

Available online at www.qu.edu.iq/journalcm

JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

genetic and partial characteristics in each definition.

In this paper, we introduce a new definitions of Separation Axiom which we called FT_0 _space, FT_1 _space, FT_2 _space, Then we set the characteristics for each definition and

demonstrated the interconnection between the three definitions. We also demonstrated the

On Some FT_i -space ; i = 0, 1, 2 in Topological Space

Mustafa Mohammed Turki^{a*}, Raad Aziz Hussan^b

^a Department of Mathematics, College of Sciencen, University of Al-Qadisiyah, Diwaniyah, Iraq.Email: mustafa902m@gmail.com

^b Department of Mathematics, College of Sciencen, University of Al-Qadisiyah, Diwaniyah, Iraq.Email: raad.hussain@qu.edu.iq

ABSTRACT

MSC: 30C45

ARTICLEINFO

Article history: Received: 27 /2/2024 Revised form: 13 /4/2024 Accepted : 24 /4/2024 Available online: 30 /6/2024

Keywords:

F_open, F_closed, FT_0 _space, FT_1 _space, FT_2 _space.

https://doi.org/10.29304/jqcsm.2024.16.21561

1. Introduction

In the topological space *X*, a subset *B* of a space *X* is said to be a regularly-closed, called also closed domain if B = cl(int(B)). A subset B of X is said to be a regularly-open, called also open domain if B = int(cl(B)) [2]. An open (resp., closed) subset B of a topological space (*X*, *T*) is called F – open (resp., F-closed) set if $cl(B) \setminus B$ (*resp.*, $B \setminus int(B)$) is finite set [4]. They introduce a new type of semi-open sets which they call S_g-open sets[5]. An open (resp., closed) subset B of a topological space (*X*, *T*) is called C – open (resp., C-closed) set if $cl(B) \setminus B$ (*resp.*, $B \setminus int(B)$) is a countable set[6]. In this work, we are interested in studying the concepts of Separation Axiom which we call FT_0 _space, FT_1 _space, FT_2 _space, Then we set the characteristics for each definition and demonstrated the interconnection between the three definitions. We also demonstrated the genetic and partial characteristics in each definition. We have proven some theorems linking FT_space and T_space . We have also proven the transmission of genetic traits in our new topic, and we have also linked the relationships between FT₀ _space, FT₁ _space.

2. Preliminaries

Definition (2.1) [4] Let B open and subset of topological space (X,τ) , then the cl(B)\B is finite set and is denoted by F_open.

*Corresponding author

Email addresses:

Communicated by 'sub etitor'

Definition (2.2) [4] Let B closed and subset of topological space (X,τ) , then the Bint(B) is finite set and is denoted by F_{close}.

Remarks (2.3) [4] Let (X,τ) is topological space, and $U \subseteq X$.

(i) Let U is F_ open, the complement of U is F_closed.

(ii) Let U is F_closed, the complement of U is F_open.

Remarks (2.4) Every *F*_open set is open set but not convers true.

Example (2.5) X infinite set, $a \in X$, $\tau = \{A \subseteq X : a \in A\} \cup \{\emptyset\}$, A open set, $a \in A$, $\overline{A} = X$, $b(A) = \overline{A} - A = X - A$, If A finite set, then b(A) infinite set, Then A not F_open set.

Definition (2.6) [4] (X, τ) is a topological space, a point in X, a F_open nieghbourhood of X is V F_open, V \subseteq X, which is containing a.

Theorem (2.7)[4] a topological space(X, τ), then

(i) every union finite F_closed subset of X is F_closed.

(ii) every union finite F_open subset of X is F_open.

(iii) every intersection finite F_closed subset of X is F_closed.

(iv) every intersection finite F_open subset of X is F_open.

Definition (2.8) [4] If (X, τ) a topological space, and $H \subseteq X$ the intersection of all F_closed containing H is called F_closure, denoted by \overline{H}^{F} .

Theorem (2.9) [4] Let A be a subset of the topological space, (X,τ) then $A \subseteq \overline{A} \subseteq \overline{A}^{F}$.

Corollary(2.10)[4] If U is F_open set and $U \cap V = \emptyset$, then $U \cap \overline{V}^F = \emptyset$ In particular, if U and V are disjoint F_open set then, $U \cap \overline{V}^F = \emptyset = (\overline{U})^F \cap V$.

Definition(2.11)[4] If (X, τ) a topological space, and $H \subseteq X$, A point $z \in X$ is called F_limit points of H if and only if for any F_open set U containing x, we have $(U \setminus \{z\}) \cap H \neq \emptyset$.

Remark(2.12)[4] the set of all F_limit points of H is called the F_derived set and denoted by d_F(K).

Theorem (2.13)[4] If (X, τ) a topological space, and $H, U \subseteq X$, Then.

 $(i)d(H) ⊂ d_F(H), d(H)$ is the derived set of H.

(ii) $H \subseteq U$, then $d_F(H) \subseteq d_F(U)$.

(iii) $d_F(H) \cup d_F(U) = d_F(H \cup U)$ and $d_F(H \cap U) \subset d_F(H) \cap d_F(U)$.

Theorem(2.14)[4] If (X, τ) a topological space, and $H, U \subseteq X$, Then.

- (i) $(\overline{\emptyset})^{\mathrm{F}} = \emptyset$.
- (ii) $H \subseteq \overline{H}^F$.
- (iii) If $H \subseteq U$, then $\overline{H}^F \subseteq \overline{U}^F$.
- (iv) If $(\overline{H \cup U})^F = (\overline{H})^F \cup (\overline{U})^F$).

(v) $\overline{\overline{H}}^{F}^{F} = \overline{H}^{F}$.

Definition(2.15)[4] g: $(X, \tau) \rightarrow (Y, \dot{\tau})a$ function g is called F_continuous if $g^{-1}(H)$ is F_open set in X for every open set H in Y.

Definition(2.16)[4] g: $(X, \tau) \rightarrow (Y, \dot{\tau})$ a function g is called F_open if g(H) is a F_open set in Y for every open sets H in X.

Definition(2.17)[4] g: $(X, \tau) \rightarrow (Y, \dot{\tau})$ a function g is called F_closed if g(H) is a F_closed set in Y for every closed sets H in X.

Definition (2.18)[4] g: $(X, T) \rightarrow (Y, t)$ a function g is called F_hmoeomrphism if and only if h and h⁻¹ are F_continuous, one to one, onto.

Theorem(2.19)Let(Y, τ_v) be F_open subspace of (Y, τ) if U F_open set in X then $(U \cap Y)$ F_open set in Y.

Proof: Let U be F_open set in X. Then U is open set in X (since every F_open is open). Then $U \cap Y$ open set in Y. To prove by $(U \cap Y)$ is finite, $b_y (U \cap Y) \subseteq b(U \cap Y) \cap Y = [\overline{U \cap Y} \cap (U \cap Y)^c] \cap Y \subseteq [(\overline{U} \cap \overline{U}) \cap U \cup Y^c] \cap Y \subseteq [(\overline{U} \cap \overline{Y} \cap U) \cup (\overline{U} \cap \overline{Y} \cap Y^c)] \cap Y \subseteq [b(U) \cup b(Y)] \cap Y[b(U) \cup b(Y)]$ Since b(U) and b(Y) are finite, then $b_y(U \cup Y)$ is finite, then $b_y(U \cup Y)$ is F_open set in Y is F_open, Therefor $U \cap Y$ is F_open set in Y.

3. The Main Results

3.1 On F_Separation Axiom

Definition(3.1.1) If (X, τ) be a topological space, then X is called FT_{0} space if and only for each x, $y \in X$ such that $x \neq y$ and there exists V is F_open set, $[x \in V \text{ and } y \notin V]$ or $[x \notin V \text{ and } y \in V]$.

Example(3.1.2) Let X = {a, b, c}, and $\tau = \{X, \emptyset, \{a\}, \{a, b\}\}$ then (X, τ) is FT_0 _space, since X is finite every open set is F_open set, the F_open set is X, \emptyset , {a}, {a, b}, $a \neq b$, There exists F_open set {a}; $a \in \{a\} \land b \notin \{a\}, a \neq c$, There exists F_open set {a}; $a \in \{a\} \land c \notin \{a\}, b \neq c$, There exists F_open set {a, b}; $b \in \{a, b\} \land c \notin \{a, b\}$, so (X, τ) is FT_0 _space.

Example(3.1.3) Let $X = \{x, y\}$ is indiscrete space and $\tau = \{X, \emptyset, \}$, The F_ open set is X, $\emptyset, x \neq y$; There is not exists V is F_ open set such that, $[x \in V \text{ and } y \notin V] \text{ or}[x \notin V \land y \in V]$, so (X, τ) is not FT₀-space.

Theorem(3.1.4) If X is FT₀_space then X is T₀_space.

Proof: There exists V is F_open set such that, $[x \in V \text{ and } y \notin V]$ or $[x \notin V \text{ and } y \in V]$. Every F_open set is open set (by Remark2.4) So There exists U is open set such that, $[x \in U \land y \notin U] \lor [x \notin U \land y \in U]$, so X is T₀_space.

Example(3.1.5) Let X infinite set; $a \in X$ and $\tau = \{A \subseteq X : a \in A\} \cup \{\emptyset\}$, A open set .There exists $a, b \in X$ and $a \neq b$ such that; $[a \in A \land b \notin A]$. So X is T_{0} -space If A is open set and finite set. Then A is not F_ open set.There is not exists U is F_open set such that $a \neq b$, $[a \in U \land b \notin U] \lor [a \notin U \land b \in U]$, So X is not FT₀-space.

Theorem(3.1.6) Let h: $(X, \tau) \rightarrow (Y, \tau)$ be F_continuous, onto, one to one, then X is FT₀ space if and only if Y is FT₀ space.

Proof: Let X is FT_0 _ space. Since h: $(X, \tau) \rightarrow (Y, \tau)$, there exists h one to one and h is onto, h is F_continuous, h^{-1} is F_continuous, $|et y_1, y_2 \in Y; y_1 \neq y_2$ then $h^{-1}(y_1)$, $h^{-1}(y_2) \in X$, h onto function so $h^{-1}(y_1) \neq \emptyset$, $h^{-1}(y_2) \neq \emptyset$, h one to one function, there exists $x_1 \in X; h^{-1}(y_1) = x_1$, and there exists $x_2 \in X; h^{-1}(y_2) = x_2$ and $x_1 \neq x_2$ and $x_1x_2 \in X$, Since X is FT_0 space there exists U is F_ open set, $[x_1 \in U \land x_2 \notin U] \lor [\notin x_1 U \land x_2 \in U]$, h^{-1} is F_continuous then h (U) is F_open $[h(x_1) \in h(U) \land h(x_2) \notin h(U)] \lor [h(x_1) \notin h(U) \land h(x_2) \in h(U)]$. So Y is FT_0 space.

Converse: Let Y is FT_0 -space .Since h: $(X, \tau) \rightarrow (Y, \tau)$, there exists h one to one and h onto and h is F_continuous and $h^{-1}F_c$ continuous, let $x_1, x_2 \in X$; $x_1 \neq x_2$ then $h^{-1}(x_1)$, $h^{-1}(x_2) \in Y$, h is onto function then $h^{-1}(x_1) \neq \emptyset$, $h^{-1}(x_2) \neq \emptyset$, h is one to one function, there exists $y_1 \in Y$; $h^{-1}(x_1) = y_1$ and there exists $y_2 \in Y$; $h^{-1}(x_2) = y_2$;

 $y_1 \neq y_2$ and $y_1, y_2 \in Y$, Y is FT_0 space there exists U F_open set. $[y_1 \in U \land y_2 \notin U] \lor [y_1 \notin U \land y_2 \in U]$, $h^{-1}F_c$ ontinuous; h(U) is F_open set; $[h(y_1) \in h(U) \land h(y_2) \in h(U)] \lor [h(y_1) \notin h(U) \land h(y_2) \in h(U)]$ So X is FT_0 -space.

Theorem(3.1.7) Let (W, τ_w) F_ open subspace of topological space (X, τ) if (X, τ) is FT₀_space, then (W, τ_w) is FT₀_space.

Proof: Let $x, y \in W$; $x \neq y, x, y \in X$ since $W \subseteq X$, There exists U is F_open in X, $(x \in U \land y \notin U) \lor (x \notin U \land y \in U)$, then $U \cap W$ are F_open in W (by Theorem2.19), $(x \in U \cap W \land y \notin U \cap W) \lor (x \notin U W \land y \in U \cap W)$, so (W, τ_w) is FT_0 -space.

Definition(3.1.8) (X, τ) a topological space is defined FT₁-space if and only if for each a, b \in X such that a \neq b, there exists U, V is F_open set such that, [a \in U \land b \notin U and b \in V \land a \notin V].

Example(3.1.9) Let $X = \{a, b, \tau = \{\emptyset, X, \{a\}, \{b\}\}\)$, The F_ open sets are $\emptyset, X, \{a\}, \{b\}$ such that $a \neq b$ there exists $U = \{a\}$ is F_ open set, there exists $V = \{b\}$ is F_ open set, $[a \in U \land b \notin U \text{ and } b \in V \land a \notin V](X, \tau)$ is FT₁ space.

Lemma (3.1.10) If X is FT_1 -space then X is FT_0 -space.

Proof: Let X is FT_1 space and $a, b \in X$ such that $a \neq b$. there exist U, V F_open set, Such that, $[a \in U \land b \notin U]$ and $b \in V \land a \notin V]$, (Since X is FT_1 space), There exist U is F_open set Such that $[a \in U \land b \notin U] \lor [b \in U \land a \notin U]$, so X is FT_0 space.

Example(3.1.11) Let $X = \{a, b\}, \tau = \{\emptyset, X, \{a\}\}; X \text{ is } FT_0_\text{space.the } F_\text{open set}; \emptyset, X, \{a\}, Let a, b \in X \text{ such that } a \neq b:$ there exists U is F_open set such that. $[a \in U \land b \notin U] \lor [b \in U \land a \notin U]$ but there is not exists V is F_open set such that $[a \in U \land b \notin U] \text{ and } [b \notin V \land a \notin V]$, so (X, τ) is not FT_1_space .

Lemma (3.1.12) Every FT₁_space is T₁_space.

Proof: There exists U, V F_open sets such that $[a \in U \land b \notin U] \land [b \in V \land a \notin V]$, Since every F_open set is open set there exists U, V open set such that $[a \in U \land b \notin U]$ and $[b \notin V \land a \notin V]$, so X is T₁ space.

Lemma (3.1.13) Let $\{x\}$ is F_ closed then (X, τ) is FT₁-space for each $x \in X$.

Proof: Let x, $y \in X$ such that $x \neq y$, let $U = X - \{x\}$, $(\{x\} F_closed), V = X - \{y\}$ ($\{y\} F_closed$), Such that U, V is F_open set, $[y \in U \land x \notin U] \land [y \notin V \land x \in V]$, So X is FT_1 -space.

Theorem(3.1.14) Let (W, τ_w) F_open subspace of topological space (X, τ) if (X, τ) is FT₁-space, then (W, τ_w) is FT₁-space.

Proof: Let $x, y \in W$; $x \neq y, x, y \in X$ (since $W \subseteq X$)Since X is FT_1 -space There exists U, V is F_open in X, $[x \in U \land y \notin U) \land (x \notin V \land y \in V]$, then $U \cap W \land V \cap W$ are F_open(by Theorem 2.19) in W. $[x \in U \cap W \land y \notin U \cap W) \land (x \notin V \cap W \land y \in V \cap W]$, So (W, τ_w) is FT_1 -space.

Theorem(3.1.15) h: $(X, \tau) \rightarrow (Y, \tau)$ be F_continuous, onto, one to one then X is FT₁ space if and only if Y is FT₁ space.

Proof: let h: $(X, \tau) \rightarrow (Y, \tau)$ and suppose that X is FT_1 space. Since h: $(X, \tau) \rightarrow (Y, \tau)$ there exists, h is one to one and, onto, F_continuous, h⁻¹ is F_continuous let $y_1, y_2 \in Y$; $y_1 \neq y_2 \Rightarrow h^{-1}(y_1), h^{-1}(y_2) \in X$, h onto function so $h^{-1}(y_1) \neq \emptyset$, $h^{-1}(y_2) \neq \emptyset$, h one to one function, there exists $x_1 \in X$; $h^{-1}(y_1) = x_1$, and there exists $x_2 \in X$; $h^{-1}(y_2) = x_2$ and $x_1 \neq x_2$ and $x_1x_2 \in X$. Since X is FT_1 space there exists U, V is F_open set, $[x_1 \in U \land x_2 \notin U] \land [x_1 \notin V \land x_2 \in V]$, h^{-1} is F_continuous then h(U), h(V) is F_open, $[h(x_1) \in h(U) \land h(x_2) \notin h(U)] \land [h(x_1) \notin h(V) \land h(x_2) \in h(V)]$, So. Y is FT_1 space.

Converse: Let Y is FT_1 -space, Since h: $(X, \tau) \rightarrow (Y, \tau)$ then there exists, h one to one, onto, F_continuous and $h^{-1}F_c$ continuous, let $x_1, x_2 \in X$; $x_1 \neq x_2$ then $h^{-1}(x_1)$, $h^{-1}(x_2) \in Y$ h is onto function then $h^{-1}(x_1) \neq \emptyset$, $h^{-1}(x_2) \neq \emptyset$, h is one to one function, there exists $y_1 \in Y$; $h^{-1}(x_1) = y_1$ and there exists $y_2 \in Y$; $h^{-1}(x_2) = y_2$ and $y_1 \neq y_2$ and $y_1, y_2 \in Y$, Y is FT_1 space there exists U, V F_open set, $[y_1 \in U \land y_2 \notin U] \land [y_1 \notin V \land y_2 \in V]$, $h^{-1}F_c$ continuous, then h (U), h(V) is F_open set; $[h(y_1) \in h(U) \land h(y_2) \in h(U)] \land [h(y_1) \notin h(V) \land h(y_2) \in h(V)]$, So X is FT_1 -space.

Definition(3.1.16)Let (X, τ) topological space is called a FT₂-space if for each pair distinct points $a, b \in X$, the exist F_open sets U, V and $a \neq b$ such that $[a \in U, b \in V, and U \cap V = \emptyset]$.

Example(3.1.17) let $X = \{a, b\}$ $\tau = \{\emptyset, X, \{a\}\{b\}\}$ The F_open set in X are $\emptyset, X, \{a\}\{b\}$, for each $a \neq b$ there exists U, V are F_open such that, $[a \in U, b \in V, and U \cap V = \emptyset]$, So (X, τ) is FT₂-space.

Theorem(3.1.18) Every FT₂_space is FT₁_space.

Proof: Let X is FT_2 space and $a \neq b$, There exists U, V is F_open set such that $[a \in U, b \in V, and U \cap V = \emptyset]$, There exists U, V is F_open sets and $a \neq b$ such that, $[a \in U \land b \notin U] \land [a \notin V \land a \in V]$, So X is FT_1 space.

Theorem(3.1.19) Let h: $(X, \tau) \rightarrow (Y, \tau)$ be F_ continuous, onto, one to one then Y is FT₂_space, if and only if X is FT₂_space

Proof: Let that Y is FT_2 space, there exists h: $(X, \tau) \rightarrow (Y, \tau)$ h is one to one, onto, F_continuous and h⁻¹ is F_continuous let $x_1, x_2 \in X$; $x_1 \neq x \Rightarrow h(x_1)$, $h(x_2) \in Y$, h onto function then $h(x_1) \neq \emptyset$, $h(x_2) \neq \emptyset$, h one to one function, there exists $y_1 \in Y$; $h(x_1) = y_1$ and there exists $y_2 \in Y$; $h(x_2) = y_2$ and $y_1 \neq y_2$ and $y_1, y_2 \in Y$. Since Y is FT₂ space there exists V_1, V_2 are F – open set, $V_1 \cap V_2 = \emptyset$, $[y_1 \in V_1 \land y_2 \notin V_2]$, h is F_continuous then $h^{-1}(V_1) = U_1, h^{-1}(V_2) = U_2$ are F_ open, $U_1 \cap U_2 = h^{-1}(V_1) \cap h^{-1}(V_2) = h^{-1}(V_1 \cap V_2) = h^{-1}(\emptyset) = \emptyset$, $(x_1 \in U_1 \land x_2 \in U_2)$, So X is FT₂-space.

Converse let h: $(X, \tau) \rightarrow (Y, \tau)$ and suppose that X is FT₂-space, Since h: $(X, \tau) \rightarrow (Y, \tau)$ there exists h one to one, onto, F₋ continuous, h⁻¹ is F₋ continuous let $y_1, y_2 \in Y$; $y_1 \neq y_2 \Rightarrow h(y_1), h(y_2) \in X$ h onto function then $h(y_1) \neq \emptyset$, $h(y_2) \neq \emptyset$, h one to one function, there exists $x_1 \in X$; $h(y_1) = x_1$, and there exists $x_2 \in X$; $h(y_2) = x_2$ and $x_1 \neq x_2$ and $x_1, x_2 \in X$. Since X is FT₂-space there exists V_1, V_2 are F₋open set, $V_1 \cap V_2 = \emptyset$, $[x_1 \in V_1 \land x_2 \notin V_2]$, h is F₋ continuous then $h^{-1}(V_1) = U_1, h^{-1}(V_2) = U_2$ are F₋open, $U_1 \cap U_2 = h^{-1}(V_1) \cap h^{-1}(V_2) = h^{-1}(V_1 \cap V_2) = h^{-1}(\emptyset) = (y_1 \in U_1 \land y_2 \in U_2)$, So Y is FT₂ - space.

Remark (3.1.20) if (X, τ) is FT₂-space, then not necessary test that space is FT₁-space and every FT₁-space is FT₀-space.

$$FT_0 \not\rightarrow FT_1 \not\rightarrow FT_2$$

Example (3.1.21) (N, τ_{cof}) is FT_1 -space, Let $n, m \in N$ so $n \neq m$ there exists $U, V F_0$ so $U = N / \{m\}, V = N / \{n\}$, Such that $[n \in U \land m \notin U] \land [n \notin V \land m \in V]$, But (N, τ_{cof}) is not FT_1 space. Since $n \neq m$ and $U = N / \{m\}, V = N / \{n\}$, $U \cap V \neq \emptyset$, So (N, τ_{cof}) is not FT_2 space.

Theorem(3.1.22) Let (W, τ_w) F_open subspace of topological space (X, τ) if (X, τ) is FT₂-space, then (W, τ_w) is FT₂-space.

Proof : Let $x, y \in W$; $x \neq y$. $x, y \in X$ (since $W \subseteq X$), Since X is FT_2 space There exists U, V is F_open in X and $U \cap V \neq \emptyset$, [$x \in U \land y \in V$] then $U \cap W \land V \cap W$ are F_open in W(by theorem 2.19). ($U \cap W$) $\cap (U \cap W) = (U \cap V) \cap W = \emptyset \cap W = \emptyset$, and ($x \in U \cap W \land y \in V \cap W$), So (W, τ_w) is FT_2 space.

References

[1] R. Engelking. General Topology. PWN, Warszawa, 1977.

[2] C. Kuratowski. Topology I. 4th. ed., in French, Hafner, New york, 1958

[3] L. Steen and J. Seebach. GCounterexamples in Topology. Dover Publications, INC, 1995

[4] M. H. Alqahtani "F-open and F-closed Sets in Topological Spaces"European Journal of Pure And Applied Mathematics, Vol. 16, No. 2, 2023, 819-832.

[5] H.M.Darwesh, N.O.Hessean, S_g –open Sets in Topological Spaces, JZS(2015) 17 -1(Part-A).

[6] M. H. Alqahtani "C-open Sets on Topological Spaces ,arXiv:2305.03166(math)on 4 May 2023.