

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

2J-Submodules and 2J- ideals in Commutative Rings

Doaa Sachit Mutar^a , Farhan Dakhil Shyaa^b

^a University of Al-Qadsiyah college of Education Depart of Mathematics **,** *Email**doaasachitmurtar@gmail.com*

*^b University of Al-Qadsiyah college of Education Depart of Mathematics***,** *Email**[, farhan.shyaa@qu.edu.iq](mailto:farhan.shyaa@yahoo.co.uk)*

A R T I C L E I NF O

Article history: Received: 15 /04/2024 Rrevised form: 28 /05/2024 Accepted : 30 /05/2024 Available online: 30 /06/2024

Keywords:

J-ideals, J-submodules,

2j- ideals ,2J-submodules

A B S T R A C T

Let A be a commutative ring. In this paper, we introduce and study the concept of $2J$ -submodule. A submodule U of a A-module Tis called a 2*J*-submodule) if for all $a \in A$ and $t \in T$, whenever at $\in U$ with $a^2 \notin (J(A)T:T)$, then $t \in U$. In this work examine the characteristics of the 2Jsubmodule as a generalization of the J-submodule. This paper provides various characterizations and properties of 2J- submodule.

MSC.. . 13A15,13A18, 13A70

https:// 10.29304/jqcsm.2024.16.21535

1. Introduction

In this article, T stands for a left A-module and A for a commutative ring with unity 1≠0. The symbols $U \leq T(U \leq T)$ stand for U is a submodule of $T(U$ is proper submodule). The notations $(U :_{A} T) = \{a \in A : aT \subseteq T\}$ U }, $(U :_T I) = \{x \in T : Ix \subseteq U\}$, where I is an ideal of $A(I \leq A)$.

 Many kinds of ideals have been established over time to enable us to properly comprehend the structures of rings generally. Prime, primary, and maximal

ideals are a few examples of this class; they are important concepts within the commutative algebraic theory. In the last thirty years, a great lot of generalizations and related ideal types have been examined, including see [1],[5],[6],[7]

The notion of r-ideals in commutative rings was first presented by Mohamadian [9]. An ideal I of a ring A is called an r-ideal if $a, b \in A$ with $ab \in I$ and Ann $(a) = 0$, then $b \in I$. Later, this approach was extended to J-ideals and J-submodules by Khashan and Bani-Ata [8]. An ideal I of a ring A is called a J-ideal if $a, b \in A$ such that $ab \in I$ and $a \notin J(A)$, then $b \in I$. By $J(A)$ the Jacobian radical of A. [8], they presented the following: $U < T$ is said to be a J submodule if whenever $a \in A$ and $t \in T$ with $at \in U$ and $a \notin (J(A)T : T)$, then $a \in U$. In [4], we presented 2J-ideal, where an ideal I is called 2J-ideal if whenever $a, b \in A$ such that $ab \in I$ and $a \notin J(A)$, then $b^2 \in I$ was extended of J-ideals.

These ideas motivate us to develop new kinds of submodules, like as 2J-submodule. A submodule $U < T$ is called 2J-submodule,

if for all $a \in A$ and $t \in T$, whenever $at \in U$ with $a^2 \notin (J(A)T : T)$, then $t \in U$.

 Here, we examine the characteristics of the 2j-submodule, which is comparable to the J-submodule. Also, we study the properties of $2J$ -submodule similar to $2J$ ideals.

2. 2J-Submodules over commutative rings

Definition 2.1: A submodule U of an A-module T is said to be 2J-submodule if $a \in A$ and $t \in T$, with $at \in U$ and a^2 $(J(A)T: T)$, then $t \in U$.

Remark 2.2 If U is a J-submodule of an A -module T , then U is 2J-submodule.

Proof: Let $a \in A$ and $t \in T$, with $at \in U$ such that $a^2 \notin (J(A)T:T)$. As U is a J-submodule we

have $t \in U$ thus U is a 2J-submodule .

The converse of Remark 2.2 is not true in general.

Example 2.3 : $\leq \overline{0} >$ is a 2J-submodule of \mathbb{Z}_4 as \mathbb{Z} -module. But it is not J-submodule, since 2. $\overline{2} \in \langle \overline{0} \rangle$ and neither $2 \notin (J(Z)T : T) \implies 4 > \text{nor } \overline{2} \notin \overline{0} >$.

Proposition 2.4: Let T be an A-module, U a submodule of T, and I_1 an ideal of A. Then:

(1) $(U:_{A} T)$ is a 2J-ideal of A if U is a 2J-submodule of T and $(J(A)T : T) = J(A)$.

(2) $(U :_T I_1)$ is a 2J-submodule of *T* if *U* is a 2J-submodule of *T*.

Proof:(1) Let $ab \in (U, T)$ where $a, b \in A$ and $a \notin J(A)$, then we have $abT \subseteq U$ and so $abt \in U$ for all $t \in T$. Since U is a 2J- submodule of T and $a^2 \notin (J(A)T:T)$, $bt \in U$ for all $t \in T$, thus $bT \subseteq U$ and so $b \in (U:_{A}T)$, so $b^2 \in (U:_{A}T)$ therefore $(U:_{A} T)$ is a 2J-ideal .

(2) Let $at \in (U:_{T} I_{1})$ where $a \in A$ and $t \in T$ with $a^{2} \notin (J(A)T:T)$, then we have $atI_{1} \subseteq U$ and so $ati \in U$ for all $i \in I$, since U is a 2J-submodule of T and $a^2 \notin (J(A)T : T)$, $ti \in U$ for all $i \in I_1$, thus $tI_1 \subseteq U$ and so $t \in (U : T_1)$ therefore $(U:_{T} I_{1})$ is a 2J -submodule . \blacksquare

If $(J(A)T:T) \nsubseteq J(A)$, then it is not necessary for component (1) of Proposition (2.4) to be valid.

As an illustration, the *Z*-module $T = Z_2$ then $2Z = (U:_{A}T) = (J(Z)T:T) \nsubseteq I(Z) = \{0\}$ now $U = \{0\}$ is clearly a 2Jsubmodule of Z_2 but $2Z = (U:_{A} T)$ ideal of Z is not a 2J.

A-module T is called a multiplication module if for every submodule N of T, there exists an ideal B of A such that $N =$ TB. Equivalently, M is a multiplication module if and only if $U = (U:_{A} T)T M$, for each submodule U of T [3].

Proposition 2.5: (If $(U:_{A} T)$ is a 2J-ideal of A where U is a submodule of a multiplication module T, then U is a 2Jsubmodule of T .

Proof: Let $a \in A$ and $t \in T$ such that $at \in U$ and $a^2 \notin (J(A)T:T)$. Then $a(T) \subseteq (T)$) $(U:_{A} T)$. Since $J(A) \subseteq (J(A)T: T)$, $a^{2} \notin J(A)$ and so $(*t*) : T$ $\subseteq (U:_{A} T)$ as $(U:_{A} T)$ is a 2J-ideal of A. Given that T is a multiplication module at this point $\langle t \rangle = (\langle t \rangle : T) T \subseteq (U :_{A} T) T = U$. Thus $t \in U$ and U is a 2Jsubmodule of T .

Corollary 2.6: Assume that U is a proper submodule of T and that T is a finitely generated

faithful multiplication A -module. Then the next conditions are equivalent:

 (1) *U* is a 2J-submodule of *T*.

 (2) $(U:_{A} T)$ is a 2J-ideal of A.

(3) $U = LT$ where *L* is a 2J-ideal of *A*.

Proof: (1) \Leftrightarrow (2) Propositions 2.4 and 2.5 come next, together with the information that

 $(I_1 T : T) = I_1$ for any ideal I_1 of *A*.

 $(2) \Leftrightarrow (3)$ We just choose $L = (U:_{A} T)$.

Proposition 2.7: Let T be a finitely generated faithful multiplication A-module If U is a 2J-submodule of T, then $U \subseteq I(T)$.

Proof: Notably, we observe $J(T) = J(A)T$. Assume that $U \nsubseteq J(T)$.

Clearly, $(U:_{A}T) \nsubseteq (J(A)T:T) = J(A)$. But $(U:_{A}T)$ is a 2J-ideal by Proposition 2.4 which contradicts[4, Remark and example .2.2(3)] Thus, $U \subseteq J(T)$ as required.

Recall that a proper submodule U of a module T over commutative ring A is said to be n-submodule, if $a \in R$ and $x \in$ T, $ax \in U$ with $a \notin \sqrt{Ann_R(M)}$, then $x \in U[10]$

Proposition 2.8: Let T be an A-module satisfying $J(T) \subseteq J(A)$ T. Then any n-submodule of T is a 2J-submodule.

Proof: Since U is n-submodule ,then U is J-submodule by [9, Proposition 3.7]. Therefore It is 2J-submodule by Remark $2.2.$

Corollary 2.9: The n-submodules of a finitely generated faithful multiplication module are 2J-submodules.

Let Let A be a ring and T be a A-module. The idealization ring $A(T)$ of T in A is defined as the set $\{(a, b): a \in A, b \in A\}$ T } with the usual componentwise addition and multiplication are defined as $(a, b)(s, n) = (as, bn + sb)$.

Let T be an A-module and A a ring. The set $\{(a, b): a \in A, b \in T\}$ is the idealization ring $A(T)$ of T in A. Its component wise addition and multiplication are defined as $(a, b)(s, n) = (as, bn + sb)$. It is easily verifiable that $A(T)$ is an identity commutative ring $(1_A, 0_T)$. If K ideal and U is a submodule of T, then $K(U) = \{(a, b): a \in K, b \in U\}$ is an ideal of $A(T)$ if and only if $kT \subseteq U$ [11]

Proposition 2.10: Let T be an A-module, U a submodule of T, and I_1 a 2J-ideal of A. Then:

(1) $I_1(T)$ is a 2J-ideal of $A(T)$.

(2) If $(J(A)T : T) = J(A)$ and U is a 2J-submodule of T with $I_1 T \subseteq U$, then $I_1(U)$ is a 2J-ideal of $A(T)$.

Proof: (1) Let $(A_1, t_1), (A_2, t_2) \in A(T)$ such that $(A_1, t_1) (A_2, t_2) \in I_1(T)$ with $(A_1, t_1) \notin J(A(T))$. Then we have a and $a_1 \notin J(A)$. Since I_1 is a 2J-ideal of A, we conclude that $a_2^2 \in I_1$ and so $(A_2, t_2)^2 \in I_1(T)$. Consequently, $I_1(T)$ is a 2Jideal of $A(T)$.

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

(2)Let (A_1, t_1) , $(A_2, t_2) \in A(T)$ such that $(A_1, t_1) (A_2, t_2) \in I_1(U)$ and $(A_1, t_1) \notin J(A(T)) = J(A)(T)$. Then we have a *and* $a_1 \notin J(A)$. As I_1 is 2J-ideal of *A*, then we $a_2^2 \in I_1$ and so $a_2 t_1 \in I_1 T \subseteq U$. Since $a_1 t_2 + a_2 t_1 \in U$, $a_1 t_2 \in U$. But a_1^2 $(J(A)T : T)$ and so $t_2 \in U$ as U is a 2J-submodule of T. Therefore, $(A_2, t_2)^2 \in I_1(U)$ and $I_1(U)$ is a 2J-ideal of $A(T)$. **Corollary 2.11:** Consider a multiplication A-module, denoted by T, that is both finitely generated and faithful. If I_1 is a 2J-ideal of A and U is a 2J-submodule of T such that $I_1T \subseteq U$

, then $I_1(U)$ is a 2J-submodule of $A(T)$.

Proposition 2.12: Let I_1 be an ideal of a ring A,, and let U be a proper submodule of A -module T. It follows that I_1 is a 2J-ideal of A if I_1 (U) is a 2J-ideal of $A(T)$.

Proof: Assuming that $I_1(U)$ represents a 2 J-ideal of $A(T)$, we demonstrate that I_1 is a 2 J-ideal of A. Assume that $ab \in I_1$, and that $a \notin J(A)$. Next up, we got $(a, 0_T)$ $(b, 0_T) = (ab, 0_T) \in I_1(U)$ with $(a, 0_T) \notin J(A)(T) = J(A(T))$. Since $I_1(U)$ is a 2J-ideal of $A(T)$, we conclude that $(b, 0_T)^2 \in I_1(U)$ and so $b^2 \in I_1$.

Theorem 2.13: Let U be a proper submodule of an A-module T. Then, the following statements are equivalent:

 (i) T has 2J-submodule, named U

(ii) $U = (U:_{T} a)$, for every $a^2 \notin (J(A)T:T)$.

(iii) For every submodule K of T and ideal I_1 of A, $I_1 K \subseteq U$ with $I_1^2 \nsubseteq (J(A)T : T)$ i

Proof: (i) \Rightarrow (ii) Give U the form of a 2J-submodule of T $\cdot \forall a \in A$, the inclusion $U \subseteq (U_{\cdot T} a)$ always holds. Let $a^2 \notin (J(A)T:T)$ and $t \in (U:\mathcal{F}a)$. Then we have $at \in U$. Meanwhile U is an 2J-submodule, Finally, we determine that $t \in U$ and thus $U = (U :_T a)$.

(ii) ⇒ (iii) Presume that $I_1 K \subseteq U$ where $I_1^2 \nsubseteq (J(A)T : T)$, for ideal I_1 of A and submodule K of T. Since $I_1^2 \nsubseteq (J(A)T : T)$, there exists $a \in I_1$ such that $a^2 \notin (J(A)T:T)$ Then we have $aK \subseteq U$, and so $K \subseteq (U : T a)=U$ by (ii).

(iii) \Rightarrow (i) Let at ∈ U with $a^2 \notin (J(A)T:T)$ for a ∈ A and $t \in T$. That is adequate to take

 $I_1 = Aa$ and $K = Ax$ to show that the result.

Proposition 2.14: If U is a 2J-submodule of an A-module T, then $(U:_{A} T) \subseteq (J(A)T:T)$.

Proof: Presume that *U* is an 2J-submodule; and $(U:_{A} T) \nsubseteq (J(A)T:T)$. Then there exists $a \in (U:_{A} T)$ such that $a \notin$ $(J(A)T:T)$ so $a^2 \in (U:_{A} T)$ such that $a^2 \notin (J(A)T:T)$ Thus $a^2T \subseteq U$ and since U is an 2J-submodule, In the end, we ascertain that $U = T$, a contradiction. Hence *(U*:_A *T*) \subseteq *(* $J(A)T$: *T*).

Lemma 2.15: Let T be a torsion-free A-module, then the zero submodule of T is a 2J-submodule **Proof:** Given $a \in A$ and $t \in T$, let $at = 0$, with $a^2 \notin (J(A)T:T)$. Torsion-free T implies that t=0. Zero submodule is a 2Jsubmodule. \blacksquare

Lemma 2.16: Zero submodule is the only 2J-submodule of T if T is a torsion-free multiplication A -module

Proof: submodule is a 2J-submodule. . Therefore, by Proposition 2.14 *(U*:_A T) \subseteq *(J(A)T*: T) = 0, Consequently, then *(* $U:_{A} T$)=0. U=0 meanwhile T is a multiplication. Thus, the zero submodule is the only 2J-submodule according to Lemma $2.15.$

Proposition 2.17: Let T be an A-module and that I_1 an ideal of A with $I_1 \nsubseteq (U_{A}T)$. If U is a 2J-submodule of T, then ($U:_{T} I_1$) is a 2J-submodule of T.

Proof: Let $at \in (U:_{T} I_{1})$ with $a^{2} \notin (J(A)T:T)$, for $a \in A$ and $t \in T$. So $al_{1}t \subseteq U$ and as *U* is an 2Jsubmodule, $I_1 t \subseteq U$. Hence $t \in (U : T I_1)$.

Proposition 2.18:Let U be a proper submodule of an A -module T , then U is an 2J-submodule

if and only if for every $t \in T$, $(U:_{A} t) = A$ or $(U:_{A} t) \subseteq (J(A)T:T)$.

Proof: Assume that U is an 2J-submodule. If $(U:_{A} t) \nsubseteq (J(A)T:T)$, then there exists $a \in (U:_{A} t)$ - $(J(A)T:T)$ so a^{2} $(U:_{A} t) - (J(A)T:T)$. Let $at \in U$ where $a^{2} (J(A)T:T)$ since *U* is an 2J -submodule, $t \in U$. Hence $(U:_{A} t)$ Conversely, let $at \in U$ where $a^2 \notin (J(A)T:T)$, for $a \in A$ and $t \in T$. So $a^2 \in (U:_{A} t)$ - $(J(A)T:T)$. By assumption, we have $(U:_{A} t) = A$ and so $t \in U$.

Corollary 2.19: Let U be a proper submodule of an A-module T. Then U is an 2J-submodule of T if and only if for every $t \in T - U$, $(U:_{A} t) \subseteq (J(A)T:T)$.

Theorem 2.20: If U is a maximal 2J-submodule of an A-module T, then U is a prime submodule of T.

of T .

Proof: Assume that U is the a maximal 2J-submodule of T and that $t \in T$ and $a \notin (U:_{A} T)$ where $at \in U$. $U:_{\tau} \alpha$) is a 2J-submodule by Proposition 2.17. According to maximality of U,

 $t \in (U:_{T} a) = U$. Therefore, U is prime submodule.

Theorem 2.21:Let T be finitely generated A-module. Then T has a prime submodule if it has a 2J-submodule.

Proof: Let $\Omega = \{ L : L$ is a 2J- submodule of *T*; $U \subseteq L$ } and that U is a 2J-submodule. Zorn's Lemma states that Ω has a maximal element $K \in \Omega$. Therefore, K is a prime submodule of T by Theorem 2.21.

A proper submodule N of M is called primary) if $rx \in N$, for $r \in R$ and $x \in M$, implies that either $x \in N$ or $r^n \in (N:_{R} M)$ for $n \in N$ [2].

Theorem 2.22: Let U be a submodule of T such that $(U_{A} T) \subseteq (J(A)T : T)$. Then the following statements are equivalent:

(i)U is 2J. submodule .

 (ii) A primary submodule of T has the name U

Proof (i) \implies (ii) Let $at \in U$ with $a^n \notin (U:_{A} T)$ for $a \in$ and $t \in T$. As U is a 2J – submodule, then $t \in U$ and hence U is a primary submodule

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

(ii) \Rightarrow (i) Let *at* $\in U$ with $a^2 \notin (J(A)T: T)$ for $a \in A$ and $t \in T$. As $(U:_{A} T) = (J(A)T:T)$ we have $a^2 \notin (I(A)T: T)$ $J(A)T: T$), since U is a primary submodule, we get $t \in U$. Therefore U is a 2J-submodule.

Proposition 2.24: If *L* is a primary submodule of an *A*-module *T* and *U* is a 2J-submodule such that *(L*_{*iAT)*} \subseteq ($J(A)T$: *T*), then $U \cap L$ is a 2J-submodule of *T*.

Proof: Let $at \in U \cap L$ where $a^2 \notin (J(A)T : T)$ for $a \in A$, $t \in T$. Then $a^2 \notin (L : A T)$. Since L is primary, $t \in L$. Also, since U is a 2J-submodule, $t \in U$. Thus $t \in U \cap L$.

References

[1] Anderson D. D. and Bataineh M., Generalizations of prime ideals, Comm. Algebra, 36(2) (2008), 686-696.

[2]Atiyah, M. F., McDonald I. G., An Introduction to Commutative Algebra, Addision- Wesley, Reading, MA, 1969. [3] El-Bast Z. A., Smith P. F., Multiplication Modules, Comm. Algebra, 16(4), (1988), 755-779. [4] Doaa S. M. and Farhan D . Sh. 2J-ideals in Commutative Rings , Journal of Discrete Mathematical Sinebces and Cryptography To appear.

[5] Ebrahimi Atani S. and Farzalipour F., On weakly primary ideals, Georgian Math. J., 12(3) (2005), 423-429. [6] Ebrahimpour M. and Nekooei, R., On generalizations of prime ideals, Comm. Algebra, 40(4) (2012), 1268- 1279.

[7] Khashan H. A., On almost prime submodules, Acta Math. Sci. Ser. B (Engl. Ed.), 32(2) (2012), 645-651. [8] Khashan H. and Bani-Ata A. A. B., J-ideals of commutative rings, International Electronic Journal of Algebra, 29 (2021) 148-164

[9] Mohamadian R. r-Ideals in commutative rings, Turkish J. Math., 39 (2015), 733-749.

[10] Ahmadi M. Moghaderi_, J. , n-submodules Iranian Journal of Mathematical Sciences and Informatics 17,.(1) (2022), 177-190.

[11]Anderson D.D. , Winders M., Idealization of a module ,J. Commut.Algebra, 1(1) (2009), 3-56. 779.