

Available online at www.qu.edu.iq/journalcm

JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

On APP-Quasi prime Submodules

Thaer Z. Khlaif 1 , Haibat K. Mohammadali 2 *, Akram S. Mohammed³*

¹Department of Mathematics, College of Computer Science and Mathematics, University of Tikrit, Iraq. Email[:](mailto:Thaerzaidan87@gmail.com) [thaerzaidan87@gmail.com](mailto:Thaerzaidan87@gmail.com) ² Department of Mathematics, College of Computer Science and Mathematics, University of Tikrit, Iraq Email[: dr.mohammadali2013@gmail.com](mailto:dr.mohammadali2013@gmail.com) ³ Department of Mathematics, College of Computer Science and Mathematics, University of Tikrit, Iraq. Email[: akr-tel@tu.edu.iq](mailto:akr-tel@tu.edu.iq)

submodules in some types of modules are given.

Let R to be a commutative ring with identity and G is a unitary left R-module. In this paper we introduce the concept of approximaitly-quasi prime submodules (for short APP-quasi prime submodule) as a generalizations of prime submodule and quasi prime submodule, where a proper submodule F of Rmodule G is said to be an APP-quasi prime submodule of G, if whenever $rsm \in G$, where $r, s \in R$ and $m \in G$ implies that either $rm \in F + Soc(G)$ or $sm \in F + Soc(G)[5]$. Many new examples, characterization and basic properties of this concepts are introduce. Furthermore new characterizations of APP-quasi prime

A R T I C L E I NF O

A B S T R A C T

MSC..

Article history: Received: 19 /3/2024 Revised form: 27 /4/2024 Accepted : 30 /5/2024 Available online: 30 /6/2024

Keywords:

Prime submodules

quasi prime submodules

APP-quasi prime submodules

Multiplication modules

projective modules

https://doi.org/10.29304/jqcsm.2024.16.21558

1. Introduction

Let G be an R-module and F be a proper submodule of an R-module G then F is called prime submodule of G if rm \in F, where $r \in$ R, $m \in G$, implies that either $m \in F$ or $r \in [F:_{R} G]$ where $[F:_{R} G] = \{r \in R : rG \subseteq F\}$ this concept was first introduce in 1978 by Dauns see [1]. This concept"was generalizations to (primary, semi prime , quasi prime) submodules in 1989, 1996, and 1999 respectively see [2,3,4] , the concepts of prime submodules recently several generalization to APP-quasi prime submodules by Ali Sh. Haibat K. in 2019 see [5]. In this study, we introduce new examples, characterizations and basic properties of these concepts. A nonzero submodule F of an R-module G is said to be essential if $F \cap K \neq (0)$ for all nonzero submodule K of G [6] and the socle of an R-module G denoted by Soc(G) is the intersection all"essential submodules F of G [7. P.212]. It is well"known that if a submodule F of an R-module G be an essential"in G, therefore $Soc(F) = Soc(G)$ [6, P. 29]. An R-module G is a semi simple if each submodule of an R-module G is a direct"summand of G, that is if F is a submodule of G, then $G = F \oplus B$ for"some submodule B of G [7]. Equivalently G is a semi simple if and"only if $Soc(G) = G[6]$. It is well known that an R-module G is a semi simple if and"only if for each submodule F of G , Soc($\frac{G}{D}$ $\frac{G}{F}$) = $\frac{\text{Soc}(G) + F}{F}$ $\frac{(\mathbf{U})+\mathbf{F}}{\mathbf{F}}$ [7, P. 239]. An R-module G is called multiplication if every

Thaer Z. Khlaif

Email addresses: thaerzaidan87@gmail.com

submodule F of G written in the form $F = IG$ for certain ideal I of R. Equivalent to G is multiplication if $F = [F:_{R} G]G$ [8]. For any submodules K, L of a multiplication" R-module G with $K = IG$, L = [G for" some ideals I and I of R, the product of two submodule of a multiplication R-module is $KL = IG/G = I/G$, that"is $KL = IL$. To be specific $KG = IGRG = IRG = IG = K [9]$. An R-module G is said to be a Z-regular if $\forall m \in G$, $\exists f \in M^* = \text{Hom}_R(G, R)$ in such a way that $m = f(m) m$ [11]. It is well know that if G is a Z- regular R-module, then $Soc(G) = Soc(R)G$ $[12, \text{prop. } 3 - 25]$."An R-module G is a projective if for every R-epimorphism Ψ from R-module V into an R-module V' and for any R-homomorphism Φ from G into V' then there exists an R-homomorphism θ from G into V such that $\Phi_0 \Theta = \Psi$ [7]. It is well know that if G be a projective R-module, then $Soc(G) = Soc(R)G$ [12,prop. 3.24]. An Rmodule G is weak cancellation if $IG = [G,$ where I, I are ideals of R then $I + ann_p(G) = [+ ann_p(G) [14]$. It is wellknow that if G is a multiplication R-module. Then G is finitely generated if and only if G is a weak"cancellation $[13, \text{prop.} (3-9)].$

2. Some New Results Of An APP-Quasi Prime Submodules.

In this part of we recall that a proper submodule F of an R-module G is quasi prime if rsm \in F, where r, s \in R, $m \in G$, "this means either rm $\in F$ or sm $\in F$.

Definition 2.1:[5]

A proper submodule F of an R-module G is called an APP-quasi prime submodule of G, if $\text{rsm} \in F$, for $r, s \in R$, $m \in G$, "implies that either rm $\in F + Soc(G)$ or sm $\in F + Soc(G)$. And an ideal I of a ring R is called an APP-quasi prime ideal of R if I is an APP-quasi prime submodule of"an R-Module R.

Examples and Remark 2.2:

1. It's clear that since $Soc(Z_{48})$ is the intersection of all essential submodules of Z_{48} that is $Soc(Z_{48}) = \langle \overline{2} \rangle \cap \langle \overline{4} \rangle \cap \langle \overline{4} \rangle$ $\bar{8}$ > \cap Z_{48} = < $\bar{8}$ >.

2. It can be checked in the Z-module Z_{48} , the submodules $\langle \bar{6} \rangle$ and $\langle \bar{16} \rangle$ are APP-quasi prime submodules.

3. It can be checked in the Z-module Z_{48} , the submodules $\lt \overline{4}$, $\lt \overline{8}$, $\lt \overline{12}$, and $\lt \overline{24}$ are not an APP-quasi prime submodules of Z_{48} .

4. It's clear that each quasi prime submodule of R -module G is an APP-quasi prime submodule of an R -module G , however not conversely. The following example explain that: Consider the Z-Module Z_{48} , the submodule $N = < 16 >$ is not a quasi prime submodule of Z_{48} since $2.2.\overline{4} = \overline{16} \in \overline{16} >$ for $2 \in \overline{2} \overline{4} \in Z_{48}$, but $2.\overline{4} = \overline{8} \notin \overline{16} >$. However $\lt \overline{16} >$ is an APP-quasi prime submodule of Z_{48} by part (2).

5. It's clear that each prime submodule of an R-module G is an APP-quasi prime submodule of an R-module G. However the converse is not true in general the following example shows this: The submodule $\langle \bar{6} \rangle$ of Z-module Z_{48} is an APPquasi prime submodule by part (2). but $\langle \bar{6} \rangle$ is not prime submodule, since $2.\bar{3} = \bar{6} \in \langle \bar{6} \rangle$ for $2 \in \mathbb{Z}, \bar{3} \in \mathbb{Z}_{48}$, however $\overline{3}\notin\lt{\overline{6}}$ > and $2\notin\lt{\overline{6}}$ >: $_Z Z_{48}$ = 6Z.

6. It's clear that The submodules $\langle \overline{2} \rangle$, $\langle \overline{3} \rangle$ of the Z- module Z_{48} are prime submodules of Z_{48} . Thus they are APPquasi prime submodules by part (5).

7. If F is an APP-quasi prime submodule of an R-module G, then $[F:_{R} G]$ not necessary be an APP-quasi prime ideal of R . The following example shows that:

It is shown that in part (2) the submodule $\langle \bar{6} \rangle$ of the Z- module Z_{48} is an APP-quasi prime submodule. However $\overline{6}$ > : $\overline{2}$ \overline{Z}_{48} = 6Z is not APP-quasi prime ideal of of Z since 2.3.1 = 6 \in 6Z, for 2,3,1 \in Z however 2.1 = 2 \notin 6Z + $Soc(Z) = 6Z$, and $3.1 = 3 \notin 6Z + Soc(Z) = 6Z$.

Before we introduce the first characterizations of APP-quasi prime submodules, we need to recall the following lemma which a pear in $[5, Coro. 2.7]$.

Lemma :

If G be an *R*-module, and F be a proper submodule of G.Then F is an APP-quasi prime submodule of G if and only if when $I/m \subseteq F$, for I, I are ideals of R, $m \in G$, this means either $Im \subseteq F + Soc(G)$ or $Im \subseteq F + Soc(G)$.

Proposition 2.4:

Let F be a proper submodule of an R-module G. Then F is an APP-quasi prime submodule of G if and only if $[F:_{G} I] \subseteq$ $[F + Soc(G):_G I] \cup [F + Soc(G):_M J]$ for all ideals I and J of R.

proof:

 (\Rightarrow) Suppose that F is an APP-quasi prime submodule of G, and let $m \in [F:_{M} I]$, for $m \in G$ and ideals I and I of R implies that $I/m \subseteq F$. However F is an APP-quasi prime submodule of G, so by lemma (2.3) either $Im \subseteq F + Soc(G)$ or \mathcal{L} $\mathcal{L} = F + \mathcal{S}oc(G)$. Therefore either $m \in [F + \mathcal{S}oc(G):_G I]$ or $m \in [F + \mathcal{S}oc(G):_G I]$. Hence $m \in [F + \mathcal{S}oc(G):_G I] \cup [F + \mathcal{S}oc(G):_G I]$ $Soc(G):_{G}$ | Thus $[F:_{G} I] \subseteq [F + Soc(G):_{G} I] \cup [F + Soc(G):_{G} I].$

(=) Suppose that $[F:_{G} I] \subseteq [F + Soc(G):_{G} I] \cup [F + Soc(G):_{G} I]$, and let $I/m \subseteq F$, for I, J are an ideal of $R, m \in G$, implies that $m \in [F:_{R} I]$. And since $[F:_{G} I] \subseteq [F + Soc(G):_{G} I] \cup [F + Soc(G):_{G} I]$. Thus $m \in [F + Soc(G):_{G} I] \cup$ $[F + Soc(G):_{G}]\}$, so either $m \in [F + Soc(G):_{G}]\$ or $m \in [F + Soc(G):_{G}]\$. Hence $Im \subseteq F + Soc(G)$ or $Im \subseteq F +$ $Soc(G)$ therefore F is an APP-quasi prime submodule of G by lemma (2.3).

Before we introduce the first characterizations of APP-quasi prime submodules, we need to recall the following lemma which appear in $[5, Prop. 2.4]$.

Lemma

Let G be an R-module, and F be a proper submodule of an R-module G. Then F is an APP-quasi prime sub Module of G if and only if when $I/L \subseteq F$, for I, I are ideal of R, L is a submodule of G, then either $IL \subseteq F + Soc(G)$ or $IL \subseteq F +$ $Soc(G)$.

Proposition 2.6:

Let G be an R-module, and F be a proper submodule of an R-module G. Then F is an APP-quasi prime submodule of G if and only if when $r/D \subseteq F$, where $r \in R$, is an ideal of R, and D is a submodule of G, therefore either $rD \subseteq F$ + $Soc(G)$ or $ID \subseteq F + Soc(G)$.

Proof:

 (\implies) Assume that F is an APP-quasi prime submodule of G, and $r/D \subseteq N$, where $r \in R$, is a ideal of R, D is a submodule of G. Now $r/D = \langle r \rangle/D$. Since G is an APP-quasi prime submodule of G, thus with lemma (2.5) either $\langle r \rangle D \subseteq F + Soc(G)$ or $ID \subseteq F + Soc(G)$ that is either $rD \subseteq F + Soc(G)$ or $ID \subseteq F + Soc(G)$. (\Leftarrow) Assume that $rsd \in N$, for $r, s \in R$, $d \in M$ implies that $\lt r \gt \lt s \gt \lt d \gt \subseteq N$, so with hypothesis either $\lt r \gt \lt$ $d \geq N + Soc(M)$ or $\leq s \leq d \geq N + Soc(M)$. That is either $rd \in N + Soc(M)$ or $sd \in N + Soc(M)$. Therefore F is an APP-quasi prime submodule of G .

The following is a Characterization of APP-quasi prime submodule of *.*

Proposition: :

If F is a proper submodule of R-module G. Then F is an APP-quasi prime submodule of G if and only if $[F:_{G} r] \subseteq$ $[F + Soc(G):_G r] \cup [F + Soc(G):_G J]$, where $r \in R$, and j is an ideal of R.

Proof:

 (\Rightarrow) Suppose that F is an APP-quasi prime submodule of G, and let $D \subseteq [F:_{M} r]$, for D is a submodule of G, $r \in R$, and *J* is an ideal of R implies that $r/D \subseteq N$. However *F* is an APP-quasi prime submodule of *G*. Hence with proposition (2.6) $rD \subseteq F + Soc(G)$ or $ID \subseteq F + Soc(G)$. that is $D \subseteq [F + Soc(G):_G r]$ or $D \subseteq [F + Soc(G):_G I]$. Hence $D \subseteq [F + Soc(G)]$. $Soc(G):_{G} r \cup [F + Soc(G):_{G} J]$. Thus $[F:_{G} r] \subseteq [F + Soc(G):_{G} r] \cup [F + Soc(G):_{G} J]$.

 (\Leftarrow) Suppose that $[F:_{G} r] \subseteq [F + Soc(G):_{G} r] \cup [F + Soc(G):_{G} f]$, and let $r/D \subseteq N$, for $r \in R$, j is an ideal of R, and D is a submodule of G, implies that $D \subseteq [F:_{R}rJ]$. And since $[N:_{M}rJ] \subseteq [N + Soc(M):_{M}r] \cup [N + Soc(M):_{M}J]$. Thus $D \subseteq [N + Soc(M)]_M r] \cup [N + Soc(M)]_M J$, implies that $D \subseteq [N + Soc(M)]_M r$ or $D \subseteq [N + Soc(M)]_M J$. Hence $rD \subseteq N + Soc(M)$ or $ID \subseteq N + Soc(M)$. Hence with proposition (2.6) F is an APP-quasi prime submodule of G.

Proposition

If F is a proper submodule of R-module G. Then F is an APP-quasi prime submodule of G if and only if whenever $\lim_{m \to \infty} E F$, for *l* is an ideal of *R*, $s \in R$ and $m \in G$, implies that either $\lim_{m \to \infty} E F + \text{Soc}(G)$ or $sm \in F + \text{Soc}(G)$.

Proof:

The prove with lemma (2.5) .

Corollary 2.9:

If F is a proper submodule of an R-module G. Then F is an APP-quasi prime submodule of G if and only if whenever $ISD \subseteq F$, for I is an ideal of R, $s \in R$, and D is a submodule of G, implies that either $ID \subseteq F + Soc(G)$ or $sD \subseteq F +$ $Soc(G)$.

Proposition 2.10:

Let F be a proper submodule of an R-module G.Then F is an APP-quasi prime submodule of G if and only if $[F:_{G} Is] \subseteq$ $[F + Soc(G):_{G} I] \cup [F + Soc(G):_{G} s]$ for all I is an ideal of $R, s \in R$.

Proof:

 (\Rightarrow) Assume that F is an APP-quasi prime submodule of G, and let $m \in [F:_{G} Is]$, for $m \in G$, I is an ideal of R, and $s \in R$ then $lsm \subseteq F$. However F is an APP-quasi prime submodule of G. Hence by proposition (2.8) either $lm \subseteq F +$ $Soc(G)$ or $sm \subseteq F + Soc(G)$. Therefore either $m \in [F + Soc(G):_G I]$ or $m \in [F + Soc(G):_G S]$. Hens $m \in [F + Soc(G)]$. $Soc(G):_{G} I] \cup [F + Soc(G):_{G} s]$. Thus $[F:_{G} Is] \subseteq [F + Soc(G):_{G} I] \cup [F + Soc(G):_{G} s]$.

 (\Leftarrow) Suppose that $[F:_{G} I_S] \subseteq [F + Soc(G):_{G} I] \cup [F + Soc(G):_{G} S]$, and let $Ism \subseteq F$, where I is an ideal of $R, s \in R$, and $m \in G$, implies that $m \in [F:_{R} I_{S}]$. And since $[F:_{G} I_{S}] \subseteq [F + Soc(G):_{G} I] \cup [F + Soc(G):_{G} S]$. Thus $m \in [F + C]$ $Soc(G):_{G} I] \cup [F + Soc(G):_{G} s]$, implies that $m \in [F + Soc(G):_{G} I]$ or $m \in [F + Soc(G):_{G} s]$. Hence $Im \subseteq F + Soc(G)$ or $sm \subseteq F + Soc(G)$. Thus by proposition (2.8) F is an APP-quasi prime submodule of G.

Proposition 2.11:

If F is a proper submodule of a cyclic R-module G. Then F is an APP-quasi prime submodule of G if and only if $[F:_{R} I] D] \subseteq [F + Soc(G):_{R} I D] \cup [F + Soc(G):_{R} I D]$ for each I, I are an ideal of R, and every submodule D of an Rmodule G .

Proof:

 (\Rightarrow) Assume that F is an APP-quasi prime submodule of an R-module G, and let $m \in [F:_{R} I]$ for $m \in G$, I, j ideals of R, and D is a submodule of R-module G, then $I/(mD) \subseteq N$. However F is an APP-quasi prime submodule of G, then by lemma (2.5) $I(mD) \subseteq F + Soc(G)$ or $J(mD) \subseteq F + Soc(G)$, therefore $m \in [F + Soc(G):_R ID]$ or $m \in [F + Soc(G):_R ID]$ $Soc(G):_R JD]$. That is $m \in [F + Soc(G):_R IB] \cup [F + Soc(G):_R JB]$. Thus $[F:_R IJD] \subseteq [F + Soc(G):_R ID] \cup [F + Soc(G):_R ID]$ $Soc(G):_{R}$ JD].

(=)Suppose that $[F:_{G} I J D] \subseteq [F + Soc(G):_{G} I D] \cup [F + Soc(G):_{G} J D]$, and let $rsm \in F$, for $r, s \in R$, and $m \in G$. Since G is a cyclic R-module, then $m = tm'$, for $t \in R$, $m' \in G$ implies that $rsm = rstm'$. Thus

rstm' \in F then $t \in [F:_{R} r s m']$, so by hypothesis $t \in [F:_{R} r s m'] \subseteq [F + Soc(G):_{R} r m'] \cup [F + Soc(G):_{R} s m']$, implies that $t \in [F + Soc(G):_R rm']$ or $t \in [F + Soc(G):_R sm']$ therefore $rtm' \in F + Soc(G)$ or $stm' \in F + Soc(G)$. Hence $rm \in F + Soc(G)$ or $sm \in F + Soc(G)$, implies that F is an APP-quasi prime submodule of an R-module G.

Remark

2.12 [6, P. 29]:

it is well known that, if a submodule F of an R-module G is an essential in G, then $Soc(F) = Soc(G)$.

Proposition 2.13:

Let F, K are submodules of an R-module G with F is a proper submodule of K and K is an essential submodule of G such that F is an APP-quasi prime submodule of G. Then F is an APP-quasi prime submodule of K.

Proof:

Suppose that F is an APP-quasi prime submodule of G, and let $I/A \subseteq F$, where I, J are ideals of R, A is a submodule of K. Since K is a submodule of G that is A is a submodule of G. However F is an APP-quasi prime submodule of G, then by lemma (2.5) $IA \subseteq F + Soc(G)$ or $IA \subseteq F + Soc(G)$. However K is an essential submodule of G then $Soc(G) = Soc(K)$.

Thus, it follows that either $IA \subseteq F + Soc(K)$ or $IA \subseteq F + Soc(K)$. Therefore by lemma (2.5) F is an APP-quasi prime submodule of K .

Proposition 2.14:

If F, K are submodules of an R-module G such that $L \subseteq F$, and F be a proper submodule of G. If F is an APP-quasi prime submodule of G, then $\frac{F}{L}$ is an APP-quasi prime submodule of $\frac{G}{L}$.

Proof:

Assume that F is an APP-quasi prime sub Module of G, and let $rs(m + L) \in \frac{F}{l}$ $\frac{F}{L}$ then $rsm + L \in \frac{F}{L}$ $\frac{r}{L}$, for $r, s \in R$, *m* $\frac{G}{I}$, $m \in G$. Then r sm $\in F$ and since F is an APP-quasi prime submodule of G, implies that $rm \in F + Soc(G)$ or L Soc(G). It follows that $rm + L \in \frac{F + Soc(G)}{L}$ $\frac{oc(G)}{L}$ or $sm + L \in \frac{F + Soc(G)}{L}$ $\frac{oc(G)}{L}$, thus $rm + L \in \frac{F}{L}$ $\frac{F}{L} + \frac{F + Soc(G)}{L}$ $\frac{oc(G)}{L} \subseteq \frac{F}{L}$ $\frac{F}{L} + Soc(\frac{G}{L})$ $\frac{a}{L}$) or F $\frac{F}{L} + \frac{F + Soc(G)}{L}$ $\frac{oc(G)}{L} \subseteq \frac{F}{L}$ $\frac{F}{L} + Soc(\frac{G}{L})$ $\frac{G}{L}$), implies that either $rm + L \in \frac{F}{L}$ $\frac{F}{L} + Soc(\frac{G}{L})$ $\frac{G}{L}$) or sm + L $\in \frac{F}{L}$ $\frac{F}{L}$ + Soc($\frac{G}{L}$ $\frac{d}{dt}$) therefore either $r(m)$ $L) \in \frac{F}{I}$ $\frac{F}{L}$ + Soc($\frac{G}{L}$ $\frac{G}{L}$) or $s(m + L) \in \frac{F}{L}$ $\frac{F}{L} + Soc(\frac{G}{L})$ $\frac{a}{b}$). Thus $\frac{F}{b}$ is an APP-quasi prime submodule of $\frac{c}{b}$.

Now, the following is the converse of proposition (2.14)

Proposition 2.15:

Let F, L are submodules of semi simple R-module G, such that $L \subseteq F$, and F be a proper submodule of G. If L, $\frac{F}{I}$ $\frac{r}{L}$ are APP-quasi prime submodules of G and $\frac{a}{L}$ respectively, then F is an APP-quasi prime submodule of G

Proof :

Assume that L, $\frac{F}{I}$ $\frac{r}{L}$ are an APP-quasi prime submodules of G and $\frac{a}{L}$ respectively and let r sm \in F for $r, s \in R$, $m \in G$. So $rs(m + L) \in \frac{F}{l}$ $\frac{F}{L}$ then $rsm + L \in \frac{F}{L}$ $\frac{F}{L}$. If r sm $\in L$ and L is an APP-quasi prime submodule of G , implies that either $rm \in L + Soc(G)$ or $sm \in L + Soc(G)$, and since $L \subseteq F$, it follows that $L + Soc(G) \subseteq F + Soc(G)$, then either $rm \in L +$ $Soc(G) \subseteq F + Soc(G)$ or $sm \in L + Soc(G) \subseteq F + Soc(G)$, implies that either $rm \in F + Soc(G)$ or $sm \in F + Soc(G)$. Hence F is an APP-quasi prime submodule of G. So, we may suppose that $rsm \notin L$. It follows that $rs(m+L) \in \frac{F}{l}$, L However $\frac{F}{L}$ is an APP-quasi prime submodule of $\frac{G}{L}$, implies that $r(m+L) \in \frac{F}{L}$ $\frac{F}{L}$ + Soc $\left(\frac{G}{L}\right)$ $\frac{G}{L}$) or $s(m + L) \in \frac{F}{L}$ $\frac{F}{L} + Soc(\frac{G}{L})$ $\frac{d}{L}$). since G is a semi simple , then $Soc(\frac{G}{l})$ $\frac{G}{L}$) = $\frac{L+Soc(G)}{L}$ $\frac{oc(G)}{L}$, hence either $r(m+L) \in \frac{F}{L}$ $\frac{F}{L} + \frac{L+Soc(G)}{L}$ $\frac{oc(G)}{L}$ or $s(m+L) \in \frac{F}{L}$ $\frac{F}{L} + \frac{L+Soc(G)}{L}$ $\frac{bc(\theta)}{L}$. Since $L \subseteq F$, it follows that $L + Soc(G) \subseteq F + Soc(G)$, hence $\frac{F}{L} + \frac{L+Soc(G)}{L}$ $\frac{oc(G)}{L} \subseteq \frac{F}{L}$ $\frac{F}{L} + \frac{F + Soc(G)}{L}$ $\frac{bc(G)}{L}$, and since $\frac{F}{L} \subseteq \frac{F+Soc(G)}{L}$ $\frac{\partial c(\mathbf{G})}{L}$, implies that $\frac{F}{L} + \frac{F + Soc(G)}{L}$ $\frac{oc(G)}{L} = \frac{F + Soc(G)}{L}$ $\frac{c_0c(G)}{L}$. Thus either $r(m+L) \in \frac{F+Soc(G)}{L}$ $\frac{oc(G)}{L}$ or $s(m+L) \in \frac{F+Soc(G)}{L}$ $\frac{c_0c(G)}{L}$, then either $rm + L \in \frac{F+Soc(G)}{L}$ $\frac{u(u)}{L}$ or $sm + L \in \frac{F + Soc(G)}{L}$ $\frac{\partial c(G)}{L}$, therefore either $rm \in F + Soc(G)$ or $sm \in F + Soc(G)$. Hence F is an APP-quasi prime submodule of \mathcal{L}

.Some Characterizations Of An APP-quasi prime Submodules In Some Types Of Modules.

 In this part of paper we"introduce several characterizations of APP-quasi prime submodules in class of multiplication modules before we introduce first characterization we need to recall the following.

Lemma 3.1^{[5}, Prop. 2.37]

Let G be a multiplication R-module, and F be a proper submodule of G. Then F is an APP-quasi prime submodule of G if and only if, when $K_1K_2K_3 \subseteq F$, where K_1 , K_2 , K_3 are submodules of G, this means either $K_1K_3 \subseteq F + Soc(G)$ or $K_2K_3 \subseteq F + Soc(G).$

Remark 3.2 [13]:

Let G be a multiplication R-module, then for every elements $m_1, m_2 \in G$, by $m_1 m_2$ mean the product of two submodules Rm_1 and Rm_2 , that is $m_1m_2 = Rm_1Rm_2$ is a submodule of

Proposition 3.3:

Let G be a multiplication R-module, and F be a proper submodule of G. Then F is an App-quasi prime submodule of G if and only if whenever $m_1 m_2 m_3 \subseteq F$ for $m_1, m_2, m_3 \in G$, this means either $m_1 m_3 \subseteq F + Soc(G)$ or $Soc(G)$.

Proof:

 (\Rightarrow) Suppose that F is an APP-quasi prime submodule of G, and let $m_1m_2m_3 \subseteq F$ for $m_1, m_2, m_3 \in G$. Since G is a multiplication, then $m_1 = Rm_1$, $m_2 = Rm_2$, $m_3 = Rm_3$ are submodules of G, therefore $m_1 = I_1G$, $m_2 = I_2G$, $m_3 = I_3G$, for I_1 , I_2 , and I_3 are an ideal of R, thus $m_1m_2m_3 = I_1I_2(I_3G) \subseteq F$. However F is an APP-quasi prime submodule of G, then with lemma (3.1), $I_1I_3G \subseteq F + Soc(G)$ or $I_2I_3G \subseteq F + Soc(G)$. Therefore $m_1m_3 \subseteq F + Soc(G)$ or $Soc(G)$.

 (\Leftarrow) Suppose that $m_1 m_2 m_3 \subseteq F$ for $m_1, m_2, m_3 \in G$, implies that either $m_1 m_3 \subseteq F + Soc(G)$ or $m_2 m_3 \subseteq F + Soc(G)$, and let $I_1I_2m_3 \subseteq F$, for $m_3 \in G$ and I_1,I_2 are an ideal of R Since G is a multiplication R-module, and $m_3 = I_3G$, then $I_1 I_2 m_3 = I_1 I_2 I_3 G = (I_1 G)(I_2 G)(I_3 G)$, implies that $I_1 I_2 m_3 = m_1 m_2 m_3$, so either $m_1 m_3 \subseteq F + Soc(G)$ or $Soc(G)$ by hypothesis. That is $I_1I_3G \subseteq F + Soc(G)$ or $I_2I_3G \subseteq F + Soc(G)$. Thus $I_1m_3 \subseteq F + Soc(G)$ or $Soc(G)$, therefore with lemma (3.1) F is an APP-quasi prime submodule of G.

The corollaries follow from lemma (3.1) and proposition (3.3) .

Corollary 3.4:

Let G be a multiplication R-module, and F be a proper submodule of G. Then F is an APP-quasi prime submodule of G if and only if whenever $KmL \subseteq G$ where L, K are a submodules of G and $m \in G$, that is either $KL \subseteq F + Soc(G)$ or $mL \subseteq F + Soc(G).$

Corollary 3.5:

Let G be a multiplication R-Module, and F be a proper submodule of G. Then F is an APP-quasi prime submodule of G if and only if whenever $Km_1m_2 \subseteq F$ where K is a submodules of G and $m_1, m_2 \in G$, that is $Km_2 \subseteq F + Soc(G)$ or $m_1 m_2 \subseteq F + Soc(G)$.

Corollary 3.6:

Let G be a multiplication R-Module, and F be a proper submodule of G. Then F is an APP-quasi prime submodule of G if and only if whenever $m_1 K m_2 \subseteq F$ where K be a submodule of G and $m_1, m_2 \in G$, that is either $m_1 m_2 \subseteq N + \text{Soc(M)}$ or $Km_2 \subseteq N + Soc(G)$.

Corollary 3.7:

Let G be a multiplication R-module, and F be a proper submodule of G. Then F is an APP-quasi prime submodule of G if and only if whenever $m_1m_2K \subseteq F$ where K is a submodule of G and $m_1, m_2 \in G$, that is $m_1K \subseteq N + Soc(G)$ or $m_2 K \subseteq F + Soc(G)$.

The following proposition are characterizations of an APP-quasi prime submodules by its results.

Proposition 3.8:

If F is a proper submodule of Z-regular multiplication R-module G. Then F is an APP-quasi prime submodule of G if and only if $[F:_{R} G]$ is an APP-quasi prime ideal of R.

Proof:

 (\Rightarrow) Assume that F is an APP-quasi prime submodule of G, and let $J_1J_2J_3 \subseteq [F:_{R} G]$, for J_1,J_2,J_3 are ideals of R, that is $J_1J_2J_3G \subseteq F$. Since G is a multiplication, then $K_1K_2K_3 \subseteq F$ where $K_1 = J_1G$, $K_2 = J_2G$ and $K_3 = J_3G$. However F is an APP-quasi prime submodule of G, then with lemma (3.1) $K_1K_3 \subseteq F + Soc(G)$ or $K_2K_3 \subseteq F + Soc(G)$, thus J_1J $F + Soc(G)$ or $J_2J_3G \subseteq F + Soc(G)$. Since G is Z-regular multiplication R-module, then $Soc(G) = Soc(R)G$, and also $F = [F:_{R} G] G$. Thus either $J_{1} J_{3} G \subseteq [F:_{R} G] G + Soc(R) G$ or $J_{2} J_{3} G \subseteq [F:_{R} G] G + Soc(R) G$. That is either $J_{1} J_{2} G$ $[F:_{R} G] + Soc(R)$ or $I_2 I_3 \subseteq [F:_{R} G] + Soc(R)$. Therefore by lemma (3.1) $[F:_{R} G]$ is an APP-quasi prime ideal of R.

 (\Leftarrow) Assume that $[F:_{R} G]$ is an APP-quasi prime ideal of R, and let $rIB \subseteq F$, where $r \in R$, I is an ideal of R, and B is a submodule of R. Since G is a multiplication, then $B = \int G$ for certain ideal $\int G \cap R$, thus it follows that $\tau I B = \tau I J G \subseteq F$, that is $rI \subseteq [F:_{R} G]$. However $[F:_{R} G]$ is an APP-quasi prime ideal of *R*, next, by proposition (2.6) either $rJ \subseteq [F:_{R} G]$ + $Soc(R)$ or $I \subseteq [F:_{R} G] + Soc(R)$, thus $r \mid G \subseteq [F:_{R} G]G + Soc(R)G$ or $I \mid G \subseteq [F:_{R} G]G + Soc(R)G$. Again since G is a multiplication, then $F = [F:_{R} F]F$, and G is a Z-regular, then $Soc(G) = Soc(R)G$. Hence either $rB \subseteq F + Soc(G)$ or $IB \subseteq F + Soc(G)$. Therefore by proposition (2,6) F is an APP-quasi prime submodule of G.

Proposition 3.9:

If G be a multiplication projective R-module, and F be a proper submodule of G. Then F is an APP-quasi prime submodule of G if and only if $[F:_{R} G]$ is an APP-quasi prime ideal of R.

Proof:

 (\Rightarrow) Assume that G is APP-quasi prime submodule of G, and let $I_1I_2I_3 \subseteq [F:_{R} G]$, for I_1, I_2, I_3 are ideals of R, that is $I_1I_2I_3G \subseteq F$. Since G is a multiplication, then $L_1L_2L_3 \subseteq F$ where $L_1 = I_1G$, $L_2 = I_2G$ and $L_3 = I_3G$. However F is an APP-quasi prime submodule of G, then by lemma (3.1) $L_1L_3 \subseteq \overline{F} + \overline{Soc(G)}$ or $L_2L_3 \subseteq \overline{F} + \overline{Soc(G)}$, that is either $I_1I_3G \subseteq F + Soc(G)$ or $I_2I_3G \subseteq F + Soc(G)$, since G is projective multiplication R-module, then $Soc(G) = Soc(R)G$, and also $F = [F:_{R} G]G$. Thus either $I_1 I_3 G \subseteq [F:_{R} G]G + Soc(R)G$ or $I_2 I_3 G \subseteq [F:_{R} G]G + Soc(R)G$. That is either $I_1I_3 \subseteq [F:_{R} G] + Soc(R)$ or $I_2I_3 \subseteq [F:_{R} G] + Soc(R)$. Therefore by lemma (3.1) $[F:_{R} G]$ is an APP-quasi prime ideal of R. (\Leftarrow) Assume that $[F:_{R} G]$ is an APP-quasi prime ideal of R, and let $ISD \subseteq F$, where $s \in R$, I is an ideal of R, and D is a sub Module of R. Since G is a multiplication, then $D = JG$ for certain ideal J of R, it follows that $ISD = IsJG \subseteq F$, that is $IsJ \subseteq [F:_{R} G]$. However $[F:_{R} G]$ is an APP-quasi prime ideal of R, then with corollary (2.9) either $IJ \subseteq [F:_{R} G] + Soc(R)$ or $s \in [F:_{R} G] + Soc(R)$, hence either $I/G \subseteq [F:_{R} G]G + Soc(R)G$ or $s \in [F:_{R} G]G + Soc(R)G$. Again since G is a multiplication, then $F = [F:_{R} G]G$, and G is projective, then $Soc(G) = Soc(R)G$. Hence either $I \subseteq F + Soc(G)$ or $s \in F + Soc(G)$. Therefore with corollary (2.9) F is an APP-quasi prime sub Module of G.

Lemma 3.10: $[14, \text{coro of Theo}(9)]$

Let I J are two ideals of R, and G be a multiplication finitely generated R-Module. Then IG \subseteq IG if and only if $I \subseteq$ $I + ann_B(G)$.

Proposition 3.11:

If G is a finitely generated Z-regular multiplication R-module, and I is an ideal of R with $ann_R(G) \subseteq I$. Then I is an APP-quasi prime ideal of R if and only if IG is an APP-quasi prime submodule of G.

Proof:

 (\Rightarrow) Assume that I is an APP-quasi prime ideal of R with $ann_R(G) \subseteq I$, and let $r/B \subseteq IG$, where $r \in R$, J is an ideals of R, B is a submodule of G. Since G is a multiplication, this means $B = AG$ for certain ideal A of R, that is $r/B = r/AG \subseteq IG$.However G is a finitely generated, then by lemma(3.10) $r/A \subseteq I + ann_R(G)$, since $ann_R(G) \subseteq I$, then $I + ann_R(G) = I$,thus $r/A \subseteq I$. since I is an APP-quasi prime ideal of R, implies that by proposition (2.6) $rA \subseteq I + Soc(R)$ or $JA \subseteq I +$ $Soc(R)$, thus $rAG \subseteq IG + Soc(R)G$ or $IAG \subseteq IG + Soc(R)G$. However G is a Z-regular, then $Soc(R)G = Soc(G)$, that is either $rB \subseteq IG + Soc(G)$ or $JB \subseteq IG + Soc(G)$. Therefore with proposition (2.6) IG is an APP-quasi prime submodule of ϵ . **(** \Leftarrow)Suppose that $I\epsilon$ is an APP-quasi prime submodule of G and let $r/B \subseteq I$ for $r \in R$, *I* is an ideal of R, implies that $r/BG \subseteq IG$, thus $r/(BG) \subseteq IG$. However IG is an APP-quasi

prime submodule of M, then with proposition (2.6), $rBG \subseteq IG + Soc(G)$ or $|BG \subseteq IG + Soc(G)$. Since G is a Z-regular ,then $Soc(R)G = Soc(G)$. Hence $rBG \subseteq IG + Soc(R)G$ or $IBG \subseteq IG + Soc(R)G$. Thus $rB \subseteq I + Soc(R)$ or $IB \subseteq I +$ $Soc(R)$, therefore by proposition (2.6) I is an APP-quasi prime submodule of G.

Lemma 3.12[5, Coro.(2.5)]

Let G be an R-module, and F is a proper submodule of G.Then F is an APP-quasi prime submodule of G if and only if whenever $rsD \subseteq G$, where, $r, s \in R$, and, D is a submodule of G, implies that either $rD \subseteq F + Soc(G)$ or $sD \subseteq F +$ $Soc(G)$.

Proposition 3.13:

If G be a finitely generated multiplication projective R-module, and I is an APP-quasi prime ideal of R with $ann_p(G) \subseteq$ I. Then I is an APP-quasi prime ideal of R if and only if IG is an APP-quasi prime submodule of G.

Proof:

 (\Rightarrow) Assume that I is an APP-quasi prime ideal of R with $ann_R(G) \subseteq I$, and let $rsB \subseteq IG$, for $r, s \in R$, , and B is a submodule of G. Since G is a multiplication, thus $B = |G|$ for j is an ideal j of R, that is $rsB = rs/G \subseteq IG$. However G is a finitely generated then with lemma (3.10) $rsJ \subseteq I + ann_R(G)$. Since $ann_R(G) \subseteq I$, then $I + ann_R(G) = I$, thus $rsJ \subseteq I$. Since I is an APP-quasi prime ideal of R, therefore by lemma (3.12) either $r \in I + Soc(R)$ or $s \in I + Soc(R)$, thus either $r/G \subseteq IG + Soc(R)G$ or $JSG \subseteq IG + Soc(R)G$. However G is a projective ,then by $Soc(R)G = Soc(G)$, and $B =$ *IG*. Thus either $rB \subseteq IG + Soc(G)$ or $sB \subseteq IG + Soc(G)$. Therefore by lemma (3.12) *IG* is an APP-quasi prime submodule of G. $\left(\leftarrow\right)$ Suppose that IG is an APP-quasi

prime submodule of G, and let $r/B \subseteq I$ for $r \in R$, is an ideal of R and B is a submodule of G, implies that $r/BG \subseteq IG$, thus $r/(BG) \subseteq IG$. However IG is an APP-quasi prime sub Module of G, then by proposition (2.6), either rBG $\subseteq IG$ + $Soc(G)$ or $IBG \subseteq IG + Soc(G)$. Since G is a projective ,then $Soc(R)G = Soc(G)$. Thus $rBG \subseteq IG + Soc(R)G$ or

 $IBG \subseteq IG + Soc(R)G$, implies that $TB \subseteq I + Soc(R)$ or $IB \subseteq I + Soc(R)$. Therefore by proposition (2.6) I is an APPquasi prime ideal of *.*

Proposition 3.14:

If F is a proper submodule of finitely generated multiplication Z-regular R-module G although $ann_p(G) \subseteq [F, F, G]$. Then the following statements are equivalent :

- **1.** F is an APP-quasi prime submodule of G .
- **2.** $[F:_{R} G]$ is an APP-quasi prime ideal of R.

3. $F = \{G \text{ for certain APP-quasi prime ideal } I \text{ of } R \text{ with } ann_R(G) \subseteq I\}.$

Proof $(1) \Leftrightarrow (2)$ Follows by proposition (3.7)

 $(2) \implies (3)$ Suppose that $[F:_{R} G]$ is an APP-quasi prime ideal of R. Since G is a multiplication R-module, then $F =$ $[F:_{R} G] G$, Put $[F:_{R} G] = J$, then $F = JG$ and since $[F:_{R} G]$ is an APP-quasi prime ideal of R, thus J is an APP-quasi prime ideal of R with $ann_R(G) = [0:_R G] \subseteq [F:_R G] = J$,implies that $ann_{R}(G) \subseteq J$ $(3) \implies (2)$ Assume that $F = JG$ for certain APP-quasi prime ideal *J* of R with $ann_R(G) \subseteq J$. However G is a multiplication, then $F = [F:_{R} G] G = JG$, and since G is a finitely generated multiplication, then G is a weak cancellation, thus $[F:_{R} G] + ann_{R}(G) = J + ann_{R}(G)$, however $ann_{R}(G) \subseteq J$, and $ann_{R}(G) \subseteq [F:_{R} G]$, implies that $ann_R(G) + J = J$ and $[F:_{R} G] + ann_R(G) = [F:_{R} G]$. Thus $[F:_{R} G] = J$, however *J* is an APP-quasi prime ideal of *R*, thus $[F:_{R} G]$ is an APP-quasi prime ideal of R.

Proposition 3.15:

If F is a proper submodule of finitely generated multiplication projective R-module G although $ann_p(G) \subseteq$ $[F:_{B} G]$, then the following statements are equivalent:

1. F is an APP-quasi prime submodule of G .

2. $[F:_{R} G]$ is an APP-quasi prime ideal of R.

3. $F = JG$ for certain APP-quasi prime ideal J of R, with $ann_R(G) \subseteq J$.

Proof:

 $(1) \Leftrightarrow (2)$ Follows by proposition (3.8).

 $(2) \Leftrightarrow (3)$ Similar as in proposition (3.13).

References

[1] Dauns, J., "Prime Modules," Journal reine Angew, Math. Vol. 2, (1978), pp.156-181.

[2] Lu, C. P., "M-radical of Submodules in Modules," Math. Japan, Vol. 34, (1989), pp. 211-219.

[3] Athab, E. A., "Prime and Semi-Prime," Ph.D. Thesis; College of Scicence, University of Baghdad (1996). [4] Abdul-Razak H.M., "Quasi-Prime Modules and Quasi-Prime subModules," M.Sc. Thesis, University of Baghdad (1999).

[5] Ali Sh. And Haibat K., "Approximaitly Quasi-prime SubModules and Some Related concepts," Journal of Al-Qadisiyah for computer science and mathematics. Vol. 11, No.(2), (2019), PP. 54-62.

[6] Goodearl, K. R., "Ring Theory," Marcel Dekker, Inc. New York and Basel, (1976), p. 206.

[7] Kasch, F., "Modules and Rings," London Math. Soc. Monographs, New York, Academic press (1982).

, - El-Bast, Z. A. and Smith, P. F., "Multiplication Modules," Comm. In Algebra, Vol. 16, No.(4), (1988), pp. 755-779.

[9] Smith, P.F.; Some Remarks On Multiplication Module; Arch. Math. Vol. 50, (1988), pp. 223-225.

, - Darani ,A.Y. and Soheilniai ,F″2-Absorbing and Weakly 2-Absorbing Submodules,″ Tahi Journal Math .Vol. 9, (2011), pp.577-584.

, - Zelmanowitz, J., "Regular Modules," Trans .Amerecan ,Math. Soc. Vol. 163, (1973) , pp. 341-355.

[12] Nuha , H.H ., "The Radicals of Modules," M.Sc. Thesis , University of Baghdad (1996),.

[13] Naderi. M. and Reza. J., "Weakly Primary Submodules of Multiplication Modules and Intersection Theorem," Int. Journal Contemp. Math. Sci, Vol. 4, No.(33), (2009), PP. 1645 -1652.

[14] Ali, S. M., "On Concellation Modules", M. Sc. Thesis, University of Baghdad , (1993).