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1. Introduction

A functional equation F is deemed stable if any solution f of [ is approximately close to a precise solution. The last
several decades a number of mathematicians have dug deep into issues related to the stability of functional
equation. This solves a lot of difficulties, including the optimization and the approximation theory problems, and it
also handles the mistake that happens when the approximate solutions to an equation are substituted with their a
precise functions. It was Ulam [12] who initially brought this issue to light. After that scientist Hyers [10] provided
affirmative answers to Ulam'’s inquiries regarding additive groups. Subsequently, both scientists, T. Aoki [4] and
Rassias [11], extended Hyers’s theory. Aoki focused on additive mappings, while Rassias investigated linear
mapping’s, specifically examining the indefinite Cauchy difference regulated by the logical operator "||»||* + |[y]|* "
when s € [0, 1). Similarly to Rassias, Gajda provided a favorable answer when p = 1. Gavruta [9] in 1994 introduced
a broader interpretation of Rassias’s theorem encompassing all earlier findings. In this formulation "||»|[s + [|y|/*"
was substituted by a control function of §(x, y). We addressed the stability of the functional equation

fOt = 2y) + f(n + 2y) + 6f() = 4[f(t —y) + f(n + y)] + 3f(2y) — 24f(y)
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foralls,y e W. (1.1)

In LRN-space using the direct method, which is generally related to the amount of difference between the a precise
and approximate solutions, this is what we worked on in this research. It is possible for functional equation (1.1) to
be either a quartic or a cubic function, depending on whether itis an even or odd function, respectively . This makes
it a mixed-functional equation.

2. Preliminaries
2.1. Definition [5]

An order setl = (L,>;) (= relation ont) is called complete lattice, if every anon-empty subset A of % admits
supremum and infimum, alsoinft. = 0;, supt = 1;.

Afis the set of distribution function
A= {g|lg: RU {—o0,00} - £,g(0) = 0,,g(+) = 1,,g is anon — decreasing, left continuous on R}.
The subset D of Af defined as Df = {P € A} :lim,_,,, P(x) = 1;}.

0,,ift<0

. . +
1, ift> 0 is the maximal element for Dy .

The function C.(t) = {

2.2. Definition [5]

Let ¥: L. — L be function and denoted by a negation function, iff

(1) ®(0) = 1, ¥(1) = 0,.

2)N¥PB) < M) ifB = a.

This function involutive, iffN(N(oc)) = Va € L.

2.3. Definition [5]

The mapping T: £.2 — L (L is complete lattice), is Triangular norm (t-norm) on %, if the following are achieving:
1) T(», 1;) = », ¥ € L. ( Boundary condition).

2) T(n,y) = T(y,n), V(»,y) € £? ( Commutativity condition).

3) T(M,T(y, z)) =T(T(n,y),7),V(n,y,z) € £3 (Associativity condition).
M)y <,y =Ty < T(n,y"),¥(n,y,y") € 13 ( Monotonicity condition).
The t-norm has four basic examples given by :

1) T,,(%,y) = min{n,y}.

2) T.(n,y) = max{n +y —1;, 0}.

3) Ty (0 y) =%y,

min{x, y} if max{xn,y} = sup L

A Toloy) = { 0 0.W.

2.4. Definition [5]

The mapping C: 1.2 - L triangular co-norm (t-conorm) on k. ( L. is complete lattice), if the following are achieving:
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(1) C(x, 0;) = %, Vu € L (Boundary condition).

(2) C(n,y) = C(y, %), V(n,y) € £? (Commutativity condition).

(3) C(%,C(y,2)) = C(C(n,y),2),¥(»,y,7) € L2 (Associativity condition).

(4) y=1y = Cn,y) =, Cn,y"),V(n,y,y') € £3 (Monotonicity condition).
2.5. Definition [5]

Assume thatt =[0,1]?> and -, = are continuous t-norm and continuous t-conorm, respectively . Then the
continuous t-norm is called continuous t-representable, ie. for all u = (®;,%,), vy = (y5,y,) € £2, T(n,y) =
(g ° Yoz °Y2)

2.6. Definition [5]

A lattice random normed space (LRN-space), is (W, P, T), W is a vector space and P: W X [0, ) — D; (mapping), T is
a t-norm on lattice set L. So that the following is achieved:

1) P(a,t) = C.(t),vt > 0iffa=0.
2) P(aa, t) = P(a,ﬁ),vo £a€eW,t>0.

3)P(a+b,t+5s) > T(P(a, t), P(b, s)),Va,b €Wandts > 0.
2.7. Example [5]
If (£, <) defined by
b= {(ny, 1) (nq, mp) €[0,1]%,%; + 1, < 1}
(1, %) <y, (y1,y2) ifandonly if uy <y y1,y, <y %o
v = (1, %),y = (y1,¥2) EE%
Then (L, <;) complete lattice.
We denoted its unite by 0, = (0,1), 1, = (1,0).
Assume that (W, ||||) is normed space, T(%, y) = (min{x,,y,}, max{x,,y,}), Vu = (4y,1,),y = (y1,y,) € £2.

t Il

—,—) ,Vt € R,
CF Tl T

P(x,t) = (

Hence (W, P, T) is an LRN-space.
2.8. Definition [5]
If (W, P, T) is LRN-space,

a) Let {»,} be any sequence in W is called convergent to ¥ € W, if forany € > 0,r € £./{0,;,1;}, AN € Z* such that
P(n, —n,€) >, N¥(r),vn > N.

b) Let {®,} be sequence in W is called Cauchy sequence, if for any € > 0 and r € £/{0;, 1,}, 3N € Z* such that
P(t, — ®pm,€) > ¥(r),vn=m = N.

c) Let {»,} is Cauchy sequence in LRN-space (W, P, T), then W is called complete, if n, - »,Vn € W.
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3. “Stability of functional equation(1.1) in LRN-space if f is even mapping”.
3.1. Lemma [7]

Assume that W, Y are linear space and f: W = Y mapping satisfy (1.1), then (1.1) is quartic functional equation if f is
even function.

3.2. Theorem

Assume that1 = (L, >;) is complete lattice and f: W — Y is even mapping from real linear space W to complete LRN-
space (Y, P, T) with f(0) = 0 for which G:W X W — D such that

P(f(n — 2y) + f(n + 2y) + 6f(0) — 4[f(x —y) + f(x + y)] — 24f(y), ) =, C(w,y, 1)
foralln,y € X,t > 0. (3.1)
foralln,y € X,t > 0.
Iflim,,_., T2, (€(0, 27+ 1y, 240+31t) ) = 1 (3.2)
and lim,_,,, C(2™x, 2"y, 2%"t) = 1, (3.3)
forall®,y € W,t > 0, then there exists a unique quartic mapping K: W = Y suchthat
P(f(y) — K),t) =; T2,(€(0,217 1y, 23+1)) vy eW,t> 0 (3.4)
Note: 1, = supt. > ¥(k),vk € £./{0,,1,}.
Proof: Putting ® = 0 in (3.1) we obtaining

P(2f(2y) —32f(y), ©) 21, €(0,y,D)

P(2(f(2y) — 16f(y)),t) =, €(0,y.1)

P(B2— f(y),t) =, €(0,y,25) =, €(0,,2%) (3.5)

vy eW,t>0,z€N.

(f(ZZ+1y) %)

24(z+1) 24z

t) 2, €(0,2%y, 24Dy (3.6)

(f(ZZ“y) @)t

24(z+1) 24z ’ pz+1

) 2, €(0,27, 2 y) (3.7)

1

Yy € W,t > 0,z € N, since 21, i

< 1, by the tringle inequality, we have

2n 2n .
P (f (243 ) —f(y).t> > P (f(ZTY) —f@y), ZZ 2—2)

- f(2**ty) %yt
> 9= (P ( 24(z+1) | g4z ’ ZZ+1)

>, To=4 (€(0,2%,23¢+1t) )

=T, (€(0,2"1y, 2%t)) (3.8)

n

We should prove the sequence {f(z‘“f)} is convergence, we exchange y with 2™y in (3.8) for alln,m € N.
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n+m m . .
P (fgi(n_”z])) _ f(zz‘“z’) , t) ZL T:'l:1(c(0, 21+m—1y' 231+4-mt)) (39)
)N . T fe™y)

by (3.2) when n, m — oo the sequence S J 1S Cauchy sequence. Therefore we have K(y) = lim,,_,, e forall
y EW.
Now exchanging #,y with 2™u, 2™y respectively, in (3.1) we have

fMu-2My)  feMu+2My) | 6f(2™Mn)  4[fQMu-2My)+fQMu+2My)]  24f(2™My)
P ( S4m 4m Sam S4m ~ T L m t) >, €(2Mxn, 2™My, 24mt) Vn,y €
W,meN, t>0 (3.10)

Taking m — oo, we show that K(y) satisfying (3.1), for all %,y € W, hence K(y) is quartic mapping.
To prove (3.4) taking n — oo in (3.8) we get (3.4).

Finally, to prove the uniqueness of the quartic mapping K, suppose that there exist quartic mapping K which
satisfies (3.7), since K(2"y) = 24"K(y) then K'(2"y) = 24"K (y), fory € X,n > 1.

P(K(y) — K(y),t) = P(K(2"y) — K (2"y), 2*"t)
>, T(P(K(2"y) — f(2"y), 247710), P(f(2"y) — K (2%y), 27 1t) )
>, (722, (€(0, 27+~ 1y, 2#+31)), T2, (€(0, 27+~ 1y, 27+31))) (3.11)
Vy € W,n € N,t > 0, by taking n = o in (3.4), we have K = K.
3.3. Corollary

Let1 = (4, >;) be complete lattice, f: W — Y, even mapping from W (real linear space), to (Y, P, T) (complete LRN
space), f(0) = 0 and

P(f — 2y) + fc+ 2y) + 6f(0) — 4[fCe = y) + fOu + )] = 24(3), ) 24 8t||_xo||

v,y € W,t > 0.
Then there exists a unique quartic mapping K: W —= Y such that

23i+1t

——— | VY EW,t > 0.
230+t 4 5||x°||) y

P(f(y) — K(y),t) =y, (T2, (

t
t+8]Ixl

Proof This corollary can easily proving by using theorem (3.2) and replacing C(», y, t) with which is in D}.

IfT =Ty, or T =T, . must be equal [0,1]. Also if T = Tj, or T = Ty, all the condition of theorem (3.2) are met. Since

lim (T,)%, (c(o,zn+i-1y,24n+3it)) = lim max{( E €(0, 2n+i-1y, 24n+3it) 11> + 11,01}
n-co n-oo
i=1

24n+3it

= lim max{( ﬁlm - 11) +1, 01}

n—-oo

= lim max{( o ﬂ) +1, 01}

n-oo 1=1 24043114 5|

. |||l
= lim max{l ———F 0
n-oo L 7240480 1
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= max{ll, Ol} = 11.

24n+3it
24n+3it+8||xe||)

limy o0 (Tp)2 (€00, 2711y, 24743i8) ) = lim, . (Tp) 2, (

24n+3i¢ o 24n+3i¢ o
. in|l——s———— if —_— =1
= lim min <24n+31t+5||xg||>_ . ! max<24n+3‘t+6||x0||)_ . 1
n—-oo 1= 1=

0 0.W

24n+3it
iy ()
=00 \ 240431145 o !

And for all t-norms

240t
i . n n 4n =i —— =
Aim, €(2%, 2%, 2170 Airg<24nt+8||xo||> b

3.4. Corollary

Let (L. = [0,1],>;) be complete lattice, f: W — Y, even mapping from W (real linear space), to (Y, P, T) (complete LRN
space), f(0) = 0. f T=TyorT=T,.

t
P(f(x — 2y) + f(mx + 2y) + 6f(n) — 4|[f(t —y) + f(t + — 24 > ,Vru,y e W, t > 0.
Then there exists a unique quartic function K: W — Y such that
24n+3it
P(f(y) — K@), t) >y, TiZ, (24n+3it - oc(||2“+i—1y||5)>’vy EW,t>0.
Proof This corollary can easily proving by using theorem (3.2) and replacing €(x,y,t) with—————— which is in

t+a (IS +ylls)’
Df,andput 0 <s < 4.

3.5. Corollary

Assume that (£, >;) is complete lattice, f: W — Y, even mapping from W (real linear space), to (Y,P,T) (complete
LRN space), f(0) = 0.1fT = T, and T = T}, and

Il

— VYV, y EW,t > 0.
e+ ol Y

P(f(n — 2y) + f(u + 2y) + 6f00) — 4[f(t — y) + f(t + y)] — 24f(y),©) =1, 1, —

Then there exists a unique quartic function K: W — Y such that

P(f(y) — K(y),t) >, supt.

[l
el

Proof This corollary can easily proving by using theorem (3.2) and replacing C(x,y, t) with 1; — which is in D}

IfT = Ty, the prove is direct. If T = T, then L must be equal [0,1].

lim (T,)2, (€00, 271y, 247-316) ) = lim (T,)2, (1, — 0)
n—-oo n—-oo
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lim (T,)" (G(o,zn+i—1y,24n+3it)) = lim (1, = 0) - (1, = 0) .. .)
= 11.

And for all t-norm.

lim €(2™x, 2"y, 247t) = lim ( 1 —ﬂ
n—-oo ’ Y - n-oo 1 24'nt + Zn”}(”

=1,
Then the result is achieved.
4) “Stability of functional equation (1.1) in LRN-space iff is odd mapping”
4.1. Lemma [7]

Let W,Y be linear space andf:W — Y mapping satisfy (1.1), then (1.1) is cubic functional equation if fis odd
function.

4.2. Theorem

Let] = (L, >;) be complete lattice and f: W = Y, even mapping from real linear space W to complete lattice random
normed space (Y, P, T) with f(0) = 0 for which 3: W x W - Dj such that

P(f(n — 2y) + f(u + 2y) + 6f(0) — 4[f(t —y) + fOt + y)]) = By, £)

vn,y € W, t > 0. 4.1
IFlim, ., T2, (B(3™ 1y, 30411y, 3904210 ) = 1, (4.2)
And lim,_,., 3(3%x, 3%y, 33%¢) = 1,. (4.3)

Forallx € W,t > 0,n € N, there exists a unique cubic mapping K: W = Y such that
P(K(X) — f(x), ) =, T, (r5(3nn, 30y, 32i+1t)) (4.4)
Note: 1, = supk >, ¥(p), Vp € L/{0), 1;}.
Proof Suppose that » = y we are getting

P(f(3x) — 27f(x),t) =, B( x,t)

P (52— 00, 55) 2. BGo %D

P(f(S") — (), t) >, B0t %, 3%t) (4.5)

Ve eW,t>0k€N.

(f(s"“n) 1(3"%) L) >, B(3%3,3%,3%t)

33(k+1) 33k ’33k

p (f(3k+1x) _f(3kX)’t) >, 6(3"74, 3ky, 33(k+1)t)

33(k+1) 3k

f(3k+1 (3% ¢
P ( §3(k+f)) () ) >, B(3%x, 3%, 320+ 1¢) (4.6)

3k’ 3k+1
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For all x € W,t > 0,n, k € N. Since }7_,; 7w < 1 by tringle inquality.

(3™xn) (3™x)
Thus, P (52— 5o, t) =, P (52 - 50, s )
n— 3" ) f3%n) ¢
2 Tk:é (P(33(k+1) T T3k '3k+1))

>, Tiz (B(3%%,3%x, 32¢+D))

=T, (B(31%,37715,3%)). @.7)
We should prove the sequence {f( 3 )} is convergence, we exchange s with 2™ in (4.7) for all n,s € N.
f3n+s (35 ) . - ]
P ( 23(n+:‘)) _f33:f ) t) >, ™, (B(3s+z 1y, 35+i= 1y, 335+21t)) (4.8)

£(33M3)

33n ’

f@"

By (4.2) when n, s — oo, the sequence { } is Cauchy sequence .Therefore we have K(3) = lim,,_,, for all

new.

Now exchanging s, y with 3%, 35y respectively in (4.1) we have

f35x—235y) | f(35n+2:3%y) | 6f(35y)  4f(3°(x—y)) | 4f(3°0e+y))
P ( 335 335 335 - 335 33S

t) 2, B(3°%,3%y,3%1)
(4.9)

vu,yeW,t >0,s € N.
Taking s — oo, then K(3¢) satisfying (4.1) for all %,y € W, hence K(3¢) is cubic function.
To prove (4.4) taking n — oo, in (4.7) we get (4.4).

Finally, to prove the uniqueness of the cubic mapping K(»r), suppose that there exists cubic mapping K’'(») which satisfies
(4.4), and since K(3™») = 3"K(x), then K'(3"x) = 3"K'(x). Forall x € W,n > 1.

P(K(¢) — K'(20),t) = P(K(3") — K'(3"x), 33"t)
>, T2(P(K(3"x) — f(3"x), 33" 1t), P(f(3"%) — K'(3"x), 33" 1t), P(K(3"x) — K(3"x), 33" 11)).
= T(P(K(3™x) — f(3"x), 33" 1t), P(f(3"x) — K'(3"x), 33" 11))
>, T (T;‘;l (BEi1, 301, 3200300 ) T2 (6371, 374, 32i+3"t))>
veeW,neN,t > 0. (4.10)
By taking n — oo, in (4.4) we have K = K'.
4.3. Corollary

Let [ = (£, >;) be complete lattice, f: W — Y, even mapping from W (real linear space), to (Y, P, T) (complete LRN space),
And

P(f(e — 2y) + fGe + 2y) + 6f(3¢) — 4[f(sc — y) + f(x + ¥)],8) =, t+6||x M —— Vi, yEW,t > 0.

Then there exists a unique cubic mapping K: W — Y such that
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32i+1t

———|,Vx e X, t > 0.
321+1t+6||m,||)

P(f(0) — K(G0), t) =, T2, (

t
t+6] ||

Proof This corollary can easily proving by using theorem (4.2) and replacing 3(x, y, t) with , ¥t > 0 which is in

Df.If T=T,, or T =T, the prove is direct, in case T =T, or T, £ must be equal [0,1].
4.4. Corollary

Assume that (. = [0,1], =) is complete lattice, and f: W — Y, W (real linear space), to (Y, P, T) (complete LRN-space). If
T=T,T=T,.

t
t + a(llllz + llyll?)

P(f(r — 2y) + fGr + 2y) + 6f(0) — 4[fGr — y) + fGe + y)1, 1) =,

For all ,y € W,t > 0.

Then there exists a unique cubic mapping K: W — Y such that

32i+1¢
P60 — KGO.6) 2. Tizy (32i+1t a3l + ||3n%||z))

vy eW,t>0,n€eN.

t

Proof This corollary can easily proving by using theorem (4.2) and replacing 3(x, v, t) with TR

W,t > 0 whichisin Dff. Andput 0 < z < 3.

Vr,y €

4.5. Corollary

Assume that (t. = [0,1],>;) is complete lattice, f: W — Y, even mapping from W (real linear space), to (Y, P, T) (complete
LRN-space). If T = T,, or T,, and

P(fGe — 2y) + fGe + 2y) + 6f(0) — 4[fCGc —y) + fGe +y)],8) 2, 1, — %
Forall »,y e W,t > 0.
Then there exists a unique cubic mapping K: W — Y such that
n
P(fGe) — KGo), t) =, T2, (11 - %)
For all x € W,t > 0.
Proof This corollary can easily proven by using theorem (4.2) and replacing 3(x,y,t) with 1, — tﬂ’li:i" JMHEW, >0,

which isin Djf.
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