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1. Introduction
Let A represent the class of functions f analytic within the open unit disk @ = {7 € C : |z| < 1}, normalized by
conditions given by f(0) = f'(0) = —1 expressed given by:

f@ =3+ ) ag". (L1
k=2

Let S denote the subclass of A comprising functions given in equation (1.1) that are also univalent in Q. As per the
Koebe one-quarter theorem (refer to [9]), the image of Q under any function f belonging to S includes a disk with a

radius of%. Consequently, every function f € S possesses an inverse, denoted as f 1, which satisfies the relationship
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T f@) =13 (z€Q) and f(f W) = w.lwl < (N, 7(f) 23).

This property ensures that each function in Sis not only univalent but also bijectively maps Q onto its image,
allowing for the reversal of this mapping within the unit disk, where

g(w) =f1(w) =w—a,w? + (2a3 —az)w?® — (5a3 — 5a,a; +a,)w* + . (1.2)

A function f that belongs to A is considered bi-univalent in @ provided that both fas well as its inverse f~! are
univalent within Q. The class of these bi-univalent functions in Q, represented as X and described by form (1.1),
includes various noteworthy examples and historical context, which can be explored in detail in [1, 4, 11, 12, 13, 14,
17,18, 20, 21, 22, 23, 25, 27].

For every function f within the class S, the function h(z) = %/f(z™), where 7 € Q,m € N is univalent as well as
projects the unit disk Q onto a region that exhibits m-fold symmetry. Moreover, a function is described as m-fold
symmetric (refer to [15]) provided that it adheres to a specific normalized form given by:

f(z) =7+ Z Amir12™ M, (ZEQMEN). (1.3)
k=1
We refer to S, as the class consisting m-fold symmetric univalent functions within Q, characterized by the series
expansion given in equation (1.3). Indeed, the functions belonging to the class S exhibit one-fold symmetry.

Srivastava et al. [26] extended the concept of m-fold symmetric univalent functions to include m-fold symmetric
bi-univalent functions. They presented significant findings, noting that every function f € X creates an m-fold
symmetric bi-univalent function for every m € N. Additionally, the authors specified that for the normalized form of
f, depicted in (1.3), the series expansion for the inverse function f~! is provided given by:

g(w) = w—ay ;W 4+ [(m + Dad g — agmyq w2

1
-3 (m+ 1)@Bm+ 2)ad ., — Gm+ 2)ay1amer + azmeq [W3+ -0, (1.4)

in whichf~! =g We refer toX, as the class containing m-fold symmetric bi-univalent functions within Q.
Moreover, it is straightforward to observe that when m = 1, equation (1.4) aligns with equation (1.2) from the
X class. Moreover, examples of m-fold symmetric bi-univalent functions are provided below:

1

1
(1 i Zm) ’ [Elog (1 — 2m>] aswellas [—log(1 —z™)]m

having the inverse functions given below:

1 S

1 1
wm m e2wm —1\m ewm —1\m
(o) () asvess ()

accordingly.

In recent years, several researchers have explored bounds for different subclasses of m-fold bi-univalent
functions, as noted in various studies ([2, 3, 5, 6, 8, 10, 16, 19, 24, 26]). The purpose of this study is to present new
subclasses Eys (o, A, 0,8, p) as well as &Yy, (B, A, 8,8,p) of Z,,,. They also determine estimates for the coefficients

lap 1] and |a,p, 4| for functions within each of these newly introduced subclasses.
To establish our primary findings, we need to apply the lemma stated below.

Lemma 1.1 [3]. Provided thath € P. Thus, |cy| < 2 for everyk €N, in which P denotes the family of all
Re(h(z,)) > 0,(z € Q), in which

h(z) =1+ cz+c,z2+,(z€0).
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2. Coefficient Estimates pertaining the Function Class Eys,, (a,2,$,8,p)

Definition 2.1. A function f € X, and expressed as in equation (1.3) is considered part of the class Eyy_(a, A, £, 5, p) if
it meets specific conditions. This classification applies when (m € N, € C\{0},A>0,0<a<10<86<10<p <
1, (z,w) € Q). The function f must fulfill these criteria to be categorized within this subclass.

1 zlf'(z) + pzf" (2)1* T
S [(1—8)z+pzf @+sa-pim || <z *€9 @D
as well as
1 wlg’(w) + pwg"(w)]* s
s B s LS | <F e €

in which the function g = {1 is expressed as in equation (1.4).

Specifically, for one-fold symmetric bi-univalent functions, we express the class
Eys, (A $0,8,p) = Eys_ (a7 $#,6,p), indicating that the parameters and characteristics for one-fold symmetry are
directly aligned with those defined for m-fold symmetry within the same subclass.

Remark 2.1. By specifying the parameters o, A, §, dand p, it is possible to define various new and previously known
subclasses of analytic bi-univalent functions that have been explored in earlier studies:

1- Inthe case of m = 1, a new the class of bi-univalent function is introduced given by
Ezn (@A 0,6,p) = vz (A 9,8, p).
2- Inthe case of 6 = 0, a new class emerges, encompassing m-fold symmetric bi-starlike functions given by
EYs (A £0,8,p) = vz (0, A, £,8,p).
3- In the case of § =0and g =1, a new class is established that includes m-fold symmetric convex bi-
univalent functions given by
Eys,, (a2, $,6,p) =Cz(a, A, $,6,p).
4- In the case of A=8=1,andp =0,a new class containing m-fold symmetric bi-starlike functions, as
expressed by Kumar et al. [16], is recognized.
Evz, (@A 0,6,p) =S5, (0, )
5- Inthecaseof A =8 = p = 1, and p = 0, we identify a class consisting of bi-univalent functions as described
by S. Altinkaya and S. Yalcin [2]
Eys, () 9,8,p) = S5
6- Inthecaseof A=1,m=1,p=0,8 = 1and g = 1, we recognize a class of bi-univalent functions established
by Brannan and Taha [7].
Evz,, (@A 0,6,p) = S5 ().
7- Inthecaseof A=p =8 = % = 1,and m = 1, a new class that includes convex bi-univalent functions as
introduced by Brannan and Taha [7] emerged
Eys,, (), $,8,p) = Sz, (@).

Theorem 2.1. Let f€E&yy (A $£,8,p)(MEN,P€EC\{0,120,0<a<10<86<10<p=<1(zw)€Q), be
given by (1.3). Then

2a|p|
lamer| < , (2.3)

\/ [(pm + D?2[AA— 1A 4+ m)? —=28[A(1 + m) — 8](2pm + 1)(1 + m)[A(1 + 2m) — 8]]

—(6 - DA +m) — 8]?(pm + 1)?
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and

| < 2¢%a?(m+ 1) N 2a|g| »
Aamrl =0T +m) — 8)2(1 + pm)? | A+ m) —8]2pm+ 1)’ (Z4)
Proof. Conditions (2.1) as well as (2.2) indicates that
1 3lf' (@) + pzf" (2)]* ]
14— —-1|= « 2.5
Sl s =) @5
and
1 wlg'(w) + pwg" (W)J* ]
1+— -1 = w)|%, 2.6
v [(1 — 5w+ pug@ +50—pgw) |~ 14! @
in which g = f~! while p, q € P possess the series representations given below:
P(z) =1+ pmz™ + P2mz’™ + P3mz’ " + - 2.7
and
q(w) = 14+ quw™ + qupw?™ + qguw3™ + - . (2.8)
Comparing the respective coefficients from equations (2.5) as well as (2.6) results in:
A1+ m) —8](pm + 1)
© Am+1 = APm, (2.9)
2
{[@pm + DAA +2m) = &)agmyes + L AR - D +m)? — 28[A(L +m) — 8]]a4. )
(a—1) ?
a(a—1
= APom +——— P (210
and
[A(1+m)—8](pm+ 1)
- 2 Am+1 = Ay (211)
{@pm + DA +m)A(L +2m) - 8] + % [\ — DA +m)? - 281 +m) — 8]]} a2
—(2pm + DA + 2m) — 8]aymy
o
ala—1)
= aqym + qun (2.12)
From use of (2.9) and (2.11), we get
Pm = —Qm (2.13)
and
2[A(1 + m) — 8]?(pm + 1)?
P ahy1 = 2 (ph + ah)- (2149

Also, from (2.10), (2.12) and (2.14), we have we get the next relation
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2. = 20 (P2m + d2m)
m+ pal(pm+ 1)2[AA - 1)1+ m)? =26(A(1 + m) — 8)] + 2pm + 1)(1 + m)[A(1 + m) — 8]]
—(a— DA + m) — 8]?(pm + 1)?

.(2.15)

By taking the absolute value of equation (2.15) and utilizing Lemma 1.1 to assess the coefficients p,,, as well as q,,,
we derive the following results:

2a|p|

g [(pm + 1)?2[AMA — 1A 4+ m)? —=28[A(1 + m) — 8](2pm + 1)(1 + m)[A(1 + m) — 8]] .
—(a— DA+ m) — 8]?(pm + 1)2

|am+1| S

This process yields the desired estimate for |a,, ;| as proposed in equation (2.3). To determine the |a,, ;| bound,
we subtract equation (2.12) from equation (2.10), resulting in:

(2pm + 1)[A(1 + 2m) — §]
o

[2a;mm41 — (M + 1af 4]

ala—1)
= a(pZm - qu) + T

(P —am).  (2.16)
It follows from (2.13), (2.14) and (2.16) that

o $??(ph + qh)(m + 1) #a(P2m — dz2m)
AL AL + 2m) — 8]2(1 + pm)?  2[A(1 4+ 2m) — 8](2pm + 1)

(2.17)

By taking the absolute value of equation (2.17) and implementing Lemma 1.1 once more to the coefficients p,,, P2m,
qm as well as q,,,, we obtain the necessary bounds for these coefficients.

a < 2¢%a?(m+ 1) N 2a|gp|
=1+ 2m) — 8]12Qpm + 1) [A(1 + 2m) — 8](1 + pm)?’

completing the proof for Theorem 2.1.

Remark 2.2. By selecting the following condition in Theorem 2.1 withA =1 and 6 = 1. Therefore, we arrive at
results that align with those provided by Kumar et al. in [16].

For m = 1, concerning one-fold symmetric bi-univalent functions, Theorem 2.1 simplifies to the following corollary:
Corollary 2.1. Letf € Eyy_(a,A, £,8,p)(9 € C\{0},0 <a <1, A >0,0<8<1,0<p < 1) begivenby (1.1). Then

2alp|
\/agO[(p + 12[4AQ — 1) —48[2A — 8](2p + D[3A = 8]] — (a — )[2A — 8]2(p + 1)?]

|32| <

and

4% o 2algp|
2A—0612(1+p)?  BA—08]2p+ D"

|a3| S [

Remark 2.3. In Corollary 2.1, by setting A = 1 and 6 = 1, we achieve results that correspond to those established by
Kumar et al. in [16, Theorem 2.1].
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3. Coefficient Estimates pertaining the Function Class 8y§m (B,A,$,8,p)

Definition 3.1. A function f € £, and expressed as in (1.3) is classified under Ey;_(B,A,$, 5, p) if it meets specific
criteria. This classification is applicable when (m € N, o € C\{0},A>0,0<B<1,0<6<1,0<p<1,(zw) € Q).
The function must fulfill these conditions to be considered part of this subclass.

1 3lf'(3) + pzf" (2)]*
Relt* # [(1 —8)7+ paf'(z) + 8(1 — p)f(z) 1{|>B.z€Q) (3.1
and
1 wig@tpwg@P

in which the function g = f~1 is provided by equation (1.4).

Specifically, for m = 1 which pertains to one-fold symmetric bi-univalent functions, the class is denoted as
Evz, BA#,8,p) = Eyz (B, A 0,6, p).

Remark 3.1. By specifying the parameters f3,2, 0,6 and p it is possible to define various new and previously
recognized subclasses of analytic bi-univalent functions that have been examined in earlier research.

1. Inthe case of m = 1, a new the class of bi-univalent function is introduced given by:
EYZm (B! }\! p' 6' p) = SYZ (B' )\' 80' 6v p)
2. Inthe case of 6 = 0, a new class emerges, encompassing m-fold symmetric bi-starlike functions given by
SYZm (B! }\, 80, 6: p) = ‘SY;: (Bv 7\v SO, p)
3. In the case of 6 = 0and g = 1, a new class is established that includes m-fold symmetric convex bi-
univalent functions given by
SYZm (B; }\; 50; 6! p) = gcz*’,(B! }\! p)
4. In the case of A =8 =1,andy = 0, a new class containing m-fold symmetric bi-starlike functions, as
expressed by Kumar et al. [16], is recognized.
EYZm (BJ }\J (@J 61 p) =52m (B! (@)'
5. In the case of A=8 = p = 1,and p = 0, we identify a class consisting of bi-univalent functions as
described by S. Altinkaya and S. Yalcin [2]

EYZm (B! }\, t@! 6! P) =5§m'

6. Inthecaseof A=08= % =m = 1,and p = 0, we recognize a class of bi-univalent functions established
by Brannan and Taha [7].
EYz,, (B A $,8,p) =85(B).
7. In the case of A=p=g% =8 =m=1,a new class that includes convex bi-univalent functions as
introduced by Brannan and Taha [7] emerged

8Y2m (B' }\' XJ, 8' p) = 521 (B)

Theorem 3.1. Let f€ Sygm(B,)\,go, §,p)(meN,p e C\{0},A=>0,0<B<10<86<10<p=<1(zw) €Q) ,be
given by (1.3). Then

o< 49(1~ B)
T J(pm 4+ 1)2[A — 1D (1 + m)2 —28[A(1 + m) — 8] + (2pm + 1)(1 + m)[A(1 + 2m) — 5]

.(3.3
]()

and
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2(1-B)?p*(m+1) 2(1 - B)lgpl
lazmea| < (pm + 1)2[A(1 + 2m) — §]2 + (2pm + D[A(1 +2m) — 8] G4
Proof. Using relations (3.1) and (3.2) that there exist p, q € P such that
1 7lf' (z) + paf" ()" ~ ] _ _
o [(1 S+ s () + 50— picy | PP @5
and
1 w[g’ (W) + pwg"(W)]* _ ] _ _
et Tt @Y TPHA-PAO. 69

in which p(z) as well as q(w) possess the forms given in equation (2.7) and (2.8), accordingly. Matching the
coefficients from equations (3.5) and (3.6) results in:

[A(1 + m) — 8](pm + 1)

© A1 = 1- B)pm , 3.7)
(2pm + DIACL +2m) = Blagge + [222(1 +m)? = 8 +m) = 8] 2y
= (1= B)Pom, (38)
o
3 [A(1+m)—8](pm+1) — (- B, 39)

i
and

(2pm + (1 + m)ACL + 2m) — 8] + (2pm + 1)? X2 (1 + m)? — S[ACL + m) — 8] | a%yss

—(2pm + DIAA +2m) — 8lagmy
#

= (1-Pdzm- (3.10)

From (3.7) and (3.9), we get

Pm = ~0m (3.11)

and

2[A(1 +m) - 8]*(pm + 1)? |

o7 afer = (1= B)*(ph + ai)- (3.12)
Upon adding equations (3.8) and (3.10) yields:
(2pm + 1)(1 + m)[A(1 + 2m) — 8] + 2(2pm + 1)? )\0\2_ ) (14+m)?—8[A(1 + m) — 8]|a2,,
= (1 =B)(P2m + dom)- (3.13)

Therefore, we have
&O(l - B)(pZm + qu)

A = (pm+ 1D?[AMA— 1A + m)? —28[A(1 + m) — 8] +°
2pm+ 1)(1 + m)[A(1 + 2m) — 8]]

Applying Lemma 1.1 for the coefficients of p,,, as well as q,, yields
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4p(1-B)
(pm + D2[AA — D1 + m)2 —28[A(1 + m) — 8]
+(2pm + 1)(1 + m)[A(1 + 2m) — 8]]

|am+1| <

This yields the desired estimate for |a,, ;| given in equation (3.3).
This calculation provides the desired estimate for |a,, | as specified in equation (3.3).
By subtracting (3.10) from (3.8), we obtain the bound on |a,,,1/,

(2pm + 1[A(1 + 2m) — §]
o

{2aym41 — (M + Daj1} = 1 = B)(P2m — dz2m),

or equivalently

a _ (m + 1) az + (1 - B)go(pZm - qu)
m+l T 9 m+L T 22ym + DA + 2m) = 8]

From (3.12), we substituting the value of a2 ,; and get

_ (1 —PB)*p*(ph +qf)(m + 1) (1-B)»(P2m — d2m)
dam+1 = O ¥ D2A(L + 2m) — ]2 2(2pm + DAL + 2m) — 8]

By applying Lemma 1.1 again to the coefficients p,,, P2m, Qm as well as q,,,, we obtain the necessary results for these
coefficients.

| < 2(1 - B)?p*(m+ 1) 2(1 - Bl
Am+1l = (pm + 1)2[A(1 4+ 2m) — 8]2 * (2pm + D[A(1 + 2m) — §]’

As a result, we complete the proof pertaining to Theorem 3.1, yielding the desired estimate for |a,p, ;| in (3.4).

Remark 3.2. In Theorem 3.1, by selectingA = 1 and § = 1, the results align with those reported by Kumar et al. in
[16].

For m = 1, pertaining to one-fold symmetric bi-univalent functions, Theorem 3.1 simplifies to the corollary given
below:

Corollary 3.1. Letf € &y _(B,A,£€,8,p)( € C\{0},0<B<1,1=0,0<8<1,0<p < 1)begivenby (1.1). Then

27 J20p + D2[2A - 1) =8[2A — 8] + 2(2p + D[31 - §]]

and

< =P 20-Blpl
Bl= O r DB =0 T Zp+ DBA=0]"

Remark 3.3. In Theorem 3.1, setting A = 1 and § = 1 yields result consistent with those presented by Kumar et al.
in [16].
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