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A B S T R A C T 

In the current work, we investigate  two new subclasses   (     ) and   
∗(     )  of class   of bi-

univalent functions found within the open unit disk   *  | |   +. We derive the normalized 

forms of functions that belong to the two classes descri bed above. Furthermore, we obtain estimate s 

of the starting coefficients  |  | and |  | for these functions. Multiple classifications are also taken 

into consideration, and connections to previously established findings are established.  
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1. Introduction  

Let  ( ) as a class of all analytic functions    in the open unit disk   *  | |   +  normalized by  ( )  
  and   ( )    having the form: 

 ( )    ∑   
 

 

   

          (   )                                                                   ( ) 

The class   includes all functions    that are univalent in the  . The classes   ∗( ) and  ( ) of starlike and convex 
functions of order   (     ) are defined by: 

  (
   ( )

 ( )
)           (   )                                                                              ( ) 
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and 

  (  
    ( )

  ( )
)             (   )                                                                   ( ) 

Since they provide information about the geometric features of these functions, determining the bounds for 
coefficients and is a crucial topic in geometric function theory. As an illustration, the bound for the second 
coefficient    of functions in   provides covering theorems, growth, and distortion bounds. It is commonly known 
that for any    ( )   the n-th coefficient    is bounded by n.  

In this work, we estimate the initiat coefficient problems (|  
| and |  

|) for a certain subclass of bi- univalent 
functions. 

The disk of radius 
 

 
 is contained in the image of   under all univalent function      as demonstrated by the Keobe 

one-quarter theorem [1]. As a result, each function     has an inverse function       that satisfies               

    ( )    (   ) and: 

 (   ( ))    (⌈ ⌉     ( )       ( )  
 

 
 ) 

and is really provide by: 

 ( )     ( )       
  (   

       ) 
   (   

            ) 
                                                               ( ) 

If the functions   and     are univalent in an open unit disk  , then a function     is called to the bi-univalent in 
 . We symbolize by   the class of bi-univalent functions in the unit disk   known by Equation 1. Example of 
functions in the class   are: 

   
 

   
           (   )     

 

 
    (

   

   
  )         

But the well-known Koebe function is not included in  . Other functions, examples like   
  

 
      

 

    , that are 
frequently used as examples of functions in   are not included in  . 

Lewin in 1967 [2] examined the class   and proved that |  
|       for element of class  . Brannan and Clunie [3]  

hypothesized in 1967 that |  
|  √     Brannan and Taha [4] presented a certain subclass of the bi-univalent 

function class   comparable to the well-known subclass  ∗( ) and  ( ) [3, 5-11]. Therefore, if all of the specified 
conditions are satisfied, as stated by Brannan and Taha [4], then a function     belong to the class    

∗ ( ) of 
strongly bi-starlike functions of order   (     ),       and: 

|   (
   ( )

 ( )
)|  

  

 
       (         ) 

and 

|   (
   ( )

 ( )
)|  

  

 
       (         ) 

where   expansion of           The classes    
∗ ( ) and    

( ) of  bi-starlike functions of order τ, and biconvex 
functions of order τ. Analogously, they were also introduced, corresponding to the function classes defined by 
Equations 2 and 3. They discovered non-sharp estimates on the first two Taylor-Maclaurin coefficients |  

| and |  
| 

[12-18], for each of the function classes   
∗ ( ) and   

( )  

This study draws inspiration from the previous research conducted by several authors such [1, 19-28] and others 
[29-38]. In this work, we present two new subclasses    

(     ) and   
∗ (     )  of the function class   and for 

functions in these new subclasses of the function class  , determine estimates of the coefficients |  
| and |  

|.  
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Lemma 1.1 [17]: 

Let  ( )           
     , where   is the family of every analytic function   in    and for which     

  * ( )+    (   ), then |  
|    for          . 

2. Coefficient bounds of the subclass   (     )  

Definition 2.1: 

A function   as supplied by Equation 5 is said to be in the class   
(     )  if the following conditions are satisfied   

       

  ∑     |   (
   ( )

 ( )
)

 

[ 
( ( ))

   

    
 (   )  ( )  ]|  

  

 
                                                              ( ) 

and 

  ∑    |   (
   ( )

 ( )
)

 

[ 
( ( ))

   

    
 (   )  ( )   ]|   

  

 
                                                               ( ) 

where                         

Theorem 2.2 

Let a function  ( ) provided by Equation 5, be in the class   
(     )         Then: 

|  |  
  

√  [(      (   ))  ,(   )(   )   (   )  -]  (   )(   (   )   ) 

 

and 

|  |  
   

(   (   )   ) 
 

  

(    (   )   )
  

Proof 

It derives from Equations 5 and 6:               

(
   ( )

 ( )
)

 

* 
( ( ))   

    
 (   )  ( )  +  , ( )-                                                              ( ) 

and 

(
   ( )

 ( )
)

 

* 
( ( ))   

    
 (   )  ( )  + , ( )-                                                                        ( ) 

where  ( )  and  ( ) in   and have the form: 

 ( )           
                                                                       ( ) 

 ( )           
                                                             (  ) 

We achieve this by equal the coefficients in Equation 7 and 8. 

(     (   ))                                                                      (  ) 
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 [
   

 
(   )  (   )   ]   

  (    (   )   )       
 (   )

 
  

                                                                (  ) 

and 

 (     (   ))                                                                          (  ) 

[(       (   ))  [
   

 
(   )  (   (   )]]  

  (      (   ))       
 (   )

 
  

                                                               (  ) 

Form Equation 11 and 12 we get:  

                                                                     (  ) 

and 

 (     (   ))   
    (  

    
 )                                                                   (  ) 

now by adding Equation 12 to Equation 14: 

[ (      (   ))   ,(   )(   )   (   (   )-]  
   (     )  

 (   )

 
(  

    
 )  

By using Equation 16: 

[ (      (   ))   ,(   )(   )  (   (   )-]  
   (     )  

 (   )

 

 (   (   )   )   
 

  
 

Therefore, we have:  

  
  

  (     )

  [(      (   ))   ,(   )(   )      (   )-] (   )(   (   )   ) 
 

Applying Lemma 1.2 for the coefficient    and   ,we have: 

|  |  
  

√  [(      (   ))  ,(   )(   )     (   )-]  (   )(   (   )   ) 

 

Next, by subtracting Equation 14 from Equation 12 to get the bound on |  
| , we obtain: 

 (    (   )   )   (       (   ))  
   (     )  

 (   )

 
(  

    
 )  

Or equivalent: 

   
  (  

    
 )

 (   (   )  ) 
 

 (     )

 (      (   ))
  

Applying Lemma 1.2 for coefficient          and    ,we have: 

|  |  
   

(   (   )   ) 
 

  

(      (   ))
  

This completes the proof. 
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Corollary 2.3 

Let a function  ( ) as stated by Equation 5, be in the class   
(     ),        Then:      

|  |  
  

√  ,(   )     -  (   )(    (   )) 
 

and 

|  |  
   

(    (   )) 
 

  

(     (   ))
 

Corollary 2.4 

Let a function  ( ) presented by Equation 5, be in the class   
(     ),        Then: 

|  |  
  

√  ,(    )  (    )- (   )(    ))  
  

and 

|  |  
   

(    ) 
 

  

(    )
  

Definition 2.5 

A function  ( ) defined by Equation 5 is considered to belong to the class   
∗ (     ) if the following conditions are 

satisfied, so that              

  ∑       [(
   ( )

 ( )
)

 

[ 
( ( ))

   

    
 (   )  ( )  ]]                                                                            (  ) 

and 

  ∑        [(
   ( )

 ( )
)

 

[ 
( ( ))

   

    
 (   )  ( )   ]]                                                                     (  ) 

where        and      . 

Theorem 2.6 

Let a function  ( ) as defined in Equation 5, which belongs to the class   
∗ (     ),       and      . Then 

|  |  
  √(   )

√[ (      (   ))  ,(   )(   )   (   )  -]
 

and 

|  |  
 (   ) 

(   (   )   ) 
 

 (   )

(    (   )   )
     

Proof 

It derives from Equations 17 and 18: 
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(
   ( )

 ( )
)

 

* 
( ( ))   

    
 (   )  ( )  +    (   ) ( )                                                                     (  ) 

(
   ( )

 ( )
)

 

* 
( ( ))   

    
 (   )  ( )  +   (   ) ( )                                                                    (  ) 

Where  ( )  and  ( ) possess the form of Equations 9 and 10, according. Now, by equating the coefficients in 
Equations 7 and 8, respectively, by equating the coefficients in equations 19 and 20, we can derive the following 
result: 

(   (   )   )   (   )                                                                    (  ) 

[
   

 
(   )  (   )   ]  

  (    (   )   )   (   )                                                                  (  ) 

 (     (   ))   (   )                                                                  (  ) 

[(     (   )   )   [
   

 
(   )   (   )   ]]  

  (    (   )   )   (   )                                                                    (  ) 

Form Equations 21 and 23 we get:  

                                                                           (  ) 

and 

 (   (   )   )   
  (   ) (  

    
 )                                                                      (  ) 

Now by adding Equation 22 to Equation 24: 

[ (      (   ))   ,(   )(   )  (   (   )-]  
  (   )(     )  

Therefore, we have  

  
  

(   )(     )

[ (      (   ))  ,(   )(   )   (   (   )-]
  

Applying Lemma 1.2 for the coefficient    and     we have: 

|  |  
  √(   )

√[ (      (   ))   ,(   )(   )      (   )-]
   

Next, by subtracting Equation 24 from Equation 22, we can find the bound on |  
|, we get: 

 (    (   )   )   (     (   )   )  
  (   )(     )  

Or equivalent: 

   
(   ) (  

    
 )

 (   (   )  ) 
 

(   )(     )

 (    (   )  )
  

Applying Lemma 1.2 for coefficient          and   , we have: 

|  |  
 (   ) 

(     (   ))
  

 (   )

(      (   ))
   

This completes the proof. 

Corollary 2.7 
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Let a function  ( ) as defined in Equation 5, which belongs to the class   
∗ (     ),      . Then: 

|  |  
  √(   )

√, (    )  (    )-
 

and 

|  |  
 (   ) 

(    ) 
 

 (   )

(    )
   

Corollary 2.8 

Let a function  ( ) as stated by Equation 5, which belongs to the class   
∗ (     ),        Then: 

|  |  
  √(   )

√, (   )     -
 

and 

|  |  
 (   ) 

(    (   ))
  

 (   )

(   )
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