $rS \subseteq U$, for $r \in O$, and *S* is an ideal of *O*, implies that $r(SG) \subseteq UG$. Since *UG* is MP submodule of *G*, then by Corollary 2.4 either $(SG) \subseteq UG \cap J(G)$ or $r \in [UG \cap J(G):_O G]$. That is either $SG \subseteq UG \cap J(G)$ or $rG \subseteq UG \cap J(G)$. But *O* is good ring then J(O)G = J(G). Thus either $SG \subseteq BG \cap J(O)G$ or $rG \subseteq BG \cap J(O)G$, it follows that either $S \subseteq B \cap J(O)$ or $r \in B \cap J(O) \subseteq [B \cap J(O):_O O]$. Hence by Corollary 2.4 *B* is MP ideal of *O*.

Proposition 3.13

Let *G* be a multiplication finitely generated O-module with $JG \neq G$ for all maximal ideal *J* of *O*, *O*, and *U* is an ideal of *O* with $ann_O(G) \subseteq U$. Then *U* is MP ideal of *O* if and only if *UG* is MP submodule of *G*.

Proof

(⇒) Let $oD \subseteq UG$, for $o \in O$, and *D* is submodule of *G*. Since *G* is multiplication, then D = SG for some ideal *S* of *O*, that is $oSG \subseteq UG$. Since *G* is a multiplication finitely generated *O*-module then by Proposition 1.7 $oS \subseteq U + ann_O(G)$, since $ann_O(G) \subseteq U$, implies that $U + ann_O(G) = U$ and hence $oS \subseteq U$. By hypothesis *U* is MP ideal of *O* by Corollary 2.4 either $S \subseteq U \cap J(O)$ or $o \in [U \cap J(O):_O O] = U \cap J(O)$. Thus either $SG \subseteq UG \cap J(O)G$ or $oG \subseteq UG \cap J(O)G$. Since *G* be a multiplication finitely generated module with $JG \neq G$ for all maximal ideal *J* of *O* then by Proposition 1.6 J(G) = J(O)G. Hence either $SG \subseteq UG \cap J(G)$ or $oG \subseteq UG \cap J(G)$. That is either $D \subseteq UG \cap J(G)$ or $o \in [UG \cap J(G):_O G]$. Therefore by Corollary 2.4 *UG* is MP submodule of *G*.

(⇐) Let $oa \in U$, for $o, a \in O$, implies that $o(aG) \subseteq UG$. Since UG is MP submodule of G, then by Corollary 2.4 either $aG \subseteq UG \cap J(G)$ or $o \in [UG \cap J(G):_0 G]$. That is either $aG \subseteq UG \cap J(G)$ or $oG \subseteq UG \cap J(G)$. By Proposition 1.6 J(G) = J(O)G. Hence either $aG \subseteq UG \cap J(O)G$ or $rG \subseteq UG \cap J(O)G$, it follows either $a \in U \cap J(O)$ or $r \in U \cap J(O) \subseteq [U \cap J(O):_0 O]$. Therefore U is MP ideal of O.

Proposition 3.14

Let *G* be multiplication finitely generated content module and *U* is ideal of *O* with $ann_o(G) \subseteq U$. Then *U* is MP ideal of *O if and only if UG* is MP submodule of *G*.

Proof

(⇒) Let $x_1x_2 \subseteq UG$, for $x_1, x_2 \in G$. Since *G* is a multiplication, then $x_1 = Ox_1 = SG$, $x_2 = Ox_2 = JG$ for some ideals *S*, *J* of *O*, that is $SJG \subseteq UG$. But *G* is multiplication finitely generated *O*-module by Proposition 1.7 $SJ \subseteq U + ann_O(G)$, since $ann_O(G) \subseteq U$, implies that $U + ann_O(G) = U$ and hence $SJ \subseteq U$. But *U* is MP ideal of *O* by Proposition 2.3 either $J \subseteq U \cap J(O)$ or $S \subseteq [U \cap J(O):_O O] = U \cap J(O)$. Thus either $JG \subseteq UG \cap J(O)G$ or $SG \subseteq UG \cap J(O)G$. Since *G* be a content module then by Proposition 1.5 J(O)G = J(G). Hence either $JG \subseteq UG \cap J(G)$ or $SG \subseteq UG \cap J(G)$. That is either $x_1 \subseteq UG \cap J(G)$ or $x_2 \subseteq UG \cap J(G)$. Therefore by Corollary 3.2 *UG* is MP submodule of *G*.

(⇐) Let $aS \subseteq U$, for $a \in O$, and *S* is an ideal of *O*, implies that $a(SG) \subseteq UG$. Since *UG* is MP submodule of *G*, then by Corollary 2.4 either $(SG) \subseteq UG \cap J(G)$ or $a \in [UG \cap J(G):_O G]$. That is either $SG \subseteq UG \cap J(G)$ or $aG \subseteq UG \cap J(G)$. But *G* be a content module then by Proposition 1.5. Thus either $SG \subseteq UG \cap J(O)G$ or $aG \subseteq UG \cap J(O)G$, it follows that either $S \subseteq U \cap J(O)$ or $a \in U \cap J(O) \subseteq [U \cap J(O):_O O]$. Hence by Corollary 2.4 *U* is MP ideal of *O*.

Proposition 3.15

Let G be a faithful finitely generated multiplication O-module. Then U is MP ideal of O if and only if UG is MP submodule of G.

Proof

(⇒) Let $x_1x_2 \subseteq UG$, for $x_1, x_2 \in G$. Since *G* is a multiplication, then $x_1 = Ox_1 = SG$, $x_2 = Ox_2 = JG$ for some ideals *S*, *J* of *O*, that is $SJG \subseteq UG$. But *G* is finitely generated multiplication O-module then by proposition $1.7 SJ \subseteq U + ann_0(G)$, since *G* is faithful then $ann_0(G) = (0)$, implies that $SJ \subseteq U$. But *U* is MP ideal of *O* by proposition 2.3 either $J \subseteq U \cap J(O)$ or $S \subseteq [U \cap J(O):_O O] = U \cap J(O)$. Thus either $JG \subseteq UG \cap J(O)G$ or $SG \subseteq UG \cap J(O)G$. But *G* is faithful multiplication, by Proposition 1.4 J(G) = J(O)G. Hence either $JG \subseteq UG \cap J(G)$ or $SG \subseteq UG \cap J(G)$. That is either $x_1 \subseteq UG \cap J(G)$ or $x_2 \subseteq UG \cap J(G)$. Therefore by Corollary 3.2 *UG* is MP submodule of *G*.

(⇐) Let $ra \in U$, for $r, a \in O$, implies that $r(aG) \subseteq UG$. But UG is MP submodule of G, then by Corollary 2.4 either $aG \subseteq UG \cap J(G)$ or $r \in [UG \cap J(G):_O G]$. That is either $aG \subseteq UG \cap J(G)$ or $rG \subseteq UG \cap J(G)$. Hence G faithful multiplication O-module by Proposition 1.4 either $aG \subseteq UG \cap J(O)G$ or $rG \subseteq UG \cap J(O)G$, it follows that either $a \in U \cap J(O)$ or $r \in U \cap J(O) \subseteq [U \cap J(O):_O O]$. Therefore U is MP ideal of O.

Proposition 3.16

Let G be finitely generated projective multiplication O-module and P be a proper submodule of G then the statements that follow are equivalent:

- **1.** *P* is *MP* submodule of *G*.
- **2.** $[P:_{O} G]$ is MP ideal of O.
- 3. P = UG for some MP ideal U of O with $ann_0(G) \subseteq U$.

Proof

It follows that by Propositions [Proposition 3.6 and Proposition 3.11].

Proposition 3.17

Let G be content finitely generated multiplication O-module, and P be a proper submodule of G then the statement that follow are equivalent :

- **1.** P is MP submodule of V.
- **2.** [P:_0 V] is MP ideal of 0.
- 3. P = UG for some MP ideal U of O with $ann_0(G) \subseteq U$.

Proof

It follows by Propositions [Proposition 3.8 and Proposition 3.14] **Proposition 3.18**

Let G be faithful multiplication finitely generated O-module, and P be a proper submodule of G, then the statement s that follow are equivalent :

- 1. P is MP submodule of G.
- $[P:_{O} G]$ is MP ideal of O. 2.
- P = UG for some MP ideal U of O. 3.

Proof

It follows by Propositions [Proposition 3.7 and Proposition 3.15]

Proposition 3.19

Let G be finitely generated multiplication module over good ring O, and P be proper submodule of G. Then the statements that follow are equivalent:

- P is MP submodule of G. 1.
- 2. $[P:_{O} G]$ is MP ideal of O.

P = UG for some MP ideal U of O with $ann_0(G) \subseteq U$. 3.

Proof

It follows by Propositions [Proposition 3.9) and Proposition 3.12]

Proposition 3.20

Let G be finitely generated multiplication module with $SG \neq G$ for all maximal ideal S of O, and P be a proper submodule of G. Then the statements that follow are equivalent:

- P is MP submodule s of G. 1.
- 2. $[P:_{O} G]$ is MP ideal of O.
- 3. P = UG for some MP ideal U of O with $ann_0(G) \subseteq U$.

Proof

It follows by Propositions [Proposition 3.10 and Proposition 3.13].

References

- [1] Dauns, J., (1978), "Prime Modules", Journal Reine Angew, Math., Vol. (2), pp. (156-181).
- Athab, E. A., (1996), "Prime and SemiPrime", M.Sc. Thesis, University of Baghdad. [2]
- Abdul-Razak, M. H., (1999), "Quasi Prime Modules and Quasi Prime Submodules", M.Sc. Thesis, University of Baghdad. [3]
- Nuhad S. A. and Mohammed B. H., (2015), "Nearly Semiprime Submodules", Iraqi Journal of Science, Vol. (56), No. (4B), pp. (3210-3214). [4]
- Nuhad, S. A. and Adwia, J. A., (2015), "Nearly Prime Submodules", International Journal of Advanced Scientific and Technical Research. Vol. (6), [5] No. (5), pp. (166-173).
- Nuhad, S. A. and Adwia, J. A., (2017), "Nearly Quasi Prime Submodules", International Journal of Advanced Research, Vol. (5), No. (1), pp. (170-[6] 180).
- [7] Khadem, K. O., & Ali, H. K. M. (2022). Restrict Nearly Semiprime Submodule. Journal of University of Babylon for Pure and Applied Sciences, (165-173).
- [8] Mohammadali, H. K., & Khadem, K. O. (2023, September). Some results on restrict nearly prime submodule. In AIP Conference Proceedings (Vol. 2845, No. 1). AIP Publishing.
- [9] Burton, D. M., (1970), "A First Course in Rings and Ideals", University of New Hampshire.
- [10] Lu, C. P., (1984), "Prime Submodules of Modules", Commentarii mathematici Universitatis Sancti Pauli, Vol.(33), No.(1), pp.(61-69).
- [11] Anderson, F. W. and Fuller, K. R., (1992), "Rings and Categories of Modules", Springer- Verlag New York.
 [12] Larsen, M. D. and McCarthy, P. J., (1971), "Multiplicative Theory of Ideals", Academic press, New York and London.
- [13] Dung, N.V., Huynh, D.V., Smith, P.I., and Wishbauer, R., (1994), "Extending Modules", Pitman Research Notes in Math. Series. Longman, Harlow.
- [14] Kasch, F., (1982), "Modules and Rings", London Math. Soc. Monographs, New York, Academic Press.
 [15] Sharpe, D.W. and Vomos, P., (1972), "Injective Modules", Cambridge University, press.
- [16] El-Bast, Z. A. and Smith, P. F., (1988), "Multiplication Modules", Comm. In Algebra, Vol. (16), No. (4), pp. (755-779).
- [17] Ameri, R., (2003), "On the Prime Submodules of Multiplication Module", International Journal of Mathematics and Mathematical Sci., Vol. (27), pp. (1715-1724).
- [18] Nuha, H. H., (1996), "The Radicals of Modules", M.Sc. Theses, University of Baghdad.
- [19] Lu, C. P., (1989), "M-radical of Submodules in Modules", Math. Japan, Vol. (34), pp. (211-219).
- [20] Smith, P.F., (1988), "Some Remarks on Multiplication Modules", Arch. Math., Vol. (50), pp. (223-225).