

Available online at www.qu.edu.iq/journalcm

JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

On APP-Quasi prime Submodules

Thaer Z. Khlaif¹, Haibat K. Mohammadali², Akram S. Mohammed³

¹Department of Mathematics, College of Computer Science and Mathematics, University of Tikrit, Iraq. Email: thaerzaidan87@gmail.com ² Department of Mathematics, College of Computer Science and Mathematics, University of Tikrit, Iraq Email: dr.mohammadali2013@gmail.com ³ Department of Mathematics, College of Computer Science and Mathematics, University of Tikrit, Iraq. Email: akr-tel@tu.edu.iq

ARTICLEINFO

ABSTRACT

Article history: Received: 19 /3/2024 Revised form: 27 /4/2024 Accepted : 30 /5/2024 Available online: 30 /6/2024

Keywords:

Prime submodules

quasi prime submodules

APP-quasi prime submodules

Multiplication modules

projective modules

https://doi.org/10.29304/jqcsm.2024.16.21558

1. Introduction

Let G be an R-module and F be a proper submodule of an R-module G then F is called prime submodule of G if $rm \in F$, where $r \in R$, $m \in G$, implies that either $m \in F$ or $r \in [F_{:R}G]$ where $[F_{:R}G] = \{r \in R: rG \subseteq F\}$ this concept was first introduce in 1978 by Dauns see [1]. This concept"was generalizations to (primary, semi prime , quasi prime) submodules in 1989, 1996, and 1999 respectively see [2,3,4], the concepts of prime submodules recently several generalization to APP-quasi prime submodules by Ali Sh. Haibat K. in 2019 see [5]. In this study, we introduce new examples, characterizations and basic properties of these concepts. A nonzero submodule F of an R-module G is said to be essential if $F \cap K \neq (0)$ for all nonzero submodule K of G [6] and the socle of an R-module G denoted by Soc(G) is the intersection all"essential submodules F of G [7. P.212]. It is well"known that if a submodule F of an R-module G be an essential"in G, therefore Soc(F) = Soc(G) [6, P.29]. An R-module G is a semi simple if each submodule of an R-module G is a semi simple if and"only if Soc(G) = G [6]. It is well known that an R-module G is a semi simple if and"only if Soc(G = G [6]. It is well known that an R-module G is a semi simple if every

Thaer Z. Khlaif

Email addresses: thaerzaidan87@gmail.com

Let R to be a commutative ring with identity and G is a unitary left R-module. In this paper we introduce the concept of approximaitly-quasi prime submodules (for short APP-quasi prime submodule) as a generalizations of prime submodule and quasi prime submodule, where a proper submodule F of Rmodule G is said to be an APP-quasi prime submodule of G, if whenever rsm \in G, where r, s \in R and m \in G implies that either rm \in F + Soc(G) or sm \in F + Soc(G)[5]. Many new examples, characterization and basic properties of this concepts are introduce. Furthermore new characterizations of APP-quasi prime submodules in some types of modules are given.

MSC..

submodule F of G written in the form F = IG for certain ideal I of R. Equivalent to G is multiplication if $F = [F_{:R} G]G$ [8]. For any submodules K, L of a multiplication"R-module G with K = IG, L = JG for"some ideals I and J of R, the product of two submodule of a multiplication R-module is KL = IGJG = IJG, that"is KL = IL. To be specific KG = IGRG = IRG = IG = K [9]. An R-module G is said to be a Z-regular if $\forall m \in G, \exists f \in M^* = Hom_R (G, R)$ in such a way that m = f(m)m [11]. It is well know that if G is a Z- regular R-module, then Soc(G) = Soc(R)G [12, prop. 3 - 25]."An R-module G is a projective if for every R-epimorphism Ψ from R-module V into an R-module V' and for any R-homomorphism Φ from G into V' then there exists an R-homomorphism θ from G into V such that $\Phi o \theta = \Psi$ [7]. It is well know that if G be a projective R-module, then Soc(G) = Soc(R)G [12, prop. 3.24]. An Rmodule G is weak cancellation if IG = JG, where I, J are ideals of R then I + ann_R(G) = J + ann_R(G) [14]. It is wellknow that if G is a multiplication R-module. Then G is finitely generated if and only if G is a weak"cancellation [13, prop. (3 - 9)].

2. Some New Results Of An APP-Quasi Prime Submodules.

In this part of we recall that a proper submodule F of an R-module G is quasi prime if $rsm \in F$, where $r, s \in R$, $m \in G$, "this means either $rm \in F$ or $sm \in F$.

Definition 2.1:[5]

2

A proper submodule F of an R-module G is called an APP-quasi prime submodule of G, if $rsm \in F$, for $r, s \in R$, $m \in G$, "implies that either $rm \in F + Soc(G)$ or $sm \in F + Soc(G)$. And an ideal I of a ring R is called an APP-quasi prime ideal of R if I is an APP-quasi prime submodule of a R-Module R.

Examples and Remark 2.2:

1. It's clear that since $Soc(Z_{48})$ is the intersection of all essential submodules of Z_{48} that is $Soc(Z_{48}) = \langle \overline{2} \rangle \cap \langle \overline{4} \rangle \cap \langle \overline{8} \rangle \cap Z_{48} = \langle \overline{8} \rangle$.

2. It can be checked in the Z -module Z_{48} , the submodules $\langle \overline{6} \rangle$ and $\langle \overline{16} \rangle$ are APP-quasi prime submodules.

3. It can be checked in the *Z*-module Z_{48} , the submodules $\langle \overline{4} \rangle$, $\langle \overline{8} \rangle$, $\langle \overline{12} \rangle$, and $\langle \overline{24} \rangle$ are not an APP-quasi prime submodules of Z_{48} .

4. It's clear that each quasi prime submodule of *R*-module *G* is an APP-quasi prime submodule of an *R*-module *G*, however not conversely. The following example explain that: Consider the *Z*-Module Z_{48} , the submodule $N = \overline{16} > \text{is not a quasi}$ prime submodule of Z_{48} since 2.2. $\overline{4} = \overline{16} \in \overline{16} > \text{for } 2 \in Z \ \overline{4} \in Z_{48}$, but $2. \overline{4} = \overline{8} \notin \overline{16} >$. However $\overline{16} > \text{is an APP-quasi}$ prime submodule of Z_{48} by part (2).

5. It's clear that each prime submodule of an R-module *G* is an APP-quasi prime submodule of an *R*-module *G*. However the converse is not true in general the following example shows this: The submodule $<\overline{6} >$ of *Z*-module Z_{48} is an APP-quasi prime submodule by part (2). but $<\overline{6} >$ is not prime submodule, since $2.\overline{3} = \overline{6} \in <\overline{6} >$ for $2 \in Z$, $\overline{3} \in Z_{48}$, however $\overline{3} \notin <\overline{6} >$ and $2\notin [<\overline{6} >:_Z Z_{48}] = 6Z$.

6. It's clear that The submodules $\langle \overline{2} \rangle$, $\langle \overline{3} \rangle$ of the Z- module Z_{48} are prime submodules of Z_{48} . Thus they are APPquasi prime submodules by part (5).

7. If F is an APP-quasi prime submodule of an R-module G, then $[F_R, G]$ not necessary be an APP-quasi prime ideal of R. The following example shows that:

It is shown that in part (2) the submodule $\langle \overline{6} \rangle$ of the *Z*- module Z_{48} is an APP-quasi prime submodule. However $[\langle \overline{6} \rangle :_Z Z_{48}] = 6Z$ is not APP-quasi prime ideal of Z since $2.3.1 = 6 \in 6Z$, for $2,3,1 \in Z$ however $2.1 = 2 \notin 6Z + Soc(Z) = 6Z$, and $3.1 = 3 \notin 6Z + Soc(Z) = 6Z$.

Before we introduce the first characterizations of APP-quasi prime submodules, we need to recall the following lemma which a pear in [5, Coro. 2.7].

Lemma 2.3:

If G be an R-module, and F be a proper submodule of G. Then F is an APP-quasi prime submodule of G if and only if when $IJm \subseteq F$, for I, J are ideals of R, $m \in G$, this means either $Im \subseteq F + Soc(G)$ or $Jm \subseteq F + Soc(G)$.

Proposition 2.4:

Let *F* be a proper submodule of an *R*-module *G*. Then *F* is an APP-quasi prime submodule of *G* if and only if $[F:_G IJ] \subseteq [F + Soc(G):_G I] \cup [F + Soc(G):_M J]$ for all ideals *I* and *J* of *R*.

proof:

(⇒) Suppose that *F* is an APP-quasi prime submodule of *G*, and let $m \in [F:_M IJ]$, for $m \in G$ and ideals *I* and *J* of *R* implies that $IJm \subseteq F$. However *F* is an APP-quasi prime submodule of *G*, so by lemma (2.3) either $Im \subseteq F + Soc(G)$ or $Jm \subseteq F + Soc(G)$. Therefore either $m \in [F + Soc(G):_G I]$ or $m \in [F + Soc(G):_G J]$. Hence $m \in [F + Soc(G):_G I] \cup [F + Soc(G):_G I] \cup [F + Soc(G):_G I] \subseteq [F + Soc(G):_G I] \cup [F + Soc(G):_G J]$.

(⇐) Suppose that $[F:_G IJ] \subseteq [F + Soc(G):_G I] \cup [F + Soc(G):_G J]$, and let $IJm \subseteq F$, for I, J are an ideal of $R, m \in G$, implies that $m \in [F:_R IJ]$. And since $[F:_G IJ] \subseteq [F + Soc(G):_G I] \cup [F + Soc(G):_G J]$. Thus $m \in [F + Soc(G):_G I] \cup [F + Soc(G):_G J]$, so either $m \in [F + Soc(G):_G I]$ or $m \in [F + Soc(G):_G J]$. Hence $Im \subseteq F + Soc(G)$ or $Jm \subseteq F + Soc(G)$. therefore F is an APP-quasi prime submodule of G by lemma (2.3).

Before we introduce the first characterizations of APP-quasi prime submodules, we need to recall the following lemma which appear in [5, Prop. 2.4].

Lemma 2.5:

Let G be an R-module, and F be a proper submodule of an R-module G. Then F is an APP-quasi prime sub Module of G if and only if when $IJL \subseteq F$, for I, J are ideal of R, L is a submodule of G, then either $IL \subseteq F + Soc(G)$ or $JL \subseteq F + Soc(G)$.

Proposition 2.6:

Let *G* be an *R*-module, and *F* be a proper submodule of an *R*-module *G*. Then F is an APP-quasi prime submodule of *G* if and only if when $rJD \subseteq F$, where $r \in R$, J is an ideal of R, and D is a submodule of *G*, therefore either $rD \subseteq F + Soc(G)$ or $JD \subseteq F + Soc(G)$.

Proof:

(⇒) Assume that *F* is an APP-quasi prime submodule of *G*, and $rJD \subseteq N$, where $r \in R$, J is a ideal of *R*, *D* is a submodule of *G*. Now $rJD = \langle r \rangle JD$. Since *G* is an APP-quasi prime submodule of *G*, thus with lemma (2.5) either $\langle r \rangle D \subseteq F + Soc(G)$ or $JD \subseteq F + Soc(G)$ that is either $rD \subseteq F + Soc(G)$ or $JD \subseteq F + Soc(G)$. (⇐) Assume that $rsd \in N$, for $r, s \in R$, $d \in M$ implies that $\langle r \rangle \langle s \rangle \langle d \rangle \subseteq N$, so with hypothesis either $\langle r \rangle \langle d \rangle \subseteq N + Soc(M)$ or $\langle s \rangle \langle d \rangle \subseteq N + Soc(M)$. Therefore *F* is an APP-quasi prime submodule of *G*.

The following is a Characterization of APP-quasi prime submodule of G.

Proposition: 2.7:

If *F* is a proper submodule of *R*-module *G*. Then *F* is an APP-quasi prime submodule of *G* if and only if $[F:_G rJ] \subseteq [F + Soc(G):_G r] \cup [F + Soc(G):_G J]$, where $r \in R$, and J is an ideal of *R*.

Proof:

(⇒)Suppose that *F* is an APP-quasi prime submodule of *G*, and let $D \subseteq [F:_M rJ]$, for *D* is a submodule of *G*, $r \in R$, and *J* is an ideal of R implies that $rJD \subseteq N$. However *F* is an APP-quasi prime submodule of *G*. Hence with proposition (2.6) $rD \subseteq F + Soc(G)$ or $JD \subseteq F + Soc(G)$. that is $D \subseteq [F + Soc(G):_G r]$ or $D \subseteq [F + Soc(G):_G J]$. Hence $D \subseteq [F + Soc(G):_G r] \cup [F + Soc(G):_G J]$. Thus $[F:_G rJ] \subseteq [F + Soc(G):_G r] \cup [F + Soc(G):_G J]$.

(⇐)Suppose that $[F:_G rJ] \subseteq [F + Soc(G):_G r] \cup [F + Soc(G):_G J]$, and let $rJD \subseteq N$, for $r \in R$, J is an ideal of R, and D is a submodule of G, implies that $D \subseteq [F:_R rJ]$. And since $[N:_M rJ] \subseteq [N + Soc(M):_M r] \cup [N + Soc(M):_M J]$. Thus $D \subseteq [N + Soc(M):_M r] \cup [N + Soc(M):_M J]$, implies that $D \subseteq [N + Soc(M):_M r]$ or $D \subseteq [N + Soc(M):_M J]$. Hence $rD \subseteq N + Soc(M)$ or $JD \subseteq N + Soc(M)$. Hence with proposition (2.6) F is an APP-quasi prime submodule of G.

Proposition 2.8:

If F is a proper submodule of R-module G. Then F is an APP-quasi prime submodule of G if and only if whenever $Ism \subseteq F$, for I is an ideal of R, $s \in R$ and $m \in G$, implies that either $Im \subseteq F + Soc(G)$ or $sm \in F + Soc(G)$.

Proof:

The prove with lemma (2.5).

Corollary 2.9:

If *F* is a proper submodule of an *R*-module *G*. Then *F* is an APP-quasi prime submodule of *G* if and only if whenever $IsD \subseteq F$, for *I* is an ideal of *R*, $s \in R$, and *D* is a submodule of *G*, implies that either $ID \subseteq F + Soc(G)$ or $sD \subseteq F + Soc(G)$.

Proposition 2.10:

Let *F* be a proper submodule of an *R*-module *G*. Then *F* is an APP-quasi prime submodule of *G* if and only if $[F:_G Is] \subseteq [F + Soc(G):_G I] \cup [F + Soc(G):_G s]$ for all *I* is an ideal of $R, s \in R$.

Proof:

(⇒)Assume that *F* is an APP-quasi prime submodule of *G*, and let $m \in [F:_G Is]$, for $m \in G$, I is an ideal of *R*, and $s \in R$ then $Ism \subseteq F$. However *F* is an APP-quasi prime submodule of *G*. Hence by proposition (2.8) either $Im \subseteq F + Soc(G)$ or $sm \subseteq F + Soc(G)$. Therefore either $m \in [F + Soc(G):_G I]$ or $m \in [F + Soc(G):_G s]$. Hens $m \in [F + Soc(G):_G I] \cup [F + Soc(G):_G s]$. Hens $m \in [F + Soc(G):_G I] \cup [F + Soc(G):_G s]$.

(⇐)Suppose that $[F:_G Is] \subseteq [F + Soc(G):_G I] \cup [F + Soc(G):_G s]$, and let $Ism \subseteq F$, where I is an ideal of $R, s \in R$, and $m \in G$, implies that $m \in [F:_R Is]$. And since $[F:_G Is] \subseteq [F + Soc(G):_G I] \cup [F + Soc(G):_G s]$. Thus $m \in [F + Soc(G):_G I] \cup [F + Soc(G):_G s]$, implies that $m \in [F + Soc(G):_G I] \cup [F + Soc(G):_G s]$. Hence $Im \subseteq F + Soc(G)$ or $sm \subseteq F + Soc(G)$. Thus by proposition (2.8) F is an APP-quasi prime submodule of G.

Proposition 2.11:

If F is a proper submodule of a cyclic R-module G. Then F is an APP-quasi prime submodule of G if and only if $[F:_R IJD] \subseteq [F + Soc(G):_R ID] \cup [F + Soc(G):_R JD]$ for each I, J are an ideal of R, and every submodule D of an R-module G.

Proof:

(⇒) Assume that *F* is an APP-quasi prime submodule of an *R*-module *G*, and let $m \in [F:_R IJD]$, for $m \in G, I, J$ ideals of *R*, and *D* is a submodule of *R*-module *G*, then $IJ(mD) \subseteq N$. However *F* is an APP-quasi prime submodule of *G*, then by lemma (2.5) $I(mD) \subseteq F + Soc(G)$ or $J(mD) \subseteq F + Soc(G)$, therefore $m \in [F + Soc(G):_R ID]$ or $m \in [F + Soc(G):_R JD]$. That is $m \in [F + Soc(G):_R IB] \cup [F + Soc(G):_R JB]$. Thus $[F:_R IJD] \subseteq [F + Soc(G):_R ID] \cup [F + Soc(G):_R JD]$.

(⇐)Suppose that $[F:_G IJD] \subseteq [F + Soc(G):_G ID] \cup [F + Soc(G):_G JD]$, and let $rsm \in F$, for $r, s \in R$, and $m \in G$. Since *G* is a cyclic *R*-module, then m = tm', for $t \in R$, $m' \in G$ implies that rsm = rstm'. Thus

 $rstm' \in F$ then $t \in [F:_R rsm']$, so by hypothesis $t \in [F:_R rsm'] \subseteq [F + Soc(G):_R rm'] \cup [F + Soc(G):_R sm']$, implies that $t \in [F + Soc(G):_R rm']$ or $t \in [F + Soc(G):_R sm']$ therefore $rtm' \in F + Soc(G)$ or $stm' \in F + Soc(G)$. Hence $rm \in F + Soc(G)$ or $sm \in F + Soc(G)$, implies that F is an APP-quasi prime submodule of an R-module G.

Remark

2.12 [6, P.29]:

it is well known that, if a submodule F of an R-module G is an essential in G, then Soc(F) = Soc(G).

Proposition 2.13:

Let F, K are submodules of an R-module G with F is a proper submodule of K and K is an essential submodule of G such that F is an APP-quasi prime submodule of G. Then F is an APP-quasi prime submodule of K.

Proof:

Suppose that *F* is an APP-quasi prime submodule of *G*, and let $IJA \subseteq F$, where *I*, *J* are ideals of R, *A* is a submodule of *K*. Since *K* is a submodule of *G* that is *A* is a submodule of *G*. However *F* is an APP-quasi prime submodule of *G*, then by lemma (2.5) $IA \subseteq F + Soc(G)$ or $JA \subseteq F + Soc(G)$. However *K* is an essential submodule of *G* then Soc(G) = Soc(K).

Thus, it follows that either $IA \subseteq F + Soc(K)$ or $JA \subseteq F + Soc(K)$. Therefore by lemma (2.5) F is an APP-quasi prime submodule of K.

Proposition 2.14:

If F, K are submodules of an R-module G such that $L \subseteq F$, and F be a proper submodule of G. If F is an APP-quasi prime submodule of G, then $\frac{F}{r}$ is an APP-quasi prime submodule of $\frac{G}{r}$.

Proof:

Assume that F is an APP-quasi prime sub Module of G, and let $rs(m+L) \in \frac{F}{L}$ then $rsm + L \in \frac{F}{L}$, for $r, s \in R$, $m + L \in \frac{F}{L}$ $\frac{G}{r}$, $m \in G$. Then $rsm \in F$ and since F is an APP-quasi prime submodule of G, implies that $rm \in F + Soc(G)$ or $sm \in F + F$ $Soc(G). \text{ It follows that } rm + L \in \frac{F + Soc(G)}{L} \text{ or } sm + L \in \frac{F + Soc(G)}{L}, \text{ thus } rm + L \in \frac{F}{L} + \frac{F + Soc(G)}{L} \subseteq \frac{F}{L} + Soc(\frac{G}{L}) \text{ or } sm + L \subseteq \frac{F}{L} + \frac{F + Soc(G)}{L} \subseteq \frac{F}{L} + Soc(\frac{G}{L}), \text{ implies that either } rm + L \in \frac{F}{L} + Soc(\frac{G}{L}) \text{ or } sm + L \in \frac{F}{L} + Soc(\frac{G}{L}) \text{ therefore either } r(m + L) = \frac{F}{L} = \frac{F}{L} + \frac{F + Soc(\frac{G}{L})}{L} = \frac{F}{L} + \frac{F + Soc(\frac{G}{L})$ $L \in \frac{F}{L} + Soc(\frac{G}{L})$ or $s(m+L) \in \frac{F}{L} + Soc(\frac{G}{L})$. Thus $\frac{F}{L}$ is an APP-quasi prime submodule of $\frac{G}{L}$.

Now, the following is the converse of proposition (2.14)

Proposition 2.15:

Let F, L are submodules of semi-simple R-module G, such that $L \subseteq F$, and F be a proper submodule of G. If $L, \frac{F}{L}$ are APP-quasi prime submodules of G and $\frac{G}{r}$ respectively, then F is an APP-quasi prime submodule of G.

Proof:

Assume that L, $\frac{F}{L}$ are an APP-quasi prime submodules of G and $\frac{G}{L}$ respectively and let $rsm \in F$ for $r, s \in R$, $m \in G$. So $rs(m + L) \in \frac{F}{L}$ then $rsm + L \in \frac{F}{L}$. If $rsm \in L$ and L is an APP-quasi prime submodule of G, implies that either $rm \in L + Soc(G)$ or $sm \in L + Soc(G)$, and since $L \subseteq F$, it follows that $L + Soc(G) \subseteq F + Soc(G)$, then either $rm \in L + Soc(G) = F + Soc(G)$. $Soc(G) \subseteq F + Soc(G)$ or $sm \in L + Soc(G) \subseteq F + Soc(G)$, implies that either $rm \in F + Soc(G)$ or $sm \in F + Soc(G)$. Hence F is an APP-quasi prime submodule of G. So, we may suppose that $rsm \notin L$. It follows that $rs(m+L) \in \frac{r}{r}$, However $\frac{F}{L}$ is an APP-quasi prime submodule of $\frac{G}{L}$, implies that $r(m+L) \in \frac{F}{L} + Soc(\frac{G}{L})$ or $s(m+L) \in \frac{F}{L} + Soc(\frac{G}{L})$, since G is a semi simple, then $Soc(\frac{G}{L}) = \frac{L+Soc(G)}{L}$, hence either $r(m+L) \in \frac{F}{L} + \frac{L+Soc(G)}{L}$ or $s(m+L) \in \frac{F}{L} + \frac{L+Soc(G)}{L}$. Since $L \subseteq F$, it follows that $L + Soc(G) \subseteq F + Soc(G)$, hence $\frac{F}{L} + \frac{L+Soc(G)}{L} \subseteq \frac{F}{L} + \frac{F+Soc(G)}{L}$, and since $\frac{F}{L} \subseteq \frac{F+Soc(G)}{L}$, implies that $\frac{F}{L} + \frac{F+Soc(G)}{L} = \frac{F+Soc(G)}{L}$. Thus either $r(m+L) \in \frac{F+Soc(G)}{L}$ or $s(m+L) \in \frac{F+Soc(G)}{L}$, then either $rm + L \in \frac{F+Soc(G)}{L}$ or $s(m+L) \in \frac{F+Soc(G)}{L}$. $sm + L \in \frac{F + Soc(G)}{r}$, therefore either $rm \in F + Soc(G)$ or $sm \in F + Soc(G)$. Hence F is an APP-quasi prime submodule of G.

3.Some Characterizations Of An APP-quasi prime Submodules In Some Types Of Modules.

In this part of paper we introduce several characterizations of APP-quasi prime submodules in class of multiplication modules before we introduce first characterization we need to recall the following.

Lemma 3.1[5, Prop. 2.37]

Let G be a multiplication R-module, and F be a proper submodule of G. Then F is an APP-quasi prime submodule of G if and only if, when $K_1K_2K_3 \subseteq F$, where K_1 , K_2 , K_3 are submodules of G, this means either $K_1K_3 \subseteq F + Soc(G)$ or $K_2K_3 \subseteq F + Soc(G).$

Remark 3.2 [13]:

Let G be a multiplication R-module, then for every elements $m_1, m_2 \in G$, by m_1m_2 mean the product of two submodules Rm_1 and Rm_2 , that is $m_1m_2 = Rm_1Rm_2$ is a submodule of G

Proposition 3.3:

Let G be a multiplication R-module, and F be a proper submodule of G. Then F is an App-quasi prime submodule of G if and only if whenever $m_1m_2m_3 \subseteq F$ for $m_1, m_2, m_3 \in G$, this means either $m_1m_3 \subseteq F + Soc(G)$ or $m_2m_3 \subseteq F + F$ Soc(G).

Proof:

(⇒) Suppose that *F* is an APP-quasi prime submodule of *G*, and let $m_1m_2m_3 \subseteq F$ for $m_1, m_2, m_3 \in G$. Since *G* is a multiplication, then $m_1 = Rm_1, m_2 = Rm_2, m_3 = Rm_3$ are submodules of *G*, therefore $m_1 = I_1G, m_2 = I_2G, m_3 = I_3G$, for I_1, I_2 , and I_3 are an ideal of R, thus $m_1m_2m_3 = I_1I_2(I_3G) \subseteq F$. However *F* is an APP-quasi prime submodule of *G*, then with lemma (3.1), $I_1I_3G \subseteq F + Soc(G)$ or $I_2I_3G \subseteq F + Soc(G)$. Therefore $m_1m_3 \subseteq F + Soc(G)$ or $m_2m_3 \subseteq F + Soc(G)$.

(\Leftarrow) Suppose that $m_1m_2m_3 \subseteq F$ for $m_1, m_2, m_3 \in G$, implies that either $m_1m_3 \subseteq F + Soc(G)$ or $m_2m_3 \subseteq F + Soc(G)$, and let $I_1I_2m_3 \subseteq F$, for $m_3 \in G$ and I_1, I_2 are an ideal of R Since G is a multiplication R-module, and $m_3 = I_3G$, then $I_1I_2m_3 = I_1I_2I_3G = (I_1G)(I_2G)(I_3G)$, implies that $I_1I_2m_3 = m_1m_2m_3$, so either $m_1m_3 \subseteq F + Soc(G)$ or $m_2m_3 \subseteq F + Soc(G)$ by hypothesis. That is $I_1I_3G \subseteq F + Soc(G)$ or $I_2I_3G \subseteq F + Soc(G)$. Thus $I_1m_3 \subseteq F + Soc(G)$ or $I_2m_3 \subseteq F + Soc(G)$, therefore with lemma (3.1) F is an APP-quasi prime submodule of G.

The corollaries follow from lemma (3.1) and proposition (3.3).

Corollary 3.4:

Let G be a multiplication R-module, and F be a proper submodule of G. Then F is an APP-quasi prime submodule of G if and only if whenever $KmL \subseteq G$ where L, K are a submodules of G and $m \in G$, that is either $KL \subseteq F + Soc(G)$ or $mL \subseteq F + Soc(G)$.

Corollary 3.5:

Let G be a multiplication R-Module, and F be a proper submodule of G. Then F is an APP-quasi prime submodule of G if and only if whenever $Km_1m_2 \subseteq F$ where K is a submodules of G and $m_1, m_2 \in G$, that is $Km_2 \subseteq F + Soc(G)$ or $m_1m_2 \subseteq F + Soc(G)$.

Corollary 3.6:

Let G be a multiplication R-Module, and F be a proper submodule of G. Then F is an APP-quasi prime submodule of G if and only if whenever $m_1Km_2 \subseteq F$ where K be a submodule of G and $m_1, m_2 \in G$, that is either $m_1m_2 \subseteq N + \text{Soc}(M)$ or $Km_2 \subseteq N + \text{Soc}(G)$.

Corollary 3.7:

Let G be a multiplication R-module, and F be a proper submodule of G. Then F is an APP-quasi prime submodule of G if and only if whenever $m_1m_2K \subseteq F$ where K is a submodule of G and $m_1, m_2 \in G$, that is $m_1K \subseteq N + Soc(G)$ or $m_2K \subseteq F + Soc(G)$.

The following proposition are characterizations of an APP-quasi prime submodules by its results.

Proposition 3.8:

If F is a proper submodule of Z-regular multiplication R-module G. Then F is an APP-quasi prime submodule of G if and only if $[F_{R}G]$ is an APP-quasi prime ideal of R.

Proof:

(⇒) Assume that *F* is an APP-quasi prime submodule of *G*, and let $J_1J_2J_3 \subseteq [F:_R G]$, for J_1, J_2, J_3 are ideals of *R*, that is $J_1J_2J_3G \subseteq F$. Since *G* is a multiplication, then $K_1K_2K_3 \subseteq F$ where $K_1 = J_1G$, $K_2 = J_2G$ and $K_3 = J_3G$. However *F* is an APP-quasi prime submodule of *G*, then with lemma (3.1) $K_1K_3 \subseteq F + Soc(G)$ or $K_2K_3 \subseteq F + Soc(G)$, thus $J_1J_3G \subseteq F + Soc(G)$ or $J_2J_3G \subseteq F + Soc(G)$. Since *G* is *Z*-regular multiplication *R*-module, then Soc(G) = Soc(R)G, and also $F = [F:_R G]G$. Thus either $J_1J_3G \subseteq [F:_R G]G + Soc(R)G$ or $J_2J_3G \subseteq F + Soc(R)$. That is either $J_1J_3 \subseteq [F:_R G] = Soc(R)G$. That is either $J_1J_3 \subseteq [F:_R G] = Soc(R)G$. That is either $J_1J_3 \subseteq [F:_R G] = Soc(R)G$. Therefore by lemma (3.1) $[F:_R G]$ is an APP-quasi prime ideal of *R*.

(⇐)Assume that $[F:_R G]$ is an APP-quasi prime ideal of R, and let $rIB \subseteq F$, where $r \in R$, I is an ideal of R, and B is a submodule of R. Since G is a multiplication, then B = JG for certain ideal J of R, thus it follows that $rIB = rIJG \subseteq F$, that is $rIJ \subseteq [F:_R G]$. However $[F:_R G]$ is an APP-quasi prime ideal of R, next, by proposition (2.6) either $rJ \subseteq [F:_R G] + Soc(R)$ or $IJ \subseteq [F:_R G] + Soc(R)$, thus $rJG \subseteq [F:_R G]G + Soc(R)G$ or $IJG \subseteq [F:_R G]G + Soc(R)G$. Again since G is a multiplication , then $F = [F:_R F]F$, and G is a Z-regular, then Soc(G) = Soc(R)G. Hence either $rB \subseteq F + Soc(G)$ or $IB \subseteq F + Soc(G)$. Therefore by proposition (2,6) F is an APP-quasi prime submodule of G.

Proposition 3.9:

If G be a multiplication projective R-module, and F be a proper submodule of G. Then F is an APP-quasi prime submodule of G if and only if $[F_{R}, G]$ is an APP-quasi prime ideal of R.

Proof:

(⇒)Assume that *G* is APP-quasi prime submodule of *G*, and let $I_1I_2I_3 \subseteq [F:_R G]$, for I_1, I_2, I_3 are ideals of *R*, that is $I_1I_2I_3G \subseteq F$. Since *G* is a multiplication, then $L_1L_2L_3 \subseteq F$ where $L_1 = I_1G$, $L_2 = I_2G$ and $L_3 = I_3G$. However *F* is an APP-quasi prime submodule of *G*, then by lemma (3.1) $L_1L_3 \subseteq F + Soc(G)$ or $L_2L_3 \subseteq F + Soc(G)$, that is either $I_1I_3G \subseteq F + Soc(G)$ or $I_2I_3G \subseteq F + Soc(G)$. since *G* is projective multiplication *R*-module, then Soc(G) = Soc(R)G, and also $F = [F:_R G]G$. Thus either $I_1I_3G \subseteq [F:_R G]G + Soc(R)G$ or $I_2I_3G \subseteq [F:_R G]G + Soc(R)G$. That is either $I_1I_3 \subseteq [F:_R G] + Soc(R)$ or $I_2I_3 \subseteq [F:_R G] = Soc(R)G$. That is either $I_1I_3 \subseteq [F:_R G] + Soc(R)$ or $I_2I_3 \subseteq [F:_R G] = Soc(R)G$. That is either $I_1I_3 \subseteq [F:_R G] + Soc(R)$ or $I_2I_3 \subseteq [F:_R G] = Soc(R)G$. That is either $I_1I_3 \subseteq [F:_R G] + Soc(R)$ or $I_2I_3 \subseteq [F:_R G] = Soc(R)G$. That is either $I_1I_3 \subseteq [F:_R G] = Soc(R)G$ or $I_2I_3 \subseteq [F:_R G] + Soc(R)$ or $I_2I_3 \subseteq [F:_R G] = Soc(R)G$. That is either $I_1I_3 \subseteq [F:_R G] = Soc(R)G$. That is either $I_1I_3 \subseteq [F:_R G] = Soc(R)G$ or $I_2I_3 \subseteq [F:_R G] = Soc(R)G$. That is either $I_1I_3 \subseteq [F:_R G] = Soc(R)$ or $I_2I_3 \subseteq [F:_R G] = Soc(R)G$. That is either $I_1I_3 \subseteq [F:_R G] = Soc(R)G$ or $I_2I_3 \subseteq [F:_R G] = Soc(R)G$. That is either $I_1I_3 \subseteq [F:_R G] = Soc(R)G$ or $I_2I_3 \subseteq [F:_R G] = Soc(R)G$. That is either $I_1I_3 \subseteq [F:_R G] = Soc(R)G$ is an APP-quasi prime ideal of *R*, and let $ISD \subseteq F$, where $s \in R$, I is an ideal of *R*, and *D* is a sub Module of *R*. Since *G* is a multiplication, then D = JG for certain ideal *J* of *R*, it follows that $ISD = ISJG \subseteq F$, that is $ISJ \subseteq [F:_R G] = Soc(R)$, hence either $IJG \subseteq [F:_R G]G + Soc(R)G$ or $sJG \subseteq [F:_R G]G + Soc(R)G$. Again since *G* is a multiplication , then $F = [F:_R G]G$, and *G* is projective, then Soc(G) = Soc(R)G. Hence either $IJ \subseteq F + Soc(G)$ or $sJ \subseteq F + Soc(G)$. Therefore with corollary(2.9) F is an APP-quasi prime sub Module of *G*.

Lemma 3. 10: [14, coro of Theo(9)]

Let *I*, *J* are two ideals of *R*, and *G* be a multiplication finitely generated *R*-Module. Then $IG \subseteq JG$ if and only if $I \subseteq J + ann_R(G)$.

Proposition 3.11:

If *G* is a finitely generated *Z*-regular multiplication *R*-module, and *I* is an ideal of *R* with $ann_R(G) \subseteq I$. Then *I* is an APP-quasi prime ideal of *R* if and only if *IG* is an APP-quasi prime submodule of *G*.

Proof:

(⇒) Assume that I is an APP-quasi prime ideal of R with $ann_R(G) \subseteq I$, and let $rJB \subseteq IG$, where $r \in R$, J is an ideals of R, B is a submodule of G. Since G is a multiplication, this means B = AG for certain ideal A of R, that is $rJB = rJAG \subseteq IG$. However G is a finitely generated, then by lemma(3.10) $rJA \subseteq I + ann_R(G)$. since $ann_R(G) \subseteq I$, then $I + ann_R(G) = I$, thus $rJA \subseteq I$. since I is an APP-quasi prime ideal of R, implies that by proposition (2.6) $rA \subseteq I + Soc(R)$ or $JA \subseteq I + Soc(R)$, thus $rAG \subseteq IG + Soc(R)G$ or $JAG \subseteq IG + Soc(R)G$. However G is a Z-regular, then Soc(R)G = Soc(G). that is either $rB \subseteq IG + Soc(G)$ or $JB \subseteq IG + Soc(G)$. Therefore with proposition (2.6) IG is an APP-quasi prime submodule of G and let $rJB \subseteq I$ for $r \in R$, J is an ideal of R, implies that $rJBG \subseteq IG$, thus $rJ(BG) \subseteq IG$. However IG is an APP-quasi prime submodule of M, then with proposition (2.6), $rBG \subseteq IG + Soc(G)$ or $JB \subseteq IG + Soc(G)$. Since G is a Z-regular

, then Soc(R)G = Soc(G). Hence $rBG \subseteq IG + Soc(R)G$ or $JBG \subseteq IG + Soc(R)G$. Thus $rB \subseteq I + Soc(R)$ or $JB \subseteq I + Soc(R)$, therefore by proposition (2.6) *I* is an APP-quasi prime submodule of *G*.

Lemma 3.12[5, Coro.(2.5)]

Let G be an R-module, and F is a proper submodule of G. Then F is an APP-quasi prime submodule of G if and only if whenever $rsD \subseteq G$, where, $r, s \in R$, and, D is a submodule of G, implies that either $rD \subsetneq F + Soc(G)$ or $sD \subseteq F + Soc(G)$.

Proposition 3.13:

If *G* be a finitely generated multiplication projective *R*-module, and *I* is an APP-quasi prime ideal of *R* with $ann_R(G) \subseteq I$. Then *I* is an APP-quasi prime ideal of *R* if and only if *IG* is an APP-quasi prime submodule of *G*.

Proof:

(⇒) Assume that I is an APP-quasi prime ideal of *R* with $ann_R(G) \subseteq I$, and let $rsB \subseteq IG$, for $r, s \in R$, , and *B* is a submodule of *G*. Since *G* is a multiplication, thus B = JG for *J* is an ideal *J* of *R*, that is $rsB = rsJG \subseteq IG$. However *G* is a finitely generated then with lemma (3.10) $rsJ \subseteq I + ann_R(G)$. Since $ann_R(G) \subseteq I$, then $I + ann_R(G) = I$, thus $rsJ \subseteq I$. Since *I* is an APP-quasi prime ideal of *R*, therefore by lemma (3.12) either $rJ \subseteq I + Soc(R)$ or $sJ \subseteq I + Soc(R)$, thus either $rJG \subseteq IG + Soc(R)G$ or $JsG \subseteq IG + Soc(R)G$. However *G* is a projective ,then by Soc(R)G = Soc(G), and B = JG. Thus either $rB \subseteq IG + Soc(G)$ or $sB \subseteq IG + Soc(G)$. Therefore by lemma (3.12) *IG* is an APP-quasi prime submodule of *G*.

prime submodule of *G*, and let $rJB \subseteq I$ for $r \in R$, J is an ideal of *R* and *B* is a submodule of *G*, implies that $rJBG \subseteq IG$, thus $rJ(BG) \subseteq IG$. However *IG* is an APP-quasi prime sub Module of *G*, then by proposition (2.6), either $rBG \subseteq IG + Soc(G)$ or $JBG \subseteq IG + Soc(G)$. Since *G* is a projective ,then Soc(R)G = Soc(G). Thus $rBG \subseteq IG + Soc(R)G$ or

 $IBG \subseteq IG + Soc(R)G$ implies that $rB \subseteq I + Soc(R)$ or $IB \subseteq I + Soc(R)$. Therefore by proposition (2.6) I is an APPquasi prime ideal of R.

Proposition 3.14:

8

If F is a proper submodule of finitely generated multiplication Z-regular R-module G although $ann_R(G) \subseteq [F_R]$. Then the following statements are equivalent :

1. *F* is an APP-quasi prime submodule of *G*.

2. $[F_{:R} G]$ is an APP-quasi prime ideal of R.

3. F = IG for certain APP-quasi prime ideal I of R with $ann_{R}(G) \subseteq I$.

Proof (1) \Leftrightarrow (2) Follows by proposition (3.7)

(2) \Rightarrow (3) Suppose that $[F_{R}G]$ is an APP-quasi prime ideal of R. Since G is a multiplication R-module, then F = $[F_{R}, G]G$, Put $[F_{R}, G] = J$, then F = JG and since $[F_{R}, G]$ is an APP-quasi prime ideal of R, thus J is an APP-quasi prime ideal of R with $ann_R(G) = [0:_R G] \subseteq [F:_R G] = J$,implies that $ann_{\mathbb{R}}(G) \subseteq J$ (3) \Rightarrow (2) Assume that F = IG for certain APP-quasi prime ideal I of R with $ann_R(G) \subseteq I$. However G is a multiplication, then $F = [F_{R}G] G = JG$, and since G is a finitely generated multiplication, then G is a weak cancellation, thus $[F_R G] + ann_R(G) = J + ann_R(G)$, however $ann_R(G) \subseteq J$, and $ann_R(G) \subseteq [F_R G]$, implies that $ann_R(G) + J = J$ and $[F_R G] + ann_R(G) = [F_R G]$. Thus $[F_R G] = J$, however J is an APP-quasi prime ideal of R, thus $[F:_R G]$ is an APP-quasi prime ideal of R.

Proposition 3.15:

If F is a proper submodule of finitely generated multiplication projective R-module G although $ann_{R}(G) \subseteq$ $[F_{:_{R}}G]$. then the following statements are equivalent :

1. *F* is an APP-quasi prime submodule of *G*.

2. $[F_{:_{R}}G]$ is an APP-quasi prime ideal of R.

3. F = IG for certain APP-quasi prime ideal I of R, with $ann_{R}(G) \subseteq I$.

Proof:

(1) \Leftrightarrow (2) Follows by proposition (3.8). (2) \Leftrightarrow (3) Similar as in proposition (3.13).

References

[1] Dauns, J., "Prime Modules," Journal reine Angew, Math. Vol. 2, (1978), pp.156-181.

[2] Lu, C. P., "M-radical of Submodules in Modules," Math. Japan, Vol. 34, (1989), pp. 211-219.

[3] Athab, E. A., "Prime and Semi-Prime," Ph.D. Thesis; College of Scicence, University of Baghdad (1996).

[4] Abdul-Razak H.M., "Quasi-Prime Modules and Quasi-Prime subModules," M.Sc. Thesis, University of Baghdad (1999).

[5] Ali Sh. And Haibat K., "Approximaitly Quasi-prime SubModules and Some Related concepts," Journal of Al-Qadisiyah for computer science and mathematics. Vol. 11, No.(2), (2019), PP. 54-62.

[6] Goodearl, K. R., "Ring Theory," Marcel Dekker, Inc. New York and Basel, (1976), p. 206.

[7] Kasch, F., "Modules and Rings," London Math. Soc. Monographs, New York, Academic press (1982).

[8] El-Bast, Z. A. and Smith, P. F., "Multiplication Modules," Comm. In Algebra, Vol. 16, No.(4), (1988), pp. 755-779.

[9] Smith, P.F.; Some Remarks On Multiplication Module; Arch. Math. Vol. 50, (1988), pp. 223-225.

[10] Darani ,A.Y. and Soheilniai ,F"2-Absorbing and Weakly 2-Absorbing Submodules," Tahi Journal Math .Vol. 9, (2011), pp.577-584.

[11] Zelmanowitz, J., "Regular Modules," Trans .Amerecan ,Math. Soc. Vol. 163, (1973), pp. 341-355.

[12] Nuha, H.H., "The Radicals of Modules," M.Sc. Thesis, University of Baghdad (1996),

[13] Naderi. M. and Reza. J., "Weakly Primary Submodules of Multiplication Modules and Intersection Theorem," Int. Journal Contemp. Math. Sci, Vol. 4, No.(33), (2009), PP. 1645 -1652.

[14] Ali, S. M., "On Concellation Modules", M. Sc. Thesis, University of Baghdad, (1993).