
Journal of Al-Qadisiyah for Computer Science and Mathematics Vol. 16(2) 2024, pp Comp. 1–12

∗Corresponding author

Email addresses:

Communicated by ‘sub etitor’

Adaptivity In Distributed Load Balance Approach in Cloud
Computing

Fadheela S. Abu Almasha, Azhar H. Nsaif b , Maytham S. Jabor c

a. Ministry of higher education and scientific research, Baghdad, Iraq, Fadheelasabri63@gmail.com
b. Computer Science Department / College of Science / Mustansiriyah University, Baghdad, Iraq, bahar299947@gmail.com

c. Instituto ITACA. Universitat Politècnica de València, maytham.jebory@gmail.com

A R T I C L E I N F O

Article history:

Received: 03/04/2024

Rrevised form: 06/05/2024

Accepted : 01/06/2024

Available online: 30 /06/2024

Keywords:

ACSIM framework, Cloud
Computing, MAPE-K Algorithm,
Load Balancing, ACSIM framework.

A B S T R A C T

Abstract: Cloud computing has supplanted conventional computing environments. The
demand for better-optimized workload allocation and resource efficiency is increasing as
ACSIM, a distributed framework-based service, continues to grow. This paper suggests the
ACSIM framework technique to manage an adaptive algorithm based on the Apply MAPE-K
algorithm with the execution of the MAPE-K loop. The evaluation phase is applied as real work
instead of storing previous data; most importantly, the actual results of our framework can be
evaluated. This method produces the best infrastructure, application, and platform results,
respectively. We investigated the suggested approach using the cloud, and the results
demonstrate gains in throughput maximization and reaction time reduction. The optimization
of resource utilization and job responsiveness can pose a challenge in ACSIM, given the task of
managing resources and scheduling jobs. The Throttled Load Balancing Algorithm is a viable
method for effectively handling and processing multimedia data in cloud-based settings,
thereby enhancing the performance and responsiveness of mobile applications. Therefore,
handling distributed time allocation for each device within the Mobile Cloud is crucial. The
response time of Node is being reduced due to the distribution of load across multiple servers,
which is the objective of the Load Balancing Algorithm. The findings demonstrate the analytical
efficacy of time division by utilizing various virtual machines. the management time was
filtered so that it became from Start (MS) (821.2013), Processing Time (MS) (821.201), and
0.000803 Response Time (MS). In the case of balancing, we observe the start (MS) (507.9036),
the processing time (MS) (507.92045), and the response time (MS) (0.00113). Consequently,
the utilization of the Load Balance Algorithm confers a tangible benefit. In the context of Mobile
Cloud environments, load-balancing algorithms MSC.

https://doi.org/10.29304/jqcsm.2024.16.21537

1.Introduction

With the evolution of the computing paradigm, cloud computing has become an all-encompassing, internet-based computing solution for global

corporations. Using this method, customers can provision, release, and use virtualized resources as a metered service on an as-needed basis for a

predetermined cost. These advantages have helped to make cloud computing widespread. All of its services are delivered via various as-a-service

models, such as “Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS)” [1]. The cloud may be seen as

the height of TCP/IP-based internet development under the moniker ARPANET (Advanced Research Projects Agency Network) [2]. Using several

mailto:Fadheelasabri63@gmail.com
mailto:bahar299947@gmail.com
mailto:maytham.jebory@gmail.com1

2 Fadheela S. Abu Almash, Journal of Al-Qadisiyah for Computer Science and Mathematics Vol. 16(2) 2024, pp Comp. 1–8

scalable and virtualized resources, cloud computing technology provides a variety of services to all users. The primary goal of the cloud is to deliver

services at the lowest cost and highest quality, wherever they are on the globe. Every client request must be handled effectively, with minimum

time and resources waste, to have the capacity to allow many customers across the world share cloud resources and provide them with high-quality

service promptly.

Therefore, load-balancing methods, the lynchpin of every cloud service provider's success, are in high demand [3]. The main goal of any cloud-

based load-balancing algorithm is to promptly offer the client the required services, with all transactions between the client and the cloud service

provider proceeding without a hitch Users and cloud service providers will sign Service Level Agreements (SLAs) [4]. One common goal of process

scheduling systems is load balancing. Allocating workflow jobs via load balancing ensures that all available clouds are used effectively in a

geographically dispersed cloud architecture. Load balancing is a technique that can improve the Quality of Service (QoS) in response time, cost,

throughput, and performance. As a result of the variety of servers in geographically distributed clouds, response times and energy costs can be

reduced by employing geographical load balancing to distribute workloads [5]. It ensures that the burden is divided equally across the available

system nodes or processors so that the current operation may be finished without interruption. Adaptively organized distribution by dynamically

responding to imbalances in processing resources, cloud computing, synchronization, and communication. Most of today's cutting-edge load-

balancing technologies are hacked together piecemeal, making them difficult to recycle and update. The ACSIM framework also suggests a new

design approach that may be employed in creating the most popular multi-chip/multi-board parallel systems with hardware accelerators. ACSIM,

a distributed framework to apply a load-balanced approach to the MAPE-K algorithm, is the contribution of this study. Two distinct

implementations are used to assess this technique: a massively parallel micro-traffic simulation in a graph-based setting.

1.1. Cloud Computing

Cloud computing, an advanced technology, provides services to both commercial and public sectors, including immediate internet access to data,
applications, and files [12]. Furthermore, it offers customers a wide range of cost-effective, adaptable, and interactive services. As technology
continues to decrease hardware costs, it enhances companies globally. Several prominent technological companies, such as Microsoft and IBM,
routinely utilize many of the capabilities provided by this technology. The technology functions based on a Pay-Per-Use business model [13]. Similar
to metered services, which are also referred to as subscriptions, this method allows users to purchase the services they require in accordance with
their needs. The Software as a Service (SaaS) distribution paradigm frequently makes advantage of this concept [14]. An overview of cloud
computing is shown in Fig. 1 below. The management of the cloud environment is the shared goal of all cloud entities. As the cloud's version of the
police, for example, cloud auditors ensure the integrity and high standard of services rendered by CSPs. Additionally, cloud carriers offer a
dependable connection so that customers (cloud users) can benefit.
As opposed to the public cloud, which is exclusively accessible online and is managed by cloud service providers (CSPs), the hybrid cloud permits
the location of its data center in a location intermediate to both. There are two main parts to any Cloud Computing setup: the user interface and the
underlying infrastructure. The interface is user-facing and is accessed via network connections [15]. On the other hand, the back end is concerned
with cloud service models. It consists of a Data Center, which is shown in Fig. 2 below, where multiple physical devices are kept (servers).

Fig 1. Cloud Computing Overview.

Fadheela S. Abu Almash, Journal of Al-Qadisiyah for Computer Science and Mathematics Vol. 16(2) 2024, pp Comp. 1–8 3

Fig 2. Architecture for Cloud Computing.

The application dynamically schedules incoming user requests, and virtualization assigns client resources. The virtualization technology balances
the demand on the entire system, which manages dynamic resources in the cloud. Additionally, it supervises scheduling [16] and effective resource
allocation. The user submits requests online, and virtual machines store them (VMs). Every delivery model requires CSPs to maintain QoS by
guaranteeing that user-submitted bids may be processed and completed within a specific time frame [17]. A scheduling strategy (Data Broker),
which is used to assign user tasks to the appropriate VMs, should be able to produce a workload that is evenly distributed among the machines and
servers. Designing and creating a dynamic load balancer will enable efficient resource scheduling and utilization.

1.2. A Concept of Cloud Load Balancing

To process requests more quickly and send responses, a load-balancing method divides incoming traffic among available servers. Figure 3 illustrates
the application of the traditional load-balancing architecture in a cloud environment. It involves the usual processes shown below: Fielding inquiries
from a wide range of customers seeking assistance, a server monitoring daemon routinely monitors the server pool's load status, determines the
optimal load size based on a client's load request, and determines which servers to use based on a load-balancing technique, algorithm, or heuristic.
Millions of data packets are routed by sophisticated computer network systems each second. This large amount of data traffic needs to be
appropriately distributed across the available servers in order to be handled without compromising the end-user experience. The goal of cloud
computing designs is rapid elasticity, or the ability to grow or contract in response to demand. This implies that regardless of the program, it will
eventually need to scale to fulfill user needs. Therefore, a mechanism that distributes the requests among many application instances must exist. A
load balancer is provided [18].

Fig.3: Load Balancing in Cloud

4 Fadheela S. Abu Almash, Journal of Al-Qadisiyah for Computer Science and Mathematics Vol. 16(2) 2024, pp Comp. 1–8

The existing state of the system served as the basis for the development of the load-balancing algorithm (LBA), which can be seen in Figure 4. The
existing load balancing solutions can be grouped into six categories [19].

Fig 4. Classification of load balancing solutions [19]

1.2.1 Static Load Balancing

Static load balancing, also known as policy-driven load balancing, employs a predetermined collection of regulations and principles. The rules and
policies are determined by different factors, including server capacity, availability, response time, resource usage, and fault tolerance. Typically,
load-balancing decisions are made based on preset thresholds, maximum and minimum limitations, and other constraints [19]. Static load balancing
assigns tasks to workstations depending on load distribution at compile time, allowing the scheduler to determine where each job will be executed.
Nevertheless, static load balancing methods had a drawback in that tasks were unable to be transferred during their execution to another computer
for the purpose of load balancing [20].

Fig 5. Working of Static Load Balancing Algorithm [20].

1.2.2 Dynamic Load Balancing
Unlike SLB algorithms, it distributes client requests across the available resources during runtime. As demonstrated in According to the dynamic
information obtained from all resources in Figure 6, the LB allocates the request.

.
Fig 6. Dynamic load balancing

There are two distinct varieties of DLB algorithms, distributed and non-distributed varieties. The load balancing in a distributed DLB system is the
task of the computer. Load balancing is a group effort that relies on everyone's contributions. In contrast, each resource is employed separately to
complete the task in non-distributed algorithms. As a result of their interaction with all of the resources, distributed DLB methods frequently
contributed to a greater amount of message overhead than non-distributed DLB methods [21]. Distributed algorithms perform better in failure
scenarios because they only influence certain parts of the system rather than the entire system. Non-distributed algorithms can be further broken
down into centralized and semi-centralized categories. A single machine handles the load-balancing process in a centralized algorithm. Semi-
centralized architectures use server clusters with centralized load balancing [22].

Fadheela S. Abu Almash, Journal of Al-Qadisiyah for Computer Science and Mathematics Vol. 16(2) 2024, pp Comp. 1–8 5

2.Literature Review

In a Software Defined Network (SDN) context, Anis et al. [7] discuss the many load-balancing algorithms that may

improve resource usage and linear service delivery among several customers. The authors have found a crowd-based method

to satisfy users' needs to continue providing service. This is accomplished by evenly distributing the workload to achieve

maximum resource usage and minimize idle time. In software-defined networks, the control and administration planes are

separated from the data plane by an abstraction layer called the controller. They are both a part of a larger whole called an

application layer.

• Hui et al. [8] An effective information duplication technique is required to lessen the effort and improve the system's

functionality. This paper develops a task loading model that considers the needs of energy-sensitive and latency-sensitive

activities along with the overall load dynamics in the cloud, edge, and end layers to minimize long-term task delay and

energy consumption. A dynamic duplicate deployment technique was created in the last stage to enhance access

performance and load balancing amongst service nodes. As a result, the recommended method enhances load balancing,

efficiency, and accessibility in a hierarchical cloud computing environment.

• Chunlin et al. [9] The geo-distributed cloud is a could deployed in different geographical locations. It is a promising

solution to deal with the data explosion. Google’s 13 data centers are deployed in 4 continents over 8 countries. In order

to enhance the efficiency of utilizing a geographically distributed cloud, user requests are tailored to suit the various

data centers. Geo-distributed cloud computing offers superior processing capability and storage space compared to

standard cloud computing, ensuring a higher quality of service. Therefore, it is crucial to investigate the scheduling

technique for workflow applications in order to enhance the efficiency of geo-distributed clouds.

• LINJIE et al. [10], In order to reduce long-term task latency and energy consumption, this study develops a task loading

model that takes into account the demands of energy-sensitive and latency-sensitive jobs as well as the overall load

dynamics in the cloud, edge, and end layers. To choose the optimal edge server or cloud server for loading, a method

called TOLBO is suggested, which is based on deep reinforcement learning (DRL). The approach outperforms

competing algorithms in terms of energy utilization on cloud edge nodes, according to simulation data. Concurrently,

it has the potential to drastically cut down on end device energy consumption, average latency, and job throw rate.

• Santosh T. Waghmode, Bankat M. Patil. [11]. The technologies of distributed computing, server virtualization, and

network storage have converged to form the cloud computing platform. The fundamental goal of cloud computing is to

deliver a variety of IT solutions by organizing and configuring a collection of computing resources, enhancing the

burden for users, and enabling them to concentrate on their core operations. Cloud computing encompasses the attribute

of scalability. The primary objective is to introduce a novel load-balancing method capable of evenly distributing

incoming requests from users worldwide, who are located in various locations, and are seeking data from faraway data

sources. This approach will integrate efficient scheduling with cloud-based methodologies. A novel approach for load

balancing was devised to guarantee fast responsiveness of cloud environments, while also optimizing the utilization of

cloud resources and accelerating job processing durations. Elastic load balancing automatically distributes incoming

traffic from applications over several targets, such as Amazon EC2 instances, network addresses, and other entities.

The results indicate that the suggested methodology performs effectively in a dynamic cloud setting, where user requests

arrive in a planned sequence and steadily expand in length. When comparing the suggested strategy with the current

approach, the algorithm is capable of responding to large-scale requests.

3. Mape-K Algorithm

The Karnaugh map, often known as KM or K-map, is a technique used to streamline Boolean algebra statements.
Maurice Karnaugh developed the concept in 1953 as an improvement upon Edward W.'s original idea. The Karnaugh
map exploits people' capacity to recognize patterns, hence minimizing the requirement for complex mathematics.
Additionally, it allows for the quick detection and resolution of possible race circumstances [23].

MAPE-K loops to handle this intricacy [10]. Assess and evaluate Closed feedback loops called Plan Execute-Knowledge
(MAPE-K) loops are capable of managing the intricacies of self-adaptation. In a more recent work, [11] provided
frameworks for applying MAPE-K control loops to diverse distributed apps. Most adaptive optimization algorithms
are implemented ad hoc in simulations and cannot be recycled from earlier iterations. As a general approach, we
suggest using a MAPE-K control loop, which will enable the implementation and upkeep of traditional adaptivity
schemes [24].

6 Fadheela S. Abu Almash, Journal of Al-Qadisiyah for Computer Science and Mathematics Vol. 16(2) 2024, pp Comp. 1–8

When addressing digital circuits and practical difficulties, it is sometimes necessary to identify expressions that
include the fewest variables possible. Boolean expressions of 3 or 4 variables may be efficiently minimized using K-
map, without the need for any Boolean algebra theories. The K-map can be represented in two forms: Sum of Products
(SOP) and Product of Sums (POS), depending on the problem's requirements. A K-map is a tabular representation that
provides more comprehensive information compared to a truth table. The K-map is populated with binary values of
0's and 1's, and subsequently solved by forming groups [26].

The k-means algorithm's fundamental principle is to use the average value of the data samples in each cluster subset
as the cluster's representative point and iteratively refine it. The procedure separates the data set into various groups
in order to assess clustering. Each cluster can arise when the energy criteria function reaches its ideal value. compact
and class-independent. During the iterative process, each class makes use of the optimal cluster set, which is reached
by continuously moving the items in the clustering set. The average value of the items is expressed. The cluster formed
through the application of the k-means algorithm has a high level of similarity among its constituent items, while
simultaneously demonstrating a significant degree of dissimilarity when compared to objects belonging to other
clusters.

3.1 The simulation method

A comparison can be made with different load-balancing algorithms and methods in cloud computing settings using
simulation tools such as the ACSIM framework. To create a simulated cloud environment, Virtual machines, servers,
and network components are used, through which performance analysis tools can be used to balance different loads
in this simulated environment.

Overall, while the ACSIM framework was not explicitly designed for cloud computing load balancing, the effectiveness
of load-balancing algorithms in cloud computing settings could be assessed using its simulation and analysis tools.
However, the accuracy and applicability of the simulation results would depend on how well the simulated
environment reflects the actual cloud environment being analyzed.

The simulation method of adaptivity in distributed agent simulation will address computational cost reduction,
execution time, and imbalance through the dynamic exchange of ACSIM distribution across multiple computational
units and the optimum use of resources. Also, it shows the type of simulation geometry required in a clear and
reusable way. Figure (7) shows the general scheme of the simulation method, which includes six steps.

Step 1: Initial ACSIM

 ACSIM is a distributed framework-based Python programing language figure. The work on this framework is
carried out dynamically by implementing a local server. The admin manager is generated in this sage based on the
users within the range (of 50 – 5000). Also, four types of admin managers are developed, two types of intruders and
the other two regular ones on which the balancing process is carried out.

Step 2: Adjust the ACSIM setting.

ACSIM settings and the client's movement are adjusted at this step. So, for example, when the latter moves in three
directions from its position, and when moving to the new campaign, three new activities are selected, and so on. And
these movements are all random.

Step 3: Executing the method.

In this step, the framework within which the client moves is determined.

Step 4: Get rid of intruders

This step includes that the user identifies the intruder client (irregular) , the intruder's movements are processed and
converted into regular (for example, the intruder's strength is 10 movements and then weakens, where the intruder
is killed and turned into a common node).

Fadheela S. Abu Almash, Journal of Al-Qadisiyah for Computer Science and Mathematics Vol. 16(2) 2024, pp Comp. 1–8 7

Fig 7. The simulation method diagram

Step 5: Map-k apply.

In this step, the balancing of the two regular categories and attempt to make them both equal. For example, one
category includes 50 admin managers, while the other contains 20 Slave mangers, they are summed and divided by
2, and the result is 35 nodes for each category), And as figure 8 shows.

Fig 8. load balancing

8 Fadheela S. Abu Almash, Journal of Al-Qadisiyah for Computer Science and Mathematics Vol. 16(2) 2024, pp Comp. 1–8

Step 6: Evaluation

In the last step, the evaluation is done as a real action instead of storing previous data. The evaluation here is achieved
based on accurate results depending on two categories, regular and intruder, where the intruder category reduces to
zero while the regular is balanced and distributed. The research revealed that the utilization of ACSIM led to a notable
enhancement in the efficacy and capacity of the MAPE-K Algorithm in both of its implementations. The load-balancing
methodology implemented in ACSIM ensured equitable distribution of workload among the nodes, thereby mitigating
the likelihood of performance deterioration resulting from excessive loading. The research findings suggest that the
utilization of ACSIM has the potential to enhance the efficiency of autonomic computing systems that necessitate load
balancing. According to the study, the implementation of ACSIM (Autonomic Computing System Integrator and
Modeler) resulted in a notable enhancement in the performance and scalability of the MAPE-K Algorithm. The load-
balancing methodology implemented in ACSIM facilitated the equitable allocation of workload among nodes, thereby
mitigating the likelihood of performance-related complications arising from excessive loading. The study's conclusion
suggests that ACSIM could be a valuable tool for optimizing the performance of autonomic computing systems that
require load balancing.

3.2. Load Balancing Algorithm

Load and load performance are the primary metrics used to evaluate the impact of load balancing. The CPU queue index and

CPU usage are two metrics used to assess the level of workload. Performance is the duration it takes for a user to obtain a

response. Several parameters are inputted into the load-balancing method, including the configuration of the virtual machine

(VM), the arrival time, and the characteristics of the cloudlet application (such as length, completion time, and expected

completion time) [26].

Fig 9. The load balancer's architecture in cloud computing.

The following formula is used to computing the expected response time for task [26]:
Expected Response Time (ERT) = TC – TA + TT …………(1)

where:
TC: The Complete of Time.
TA: The Arrival of Time.
TD: Transfer of Time (delay time).
The Datacenter Broker algorithm is responsible for performing load balancing, and its efficiency directly affects the
processing time in environment of data center. The communication delay has been eliminated completely. Calculate
the anticipated duration of task completion:
The scheduling strategy may be either Timesharing-Space sharing or Space Sharing-Timesharing. Next, the
calculation is performed using the formula provided in equations (2), (3):

𝑒𝑓𝑡(𝑝) = 𝑒𝑠𝑡 +
𝑟𝑖

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗ 𝑐𝑜𝑟𝑒𝑠(𝑝)
 ………….……………. (2)

Formula (3) used to compute the capacity parameter [9]:

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = ∑
𝑐𝑎𝑝(𝑖)

𝑛𝑝

𝑛𝑝
𝑖=1 ………………………..……………… (3)

Fadheela S. Abu Almash, Journal of Al-Qadisiyah for Computer Science and Mathematics Vol. 16(2) 2024, pp Comp. 1–8 9

Else when the scheduling policy is Space Share-Timeshare or Timeshare-Timeshare, then the calculation according
to the formula which defined in (4), (5):

𝑒𝑓𝑡(𝑝) = 𝑐𝑡 +
𝑟𝑖

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗ 𝑐𝑜𝑟𝑒𝑠(𝑝)
 ………………. (4)

Formula (5) used to compute the capacity parameter [10]:

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =
∑ 𝑐𝑎𝑝(𝑖)

𝑛𝑝
𝑖=1

𝑚𝑎𝑥(∑ 𝑐𝑜𝑟𝑒𝑠(𝑗),𝑛𝑝𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝑠
𝑗=1

 ………………(5)

For each formula in (2), (3), (4) and (5), that and for Cloudlet p:
eft(p): is the expected completion time.
est: The arrival time.
rl: The total number of instructions that are to be executed on a processor.
capacity: average processing power (in MIPS) of a core.
ct: current simulation time.
Cores (p): refers to the number of cores required.
np: actual number of core that the host is considered.
Cap: processing power of the core [26].
Therefore, in accordance with these equations and algorithms, the system as a whole has the ability to make things
faster and more efficient.

4.Results of The Experiment

In this experiment, the following variables were used to create a cloud: 30 cloudlets were considered a task, and
information was obtained via multimedia streaming (multiple files).
The results of related work are shown in the tables below: the reaction time is shown in the first table when Load
Balancing adaptive is not utilized, and the same results are shown in the second table when Load Balancing adaptive
is. Both tables are shown below. Case study of the associated work performed for a few servers. Show Table 1, and
Table 2.

Table 1. Without load balancing approach

No. Start (MS) Process Time (MS) Response Time (MS)

1 821.2013 821.201 0.000803

2 126.9081 126.9197 0.010624

3 299.9316 299.9335 0.011637

4 448.5049 448.5185 0.01162

5 764.0457 764.0622 0.0145

Table 2. With load balancing

No. Start (MS) Process Time (MS) Response Time (MS)

1 507.9036 507.92045 0.00113

2 411.9347 411.94165 0.01105

3 262.845 262.83391 0.01107

4 448.5049 448.5203 0.011102

5 746.0457 746.0622 0.011566

10 Fadheela S. Abu Almash, Journal of Al-Qadisiyah for Computer Science and Mathematics Vol. 16(2) 2024, pp Comp. 1–8

The findings from the previous tables (reference 25) indicate that there exist significant disparities in response time
between the utilization of Throttled Load Balancing and the absence of the algorithm, particularly in the context of
multiple mobile devices. Therefore, it is crucial to handle distributed time allocation for each device within the Mobile
Cloud effectively. The goal of the load balancing algorithm is to distribute the load among numerous servers, which
reduces the response time of Node. The findings demonstrate the analytical efficacy of time division through the
utilization of multiple virtual machines. The experimental findings suggest that the Algorithm exhibits a degree of
success. Consequently, the utilization of Load Balance Algorithm confers a tangible benefit. In the context of Mobile
Cloud environments, load balancing algorithms aim to prevent delays and minimize time waste across both types of
research. Results show the logical performance of time division via multiple VMs. The results of the experiment
indicate that the algorithm could be considered successfully.

5. Conclusion
Mobile Cloud Computing (ACSIM) is a concept that combines the advantages of cloud computing and
smartphone. The use of ACSIM allows mobile devices to offload data-intensive and computationally
complex operations to the cloud, leading to improved processing efficiency thanks to the superior
computing power and storge capacity of cloud servers. ACSIM can improve the efficiency of mobile
applications by offloading the processing and storge of data to the cloud. When the quantity of mobile apps
rises, cloud computing power becomes significant. In order to enhance the performance of this apps, the
computer resources will also be effectively utilized to manage their resources. Performance will improve
as a result of jobs being more responsive. As a result, it is challenging to plan tasks in a way that both
maximizes resource usage and job responsiveness.

References
[1] B. Ranjan Parida, Amiya Kumar Rath, Hitesh Mohapatra," Binary Self Adaptive Salp Swarm Optimization-Based

Dynamic Load Balancing in Cloud Computing", International Journal of Information Technology and Web
Engineering (IJITWE) 17.1 (2022): 1-25.

[2] Srinivasa Rao Gundu, Charan Arur Panem, Anuradha Thimmapuram, "Real‑Time Cloud‑Based Load Balance
Algorithms and an Analysis", SN Computer Science 1.4 (2020): 1-9.

[3] Walaa Saber, Walid Moussa, Atef M. Ghuniem, Rawya Rizk," Hybrid load balance based on genetic Algorithm in cloud
Environment", Vol. 11, No. 3, June 2021, pp. 2477~2489 ISSN: 2088-8708, DOI: 10.11591/ijece.v11i3.pp2477-2489.

[4] Nicola Sfondrini, Gianmario Motta, "SLA-aware broker for Public Cloud", In 2017 IEEE/ACM 25th international
symposium on quality of service (IWQoS), Vilanovai la Geltru; 2017, pp. 1–5.

[5] Ma Chen, Yuhong Chi, "Evaluation Test and Improvement of Load Balancing Algorithms of Nginx." IEEE Access 10
(2022): 14311-14324.

[6] Rajagopalan S, "An Overview of Server Load Balancing." International Journal of Trend in Research and
Development 7.2 (2020): 231-232.

[7] Anish Ghosh, Mrs T. Manoranjitham, "A study on load balancing techniques in SDN ", International Journal of
Engineering & Technology, 7 (2.4) (2018) 174-177

[8] Hui-Ching Hsieh, Mao-Lun Chiang," The Incremental Load Balance Cloud Algorithm by Using Dynamic Data
Deployment", https://doi.org/10.1007/s10723-019-09474-2.

[9] Chunlin Li, Jianhang Tang, Tao Ma, Xihao Yang, Youlong Luo, "Load balance-based workflow job scheduling algorithm
in the distributed cloud", Journal of Network and Computer Applications (2020).

[10] Yan, Linjie, et al. "A Task Offloading Algorithm With Cloud Edge Jointly Load Balance Optimization Based on Deep
Reinforcement Learning for Unmanned Surface Vehicles." IEEE Access 10 (2022): 16566-16576..

[11] Santosh T. Waghmode, Bankat M. Patil, “Adaptive Load Balancing Using RR and ALB: Resource Provisioning in Cloud”

ISSN: 2321-8169 Volume: 11 Issue: 7 DOI: https://doi.org/10.17762/ijritcc.v11i7.7940 Article Received: 08 May

2023 Revised: 26 June 2023 Accepted: 12 July 2023

[12] Agarwal, Mohit, and Gur Mauj Saran Srivastava. "Cloud computing: A paradigm shift in the way of
computing." International Journal of Modern Education & Computer Science 9.12 (2017).

[13] Abdalla, Peshraw Ahmed, and Asaf Varol. "Advantages to disadvantages of cloud computing for small-sized
business." 2019 7th International Symposium on Digital Forensics and Security (ISDFS). IEEE, 2019.

[14] Lowe, D., and B. Galhotra. "An overview of pricing models for cloud services with analysis on a pay-per-use
model." International Journal of Engineering & Technology 7.3.12 (2018): 248-254.

[15] Odun-Ayo, Isaac, et al. "Cloud computing architecture: A critical analysis." 2018 18th international conference on
computational science and applications (ICCSA). IEEE, 2018.

[16] Gupta, Indrajeet, Madhu Sudan Kumar, and Prasanta K. Jana. "Efficient workflow scheduling algorithm for cloud

https://doi.org/10.17762/ijritcc.v11i7.7940

Fadheela S. Abu Almash, Journal of Al-Qadisiyah for Computer Science and Mathematics Vol. 16(2) 2024, pp Comp. 1–8 11

computing system: a dynamic priority-based approach." Arabian Journal for Science and Engineering 43.12 (2018):
7945-7960.

[17] Adhikari, Mainak, and Tarachand Amgoth. "Heuristic-based load-balancing algorithm for IaaS cloud." Future
Generation Computer Systems 81 (2018): 156-165.

[18] Rajat, Dr Sanjeev Kumar, "Performance Comparison of Load Balancing Architectures in Cloud Computing
Environment.", Volume 8 • Issue 2 March 2017 – Sept. 2017 pp.. 186-193.

[19] Mazedur Rahman, Samira Iqbal, and Jerry Gao. " Load Balancer as a Service in Cloud Computing." Linked Open
Data-Applications, 978-1-4799-3616-8/14 $31.00 © 2014 IEEE DOI 10.1109/SOSE.2014.31.

[20] Jaimeel M Shah , Sharnil Pandya , Narayan Joshi, “Load Balancing in cloud computing: Methodological Survey on

different types of algorithm”, 978-1-5090-4257-9/17/$31.00 ©2017 IEEE .

[21] Kumar, Pawan, and Rakesh Kumar. "Issues and challenges of load balancing techniques in cloud computing: A
survey." ACM Computing Surveys (CSUR) 51.6 (2019): 1-35.

[22] Puthal, Deepak, et al. "Secure and sustainable load balancing of edge data centres in fog computing." IEEE
Communications Magazine 56.5 (2018): 60-65.

[23] Ebadifard, Fatemeh, and Seyed Morteza Babamir. "A PSO‑based task scheduling algorithm improved using a load‑
balancing technique for the cloud computing environment." Concurrency and Computation: Practice and
Experience 30.12 (2018): e4368.

[24] Negin Najafizadegan, Eslam Nazemi, Vahid Khajehvand, "A MAPE-K Loop Based Model for Virtual Machine
Consolidation in Cloud Data Centers", Journal of Computer & Robotics 13(2), 2020 33-60.

[25] Stig Bosman, Toon Bogaert, Wim Casteel, Siegfried Merceli, Joachim Denil, and Peter Hellinckx," Adaptivity in
distributed agent-based", 2020 Antwerp,

[26] Karim Q. Hussein, “A Multimedia Information Time Balance Management in Mobile Cloud Environment Supported

by Case Study”, DOI: https://doi.org/10.3991/ijim.v16i19.33615, VOL. 16 NO. 19 (2022)

https://doi.org/10.3991/ijim.v16i19.33615

