

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

2J-Submodules and 2J- ideals in Commutative Rings

Doaa Sachit Mutar^a, Farhan Dakhil Shyaa^b

^a University of Al-Qadsiyah college of Education Depart of Mathematics , Email

doaasachitmurtar@gmail.com

^b University of Al-Qadsiyah college of Education Depart of Mathematics, Email , farhan.shyaa@qu.edu.iq

ARTICLEINFO

Article history: Received: 15 /04/2024 Rrevised form: 28 /05/2024 Accepted : 30 /05/2024 Available online: 30 /06/2024

Keywords:

J-ideals, J-submodules,

2j-ideals,2J-submodules

ABSTRACT

Let *A* be a commutative ring. In this paper, we introduce and study the concept of 2*J*-submodule. A submodule U of a A-module Tis called a 2*J*-submodule) if for all $a \in A$ and $t \in T$, whenever $at \in U$ with $a^2 \notin (J(A)T:T)$, then $t \in U$. In this work examine the characteristics of the 2*J*-submodule as a generalization of the J-submodule. This paper provides various characterizations and properties of 2*J*- submodule.

MSC... 13A15,13A18, 13A70

https:// 10.29304/jqcsm.2024.16.21535

1. Introduction

In this article, *T* stands for a left *A*-module and *A* for a commutative ring with unity $1 \neq 0$. The symbols $U \leq T(U < T)$ stand for *U* is a submodule of T(U is proper submodule). The notations $(U :_A T) = \{a \in A : aT \subseteq U\}, (U :_T I) = \{x \in T : Ix \subseteq U\}$, where *I* is an ideal of $A(I \leq A)$.

Many kinds of ideals have been established over time to enable us to properly comprehend the structures of rings generally. Prime, primary, and maximal

ideals are a few examples of this class; they are important concepts within the commutative algebraic theory. In the last thirty years, a great lot of generalizations and related ideal types have been examined, including see [1],[5],[6],[7]

The notion of r-ideals in commutative rings was first presented by Mohamadian [9]. An ideal *I* of a ring *A* is called an r-ideal if $a, b \in A$ with $ab \in I$ and Ann (a) = 0, then $b \in I$. Later, this approach was extended to J-ideals and J-submodules by Khashan and Bani-Ata [8]. An ideal *I* of a ring *A* is called a J-ideal if $a, b \in A$ such that $ab \in I$ and $a \notin J(A)$, then $b \in I$. By J(A) the Jacobian radical of *A*. [8], they presented the following: U < T is said to be a J submodule if whenever $a \in A$ and $t \in T$ with $at \in U$ and $a \notin (J(A)T : T)$, then $a \in U$. In [4], we presented 2J-ideal, where an ideal *I* is called 2*J*-ideal if whenever $a, b \in A$ such that $ab \in I$ and $a \notin J(A)$, then $b^2 \in I$ was extended of *J*-ideals.

These ideas motivate us to develop new kinds of submodules, like as 2J-submodule. A submodule U < T is called 2J-submodule,

if for all $a \in A$ and $t \in T$, whenever $at \in U$ with $a^2 \notin (J(A)T; T)$, then $t \in U$.

Here, we examine the characteristics of the 2j-submodule, which is comparable to the J-submodule. Also, we study the properties of 2J- submodule similar to 2J ideals.

2. 2J-Submodules over commutative rings

Definition 2.1: A submodule *U* of an *A*-module *T* is said to be 2J-submodule if $a \in A$ and $t \in T$, with $at \in U$ and $a^2 \notin (J(A)T:T)$, then $t \in U$.

Remark 2.2 If *U* is a J-submodule of an *A*-module *T*, then *U* is 2J-submodule.

Proof: Let $a \in A$ and $t \in T$, with $at \in U$ such that $a^2 \notin (J(A)T:T)$. As U is a J-submodule we

have $t \in U$ thus U is a 2J-submodule.

The converse of Remark 2.2 is not true in general.

Example 2.3: $<\overline{0} >$ is a 2J-submodule of \mathbb{Z}_4 as \mathbb{Z} -module. But it is not J-submodule, since $2.\overline{2} \in <\overline{0}>$ and neither $2 \notin (J(Z)T;T) = <4 > \text{nor } \overline{2} \notin <\overline{0} > .$

Proposition 2.4: Let T be an A-module, U a submodule of T, and I_1 an ideal of A. Then:

(1) $(U_{A}T)$ is a 2J-ideal of A if U is a 2J-submodule of T and (J(A)T : T) = J(A).

(2) $(U:_T I_1)$ is a 2J-submodule of T if U is a 2J-submodule of T.

Proof: (1) Let $ab \in (U_A^T)$ where $a, b \in A$ and $a \notin J(A)$, then we have $abT \subseteq U$ and so $abt \in U$ for all $t \in T$. Since U is a 2J- submodule of T and $a^2 \notin (J(A)T:T)$, $bt \in U$ for all $t \in T$, thus $bT \subseteq U$ and so $b \in (U_A^T)$, so $b^2 \in (U_A^T)$ therefore (U_A^T) is a 2J-ideal.

(2) Let $at \in (U_{:T} I_1)$ where $a \in A$ and $t \in T$ with $a^2 \notin (J(A)T:T)$, then we have $atI_1 \subseteq U$ and so $ati \in U$ for all $i \in I_1$, since U is a 2J-submodule of T and $a^2 \notin (J(A)T:T)$, $ti \in U$ for all $i \in I_1$, thus $tI_1 \subseteq U$ and so $t \in (U_{:T} I_1)$ therefore $(U_{:T} I_1)$ is a 2J-submodule.

If $(J(A)T:T) \not\subseteq J(A)$, then it is not necessary for component (1) of Proposition (2.4) to be valid.

As an illustration, the Z-module $T=Z_2$ then $2Z = (U_A^T) = (J(Z)T:T) \not\subseteq J(Z) = \{0\}$ now $U = \{0\}$ is clearly a 2J-submodule of Z_2 but $2Z = (U_A^T)$ ideal of Z is not a 2J.

A-module *T* is called a multiplication module if for every submodule *N* of *T*, there exists an ideal *B* of *A* such that N = TB. Equivalently, M is a multiplication module if and only if $U = (U_A^T)T$ M, for each submodule *U* of *T* [3].

Proposition 2.5: (If $(U_{:A}T)$ is a 2J-ideal of A where U is a submodule of a multiplication module T, then U is a 2J-submodule of T.

Proof: Let $a \in A$ and $t \in T$ such that $at \in U$ and $a^2 \notin (J(A)T:T)$. Then $a(\langle t \rangle : T) \subseteq (\langle at \rangle : T) \subseteq (\langle at \rangle : T) \subseteq (U_{:_A}T)$. Since $J(A) \subseteq (J(A)T:T)$, $a^2 \notin J(A)$ and so $(\langle t \rangle : T) \subseteq (U_{:_A}T)$ as $(U_{:_A}T)$ is a 2J-ideal of A. Given that T is a multiplication module at this point $\langle t \rangle = (\langle t \rangle : T) T \subseteq (U_{:_A}T) T = U$. Thus $t \in U$ and U is a 2J-submodule of T.

Corollary 2.6: Assume that U is a proper submodule of T and that T is a finitely generated

faithful multiplication A-module. Then the next conditions are equivalent:

(1)U is a 2J-submodule of T.

(2) (U_A^*T) is a 2J-ideal of A.

(3) U = LT where L is a 2J-ideal of A.

Proof: (1) \Leftrightarrow (2) Propositions 2.4 and 2.5 come next, together with the information that

 $(I_1T:T) = I_1$ for any ideal I_1 of A.

(2) \Leftrightarrow (3) We just choose $L = (U_{A}^{*}T)$.

Proposition 2.7: Let *T* be a finitely generated faithful multiplication *A*-module If *U* is a 2J-submodule of *T*, then $U \subseteq J(T)$.

Proof: Notably, we observe J(T) = J(A)T. Assume that $U \not\subseteq J(T)$.

Clearly, $(U_A T) \not\subseteq (J(A)T:T) = J(A)$. But $(U_A T)$ is a 2J-ideal by Proposition 2.4 which contradicts[4, Remark and example .2.2(3)] Thus, $U \subseteq J(T)$ as required.

Recall that a proper submodule *U* of a module *T* over commutative ring *A* is said to be *n*-submodule, if $a \in R$ and $x \in T$, $ax \in U$ with $a \notin \sqrt{Ann_R(M)}$, then $x \in U[10]$

Proposition 2.8: Let T be an A-module satisfying $J(T) \subseteq J(A)T$. Then any n-submodule of T is a 2J-submodule.

Proof: Since *U* is n-submodule ,then *U* is J-submodule by [9, Proposition 3.7]. Therefore It is 2J-submodule by Remark 2.2. \blacksquare

Corollary 2.9: The n-submodules of a finitely generated faithful multiplication module are 2J-submodules.

Let Let A be a ring and T be a A-module. The idealization ring A(T) of T in A is defined as the set $\{(a, b): a \in A, b \in T\}$ with the usual componentwise addition and multiplication are defined as (a, b)(s, n) = (as, bn + sb).

Let *T* be an *A*-module and *A* a ring. The set $\{(a, b): a \in A, b \in T\}$ is the idealization ring A(T) of *T* in *A*. Its component wise addition and multiplication are defined as (a, b)(s, n) = (as, bn + sb). It is easily verifiable that A(T) is an identity commutative ring $(1_A, 0_T)$. If *K* ideal and *U* is a submodule of *T*, then $K(U) = \{(a, b): a \in K, b \in U\}$ is an ideal of A(T) if and only if $kT \subseteq U$ [11]

Proposition 2.10: Let T be an A-module, U a submodule of T, and I_1 a 2J-ideal of A. Then:

(1) $I_1(T)$ is a 2J-ideal of A(T).

(2) If (J(A)T : T) = J(A) and U is a 2J-submodule of T with $I_1 T \subseteq U$, then $I_1(U)$ is a 2J-ideal of A(T).

Proof: (1) Let $(A_1, t_1), (A_2, t_2) \in A(T)$ such that $(A_1, t_1) (A_2 t_2) \in I_1(T)$ with $(A_1, t_1) \notin J(A(T))$. Then we have $a_1a_2 \in I_1$ and $a_1 \notin J(A)$. Since I_1 is a 2J-ideal of A, we conclude that $a_2^2 \in I_1$ and so $(A_2, t_2)^2 \in I_1(T)$. Consequently, $I_1(T)$ is a 2J-ideal of A(T).

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

(2)Let $(A_1, t_1), (A_2, t_2) \in A(T)$ such that $(A_1, t_1)(A_2, t_2) \in I_1(U)$ and $(A_1, t_1) \notin J(A(T)) = J(A)(T)$. Then we have $a_1a_2 \in I_1$ and $a_1 \notin J(A)$. As I_1 is 2J-ideal of A, then we $a_2^2 \in I_1$ and so $a_2t_1 \in I_1T \subseteq U$. Since $a_1t_2 + a_2t_1 \in U$, $a_1t_2 \in U$. But $a_1^2 \notin (J(A)T : T)$ and so $t_2 \in U$ as U is a 2J-submodule of T. Therefore, $(A_2, t_2)^2 \in I_1(U)$ and $I_1(U)$ is a 2J-ideal of A(T). \blacksquare **Corollary 2.11:** Consider a multiplication A-module, denoted by T, that is both finitely generated and faithful. If I_1 is a 2J-ideal of A and U is a 2J-submodule of T such that $I_1T \subseteq U$

, then $I_1(U)$ is a 2J-submodule of A(T).

Proposition 2.12: Let I_1 be an ideal of a ring A, and let U be a proper submodule of A -module T. It follows that I_1 is a 2J-ideal of A if $I_1(U)$ is a 2J-ideal of A(T).

Proof: Assuming that $I_1(U)$ represents a 2 J-ideal of A(T), we demonstrate that I_1 is a 2 J-ideal of A. Assume that $ab \in I_1$, and that $a \notin J(A)$. Next up, we got $(a, 0_T) (b, 0_T) = (ab, 0_T) \in I_1(U)$ with $(a, 0_T) \notin J(A)(T) = J(A(T))$. Since $I_1(U)$ is a 2J-ideal of A(T), we conclude that $(b, 0_T)^2 \in I_1(U)$ and so $b^2 \in I_1$.

Theorem 2.13: Let U be a proper submodule of an A-module T. Then, the following statements are equivalent:

(i) T has 2J-submodule, named U

(ii) $U = (U_T a)$, for every $a^2 \notin (J(A)T:T)$.

(iii) For every submodule K of T and ideal I_1 of A, $I_1K \subseteq U$ with $I_1^2 \not\subseteq (J(A)T:T)$ implies $K \subseteq U$.

Proof: (i) \Rightarrow (ii) Give U the form of a 2J-submodule of T. $\forall a \in A$, the inclusion $U \subseteq (U_T a)$ always holds. Let $a^2 \notin (J(A)T:T)$ and $t \in (U_T a)$. Then we have $at \in U$. Meanwhile U is an 2J-submodule, Finally, we determine that $t \in U$ and thus $U = (U_T a)$.

(ii) \Rightarrow (iii) Presume that $I_1K \subseteq U$ where $I_1^2 \not\subseteq (J(A)T:T)$, for ideal I_1 of A and submodule K of T. Since $I_1^2 \not\subseteq (J(A)T:T)$, there exists $a \in I_1$ such that $a^2 \notin (J(A)T:T)$ Then we have $aK \subseteq U$, and so $K \subseteq (U:_T a) = U$ by (ii).

(iii) \Rightarrow (i) Let $at \in U$ with $a^2 \notin (J(A)T:T)$ for $a \in A$ and $t \in T$. That is adequate to take

 $I_1 = Aa$ and K = Ax to show that the result.

Proposition 2.14: If U is a 2J-submodule of an A-module T, then $(U_A^T) \subseteq (J(A)T:T)$.

Proof: Presume that U is an 2J-submodule; and $(U_{:_A} T) \notin (J(A)T:T)$. Then there exists $a \in (U_{:_A} T)$ such that $a \notin (J(A)T:T)$ so $a^2 \in (U_{:_A} T)$ such that $a^2 \notin (J(A)T:T)$ Thus $a^2T \subseteq U$ and since U is an 2J-submodule. In the end, we ascertain that U = T, a contradiction. Hence $(U_{:_A} T) \subseteq (J(A)T:T)$.

Lemma 2.15: Let *T* be a torsion-free *A*-module, then the zero submodule of *T* is a 2J-submodule **Proof:** Given $a \in A$ and $t \in T$, let at = 0, with $a^2 \notin (J(A)T:T)$. Torsion-free *T* implies that t=0. Zero submodule is a 2J-submodule.

Lemma 2.16: Zero submodule is the only 2J-submodule of T if T is a torsion-free multiplication A-module

Proof: submodule is a 2J-submodule. Therefore, by Proposition 2.14 ($U_{:_A} T$) \subseteq (J(A)T:T) = 0, Consequently, then ($U_{:_A} T$)=0. U=0 meanwhile T is a multiplication. Thus, the zero submodule is the only 2J-submodule according to Lemma 2.15.

Proposition 2.17: Let T be an A-module and that I_1 an ideal of A with $I_1 \not\subseteq (U_A T)$. If U is a 2J-submodule of T, then $(U_T I_1)$ is a 2J-submodule of T.

Proof: Let $at \in (U_T \mid I_1)$ with $a^2 \notin (J(A)T:T)$, for $a \in A$ and $t \in T$. So $aI_1t \subseteq U$ and as U is an 2J-submodule, $I_1t \subseteq U$. Hence $t \in (U:_T \mid I_1)$.

Proposition 2.18: Let U be a proper submodule of an A-module T, then U is an 2J-submodule

if and only if for every $t \in T$, $(U_A^{t}t) = A$ or $(U_A^{t}t) \subseteq (J(A)T^{t}T)$.

Proof: Assume that U is an 2J-submodule. If $(U_{A}, t) \notin (J(A)T:T)$, then there exists $a \in (U_{A}, t)$ - (J(A)T:T)so $a^{2} \in (U_{A}, t) - (J(A)T:T)$. Let $at \in U$ where $a^{2} (J(A)T:T)$ since U is an 2J-submodule, $t \in U$. Hence $(U_{A}, t) = A$ Conversely, let $at \in U$ where $a^{2} \notin (J(A)T:T)$, for $a \in A$ and $t \in T$. So $a^{2} \in (U_{A}, t)$ - (J(A)T:T). By assumption, we have $(U_{A}, t) = A$ and so $t \in U$.

<u>Corollary 2.19</u>: Let *U* be a proper submodule of an *A*-module *T*. Then *U* is an 2J-submodule of *T* if and only if for every $t \in T - U$, $(U_{A}, t) \subseteq (J(A)T; T)$.

Theorem 2.20: If *U* is a maximal 2J-submodule of an A-module *T*, then *U* is a prime submodule of *T*.

of T.

Proof: Assume that *U* is the a maximal 2J-submodule of *T* and that $t \in T$ and $a \notin (U_{:A} T)$ where $at \in U$. ($U_{:T} a$) is a 2J-submodule by Proposition 2.17. According to maximality of *U*,

 $t \in (U_T a) = U$. Therefore, U is prime submodule.

Theorem 2.21: Let T be finitely generated A-module. Then T has a prime submodule if it has a 2J-submodule.

Proof: Let $\Omega = \{L : L \text{ is a } 2J\text{-submodule of } T; U \subseteq L\}$ and that U is a 2J-submodule. Zorn's Lemma states that Ω has a maximal element $K \in \Omega$. Therefore, K is a prime submodule of T by Theorem 2.21.

A proper submodule N of M is called primary) if $rx \in N$, for $r \in R$ and $x \in M$, implies that either $x \in N$ or $r^n \in (N_{R}M)$ for $n \in N$ [2].

Theorem 2.22: Let *U* be a submodule of *T* such that $(U_A^*, T) \subseteq (J(A)T^*, T)$. Then the following statements are equivalent:

(i)U is 2J. submodule.

(ii) A primary submodule of T has the name U

Proof (i) \Rightarrow (ii) Let $at \in U$ with $a^n \notin (U_{A}^{T})$ for $a \in and t \in T$. As U is a 2J – submodule, then $t \in U$ and hence U is a primary submodule

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

(ii) \Rightarrow (i) Let $at \in U$ with $a^2 \notin (J(A)T: T)$ for $a \in A$ and $t \in T$. As $(U_A^*, T) = (J(A)T: T)$ we have $a^2 \notin (J(A)T: T)$, since U is a primary submodule, we get $t \in U$. Therefore U is a 2J-submodule.

Proposition 2.24: If *L* is a primary submodule of an *A*-module *T* and *U* is a 2J-submodule such that $(L_A^{*}T) \subseteq (J(A)T;T)$, then $U \cap L$ is a 2J-submodule of *T*.

Proof: Let $at \in U \cap L$ where $a^2 \notin (J(A)T:T)$ for $a \in A, t \in T$. Then $a^2 \notin (L_A T)$. Since L is primary, $t \in L$. Also, since U is a 2J-submodule, $t \in U$. Thus $t \in U \cap L$.

References

[1] Anderson D. D. and Bataineh M., Generalizations of prime ideals, Comm. Algebra, 36(2) (2008), 686-696.

[2]Atiyah, M. F., McDonald I. G., An Introduction to Commutative Algebra, Addision-Wesley, Reading, MA, 1969.
[3] El-Bast Z. A., Smith P. F., Multiplication Modules, Comm. Algebra, 16(4), (1988), 755-779.
[4] Doaa S. M. and Farhan D. Sh. 2J-ideals in Commutative Rings, Journal of Discrete Mathematical Sinebces and Cryptography To appear.

[5] Ebrahimi Atani S. and Farzalipour F., On weakly primary ideals, Georgian Math. J., 12(3) (2005), 423-429.
[6] Ebrahimpour M. and Nekooei, R., On generalizations of prime ideals, Comm. Algebra, 40(4) (2012), 1268-1279.

[7] Khashan H. A., On almost prime submodules, Acta Math. Sci. Ser. B (Engl. Ed.), 32(2) (2012), 645-651.
[8] Khashan H. and Bani-Ata A. A. B., J-ideals of commutative rings, International Electronic Journal of Algebra, 29 (2021) 148-164

[9] Mohamadian R. r-Ideals in commutative rings, Turkish J. Math., 39 (2015), 733-749.

[10] Ahmadi M. Moghaderi_, J., n-submodules Iranian Journal of Mathematical Sciences and Informatics 17,.(1) (2022), 177-190.

[11]Anderson D.D., Winders M., Idealization of a module ,J. Commut.Algebra, 1(1) (2009), 3-56. 779.