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Abstract 
  This paper describes a technique for applying interpolation sort algorithm on lists that contain  extreme 

values. The traditional interpolation algorithm costs O(n) time and space complexity, where n is number 

of elements in the list, but with drawback of its limitation of application on just  lists contain no extreme 

values. The proposed technique adapt the algorithm to sort  list contain extreme  values by reindex it and 

reformulate  the linear interpolation formula. 

1. introduction 

    Because sorting is so important, naturally it has been studied intensively and 

many algorithms have been devised. Some of these algorithms are straightforward 

adaptations of schemes we use in everyday life. Others are totally alien to how humans 

do things, having been invented to sort thousands or even millions of records stored on 

the computer. After years of study, there are still unsolved problems related to sorting. 

New algorithms are still being developed and refined for special purpose 

applications[Clifford 2013]. 

   There are basically two kind of sorting algorithms, O(n
2
) and O(nLog(n)) . O(n

2
) 

algorithms takes more time but less space while O(nLog(n)) algorithms takes less time 

but more space. So O(n
2
) algorithms are preferred for small arrays and O(nLog(n)) for 

large arrays There are sorting algorithms with O(n) time complexity too like Radix sort 

but with limitation on the range of the data[Gourav 2012]. 

In this research, an adaptation for interpolation sort is proposed to sort  lists that contain 

extreme values in O(n) time and space complexity, so the resulted algorithm will be more 

efficient from data dependency perspective.  

  The rest of the paper is organized as follows: Section 2 provide brief overview of 

sorting algorithms terminology and their concepts.  Section 3 present interpolation sort 

algorithm and discuss the proposed technique for applying interpolation sort algorithm on 

list contains extreme values with examples and analysis. Section 4 present conclusions. 

2. Sorting terminology  

Given a set of records r1, r2, ..., rn with key values k1, k2, ..., kn, the Sorting 

Problem is to arrange the records into any order  s  such that records rs1 , rs2 , ..., rsn 

have keys obeying the property ks1≤  ks2 ≤ … ≤ ksn. In other words, the sorting 

problem is to arrange a set of records so that the values of their key fields are in 

non-decreasing order[Clifford 2013]. 

When duplicate key values are allowed, there might be an implicit ordering 

to the duplicates, typically based on their order of occurrence within the input. It 

might be desirable to maintain this initial ordering among duplicates. A sorting 

algorithm is said to be stable if it does not change the relative ordering of records 

with identical key values[Clifford 2013]. 
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  When comparing two sorting algorithms, the most straightforward approach would 

seem to be simply program both and measure their running times [Clifford 2013].                     

However,   such a comparison can be misleading because the running time for many 

sorting algorithms depends on specifics of the input values. In particular, the number of 

records, the size of the keys and the records, the allowable range of the key values, and 

the amount by which the input records are “out of order” can all greatly affect the relative 

running times for sorting  algorithms[Clifford 2013]. 

  When analyzing sorting algorithms, it is traditional to measure the number of 

comparisons made between keys. This measure is usually closely related to the running 

time for the algorithm and has the advantage of being machine and datatype independent. 

However, in some cases records might be so large that their physical movement might 

take a significant fraction of the total running time. If so it might be appropriate to 

measure the number of swap operations performed by the algorithm. In most applications 

we can assume that all records and keys are of fixed length, and that a single comparison 

or a single swap operation requires a constant amount of time regardless of which keys 

are involved[Clifford 2013]. 

   Some special situations “change the rules” for comparing sorting algorithms. For 

example, an application with records or keys having widely varying length (such as 

sorting a sequence of variable length strings) will benefit from a special-purpose sorting 

technique. Some applications require that a small number of records be sorted, but that 

the sort be performed frequently. An example would be an application that repeatedly 

sorts groups of five numbers. In such cases, the constants in the runtime equations that 

are usually ignored in an asymptotic analysis now become crucial[Clifford 2013]. 

comparison-based sorting algorithm An algorithm that makes ordering decisions 

only on the basis of comparisons[mark allen weiss 2010]. 

inversion A pair of elements that are out of order in an array. Used to measure 

unsortedness[mark allen weiss 2010]. 

selection The process of finding the kth smallest element of an array[mark allen weiss 

2010].  

lower bound of sorting  The lower bound defines the best possible efficiency for any 

algorithm that solves the problem, including algorithms not yet invented. A simple 

estimate for a problem’s lower bound can be obtained by measuring the size of the input 

that must be read and the output that must be written. Certainly no algorithm can be more 

efficient than the problem’s I/O time. From this we see that the sorting problem cannot be 

solved by any algorithm in less than (n) time because it takes at least n steps to read and 

write the n values to be sorted. Alternatively, any sorting algorithm must at least look at 

every input vale to recognize whether the input values are in sort order. So, based on our 

current knowledge of sorting algorithms and the size of the input, we know that the 

problem of sorting is bounded by O(n) and O(n log n) [Clifford 2013]. 

  We can prove a nontrivial lower bound for sorting. Our best upper bounds match the 

lower bound asymptotically, and so we know that our sorting algorithms are 

asymptotically optimal. Moreover, we can use the lower bound for sorting to prove lower 

bounds other problems[Thomas 2009]. 
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3. The modified interpolation sort 

  In this section the traditional interpolation sort algorithm is described and then the 

modification is presented. 

3.1 Interpolation sort 

Consider the following unsorted array of size 15[Gourav 2012]: 

 

56 32 12 65 37 80 55 60 40 77 50 9 68 35 20 

 

The backbone of the sorting algorithm is the interpolation formula[Gourav 2012]: 
  

])[][(

])[][(
)1(][

MINDATAMAXDATA

MINDATAiDATA
NSPOSiIPOS




  

where, 

 

IPOS[i] → Interpolated position of the ith element of the unsorted array. 

SPOS → Starting index of the array. 

N → Number of elements in the array. 

DATA[i] → Data at the ith position of the unsorted array 

DATA[MIN] → Smallest data of the array. 

DATA[MAX] → Largest data of the array. 

It is to be noted that the division performed in the formula is integer division, i.e. decimal 

part is ignored. 

For the given array, 

SPOS=1 

N=15 

DATA[MAX]=80 

DATA[MIN]=9 

 

Substituting these values in the interpolation formula we get the interpolated positions of 

the elements as, 

 

56 32 12 65 37 80 55 60 40 77 50 9 68 35 20 DATA 

  10 5 1 12 6 15 10 11 7 14 9 1 12 6 3 IPOS 

 

Rearranging the array from smaller to bigger IPOS we get: 

 

12 9 20 32 37 35 40 50 56 55 60 65 68 77 80 DATA 

  1 1 3 5 6 6 7 9 10 10 11 12 12 14 15 IPOS 

 

So we see that most of the elements got sorted but there are few groups of elements 

whose IPOS values turned out to be the same. These groups of elements are treated as 

sub-arrays. The above technique is applied on each of these sub-arrays until we get no 

further sub-arrays [Gourav 2012]. 
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  It shows a high probability to show O(n) time complexity for a well distributed data. 

The algorithm has a disadvantage of large code size and taking a lot of RAM memory for 

sorting [Gourav 2012]. 

 

To achieve the same algorithm in reality we have to find a way to “rearrange the array 

from smaller to bigger IPOS”.Two structure types have to be used to do the above 

Effectively [Gourav 2012]. They are: 

 

NODE1 

 

DATA RIEGHT 

 

The data type of the field DATA is that of the data being sorted. 

RIGHT is a pointer of type NODE1. 

 

NODE2 

 

SPOSS N START 

 

 

START is a pointer of type NODE1. 

SPOS and N are integer variables. 

 

An array “BEG” of type NODE2 is used to store the information of the sub-arrays yet to 

be sorted. The starting index of the sub-array in the main array is stored in SPOS 

while N contains the number of elements in the sub-array. The information of the sub-

array to be sorted is always present in BEG [1], i.e. the first element of BEG. Using the 

information of the sub-array present in BEG[1] the sub-array is sorted[Gourav 2012]. 

 

The following is The traditional interpolation sort algorithm [Gourav 2012]: 

 

Input: Unsorted array ARRAY[] of size SIZE. 

Output: Sorted array ARRAY[] of size SIZE. 

INTERSORT (ARRAY[], SIZE) 

1)   Make an array BEG of type NODE2 and size 1 using 

      dynamic memory allocation. 

2)   Set BEG [1].SPOS=1, BEG [1]. N=SIZE and BEG 

      [1].START=NULL. 

3)   Set NUM = 1. 

4)   Repeat steps 5 to 14 while NUM ≠ 0 

5)   Traverse ARRAY from index BEG [1].SPOS to 

      BEG[1].SPOS + BEG[1].N – 1 and find the maximum 

      and the minimum data. Save them as MAX and MIN   respectively. 

6)   Make an array SUBARRAY of type NODE2 and size 
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       BEG [1]. N using dynamic memory allocation . For each 

       and every element of SUBARRAY initialize there fields 

       N=-1 and START=NULL. 

7)    Set A = 0. 

8)    Traverse ARRAY from index BEG [1].SPOS to 

       BEG[1].SPOS + BEG[1]. N – 1 and for each and every 

       data in this range: 

             a)  Interpolate the position IPOS of the data in 

                  SUBARRAY using interpolation formula. For 

                  interpolation take SPOS = 1, N = BEG [1].N, DATA[MIN] = MIN and  

                  DATA[MAX]=MAX. 

 

            b)  Save the element in the memory location pointed by 

                 SUBARRAY [IPOS].START. To do this create a 

                 variable VAR of type NODE1. Set VAR.DATA = THE DATA,  

                 VAR.RIGHT =  SUBARRAY[IPOS].START.  

                 Then Point SUBARRAY[IPOS].START to VAR. 

           c)   If SUBARRAY[IPOS]. N = -1 set it to 1. Else increase it by 1. 

           d)   If SUBARRAY[IPOS].N = 4 then increment A by 1. 

9)     Set NUM = NUM + A – 1. 

10)   Make an array NEWBEG of type NODE2 of size NUM 

         using dynamic memory allocation. 

11)   Traverse SUBARRAY and for each and every element for which N ≠ -1 

          a)   Set the field SPOS = BEG[1].SPOS for very first element for which N ≠ -1.  

                For other elements SPOS= TEMP. 

          b)   Set TEMP = SPOS + N. 

          c)   Copy all the data from the memory location pointed by START to the  

                ARRAY in consecutive array indices starting from index SPOS in the actual  

                array. 

                Delete the memory locations pointed by START. 

         d)    If N<=3 then sort the data in ARRAY using bubble or insertion sort. 

         e)    If N>3 copy the element in NEWBEG. 

12)   Copy all the elements of BEG to NEWBEG except BEG[1]. 

13)   Delete BEG and SUBARRAY. 

14)   Set NEWBEG as BEG. 

 

3.2 The proposed modification of interpolation sort algorithm 

  Before proceeding in demonstrate the modification applied on interpolation sort to run 

with lists contain non uniform distributed elements values ,the reason that cause the 

interpolation sort algorithm not work properly on non uniform distributed values ( list 

contains extreme values) must be explained. The following demonstrate this fact. 

Suppose the following list must be sorted: 

 

 11 9 10 8 13 12    
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When apply the interpolation formula with the following values: 

n=6 

SPOS=1 

Data[min]=8 

Data[max]=13 

 

We get the following interpolation positions:  

  

 

 

For the same list, except for the max element value that has chosen to be 18,we get  the 

following interpolation positions for the element of the list: 

 

   

Data 11 9 10 8 18 12 

 Ipos 2 1 2 1 6 3 

  

and For the same list, except for the max element value that has chosen to be 23,we get  

the following interpolation positions for the element of the list: 

 

Data 11 9 10 8 23 12 

Ipos 2 1 1 1 6 2 

 

Again For the same list, except for the max element value that has chosen to be 28,we get  

the following interpolation positions for the element of the list: 

 

Data 11 9 10 8 28 12 

Ipos 1 1 1 1 6 2 

 

Repeat interpolation formula for same list, except for max element value that has been 

chosen to be 33;   we get the following interpolation positions for the element of the list  

 

Data 11 9 10 8 33 12 

Ipos 1 1 1 1 6 1 

 

  When applying the algorithm on this list for different max values, the  interpolated  

positions grouped in groups with same value whenever max value increased and become 

extreme value with respect for other values in the list. 

Continuing increasing the value of max element will minimize the number of groups and 

increase the number of element in these groups until all the element of the list, except 

max element, will be in one group. this happen for the above list with max element of 

Data 11 9 10 8 13 12 

Ipos 4 2 3 1 6 5 
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value 33. in this situation the interpolation sort algorithm must be repeated for the 

elements with same interpolation positions values, i.e. for list with n-1 element. 

  This scenario may be repeated if the max element of (n-1) list has irregular value with 

respect to the rest of the list. The worse case here when the values of list element highly 

variant according to each other. This cause the repetition of the algorithem (n-2) times, 2 

in this expression means insulation the min and max elements from the computation 

because they computed first time in the beginning of the algorithm. 

 

Why this happened? 

 The answer of this question can be obtained from the interpolation formula that state: 

  The interpolated position( ][iIPOS ) of each element of the list is the difference between 

them and the min value element in the list ])[][( MINDATAiDATA  scaled by the ratio 

between the number of elements in the list, except max element, and the range of  the 

element values of the list(
])[][(

)1(

MINDATAMAXDATA

N




), with respect to  the beginning 

location of the list, i.e. interpolated position offset or start position, SPOS .     

The ratio in the Interpolation formula (
])[][(

)1(

MINDATAMAXDATA

N




) is responsible  

Of the failure of interpolation sort algorithm when max value be extreme with respect to 

the rest of the list because it puts more element values in same location in the resulted 

sorted list as it decrease when max value increase. 

  In the preceding list when max value was 13 the above ratio was 1 this mean each 

element in unsorted list occupy one distinct location in sorted list because the range of 

element values ])[][( MINDATAiDATA  of  the list is equal to its length except max value 

)1( N . 

  But when max value increase and become 18 the ratio become (1/2) this mean each two 

elements in unsorted list have successive values have same interpolation location in 

sorted list. 8 and 9 occupy same interpolated position in this list, this is an example. 

 

  In successive list with max values 23, 28 and 33 the ratio become (1/3),(1/4) and (1/5) 

respectively .  That’s means each 3 or 4 or 5 element have same interpolated position in 

sorted list, resulted in inefficient algorithm. 

 

 The interpolation sort will run inefficiently also when min value is extreme value with 

respect to the rest of the list elements values in same manner. 

  

  The proposed solution can be summarized using the word ' smoothing'.  That’s mean 

reindex the largest list element such that its value become  its index ,so, no repeated   

positions result when applying linear interpolation formula to list elements. 

  

  The above procedure means as if the list is augmented by adding a uniform increasing 

values to smooth the difference between list elements.  Starting from min value 

DATA[MIN] and increase it by certain constant to obtain another value and increase it by 

same constant until DATA[MAX] is reached.  For the list: 
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11 9 10 8 33 12    

 

  The min value is 8, and the max value is 33,.if  2 is used as an incremental constant 

from min value to max value, the list will be ( the original values are written in bold face 

font , and the adding uniform distributed values are  written as italic font) : 

 

8 9 10 11 12 14 16 18 20 22 24 26 28 30 32 33 

 

 Mathematically can represent the above procedure as following: 

DATA[MAX]= DATA[MIN]+CK. ….(1) 

Where: 

C is the constant increment for the values generated from DATA[MIN] to 

   DATA[MAX]. 

K  is  ther number of increments of C magnitude to ADD to DATA[MIN] to obtain      

DATA[MAX]. 

So, the list length( N) will be: 

N=K+1. ……(2) 

 

When substituting equations (1) and (2) in the Interpolation formula  of section 2.3  the 

interpolation formula will be : 

C
MINDATAiDATASPOSiIPOS

1
])[][(][  .         i=1..N. 

 

The most important thing that must be decided is the chosen of  a suitable value for C. 

 

For the following list: 

 

11 9 10 8 33 12    

 

  

If c is chosen to be 1 then the interpolated positions of list elements values will be: 

 

   

Data 11 9 10 8 33 12 

Ipos 4 2 3 1 6 5 

 

But, if 12 is replaced with 14 in the above list  then the interpolated positions will be: 

 

Data 11 9 10 8 33 14 

Ipos 4 2 3 1 6 7 

 

the interpolated position of 14 is 7 , and this position is out of list's positions range. 
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the following table shows the interpolated positions for the list [11,9,10,8,33,14] . 

 

 

 

 

    List element values 

C 11 9 10 8 33 14 

1 4 2 3 1 6 7 

2 2 1 2 1 6 4 

3 2 1 1 1 6 3 

4 1 1 1 1 6 2 

5 1 1 1 1 6 1 

  

  The choice of C=1 is perfect but its unsafe from (out of range) interpolated positions. 

The choice of c>2 result in groups of more than 2 numbers if these numbers are 

convergent in there values that need the rerun the interpolation formula and that require 

find max and min values for each group. 

 

  The use of c=2 is perfect , because if there is groups of two numbers resulted in same 

interpolated positions after applying the interpolation formula , the only effort needed to 

rearrange them in correct order is compute the interpolated position for just two elements 

in each groups. This prevent produce elements with same interpolated positions again as 

may happen in groups length greater than two.   

 

For the list [11,9,10,8,33,14], when applying the modified interpolation formula proposed 

in this paper with C=2 the interpolated positions for the list will be: 

 

Data 11 9 10 8 33 14 

Ipos 2 1 2 1 6 4 

 

  After apply the modified interpolation formula for the groups of same interpolated 

positions  as stated in [Gourav 2012], the following interpolated positions will result: 

 

Data 11 9 10 8 33 14 

Ipos 4 2 3 1 6 4 

 

  Applying the modified interpolation formula for the elements 11 and 14 that have same 

interpolated position will result the following interpolated positions: 

 

  

Data 11 9 10 8 33 14 

Ipos 4 2 3 1 6 5 

 

intervals. This is the configuration of the list that make the algorithm run in its best case. 
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  The modified interpolation sort algorithm will run in Ѳ(N) time complexity  for list  

Data incremented regularly by 2 over the range of list data ])[][( MINDATAMAXDATA  , 

this mean the algorithm's time complexity incremented linearly with the number of list 

element , therefore , the time complexity of the algorithm can enhanced significantly  just 

when run on more sophistgated CPU  and on shortest time fetch cycle memory  machine .  

 

 

For the list: 

14 12 10 8 33 16    

 

When smooth the list using C=2 the list seems as if its length augmented to the following 

list( the list is distributed over intervals with two values): 

 

8 9 10 11 12 13 14 15 16 17 18 19 20 21 

Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6 Interval 7 

 

22 23 24 25 26 27 28 29 30 31 32 33 

Interval  8 Interval 9 Interval 10 Interval 11 Interval 12 Interval 13 

 

 When applying the modified interpolation formula, the following Interpolated positions 

will result: 

  

Data 14 12 10 8 33 16 

Ipos 4 3 2 1 6 5 

 

 We can show that the interpolated positions  are the same the  interval positions the list 

element belong to and run in Ѳ(N) time complexity.  In this paper The modified 

interpolation sort algorithm will run in Ѳ(N) time complexity  for list Data incremented 

regularly by 2 over the range of list data ])[][( MINDATAMAXDATA  . this mean the 

algorithm's time complexity incremented linearly with the number of list element , 

therefore , the time complexity of the algorithm can enhanced significantly  just when run 

on more advanced CPU  and on shortest time fetch cycle memory  machine .  

 

3.3 Modified interpolation sort algorithm drawbacks 

the main drawbacks of the algorithm is produce (out of range) interpolated positions 

when list elements values belongs to non contiguous interval over list data range after 

smoothing it.  

For the list: 

 

Data 14 20 18 8 33 16 

Ipos 4 8 7 1 6 5 

 

The elements values 18,20 have out of range interpolated positions 7,8 
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4. Conclusion 

    The non-comparison sort algorithm approaches the lower bound of sorting more than 

the comparison based one this is due to its ability to determine the correct position of  list 

element  directly using mathematical formula  without  take into account other list 

elements as in comparison based algorithm. But, in the other hand, it's affected by the 

distribution nature of list elements value. 
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