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A B S T R A C T 

The objective is to present a novel variant of a quasi-normal operator, specifically the 
( ∗   )  quasi normal operator, alongside the introduction of related theorems, 
propositions, and illustrative examples elucidating this concept. Additionally, we present the 
necessary and sufficient conditions for addition and multiplication of this kind of operators.  
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1. Introduction 

A.Brow [1] introduced and researched the quasi-normal operator for the first time in 1953. Later Arun B. (1976) [2] 
provided several properties of the quasi-normal operator. Sh. Lohaj (2010) [3] introduced a novel variation of the 
quasi-normal operator, namely, N-quasi normal operators, along with presenting some of its fundamental 
characteristics. Ould A. (2011) submitted the n-power quasi-normal operator along with outlining its 
characteristics[4]. Valdete R.H. (2013) [5] provided several characteristics of N-quasi normal operators. Saad S. and 
Laith K (2015) [6] introduced the concept of the quasi-normal operator along with presenting some fundamental 
properties of this concept. Ahmed M and Salim D. (2017) [7] introduced another type called the (   )∗ quasi-
normal operator, along with presenting some properties. 

 

2. Basics 

Definition (2.1) [8]:-A bounded linear operator        is n operator satisfying ‖  ‖   ‖ ‖       
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Definition (2.2), [8]:-A bounded linear operator         is called normal if   ∗   ∗   

Definition (2.3), [1]:-A bounded linear operator       is  quasi-normal if  ( ∗ )  ( ∗ )   

Theorem (2.4), [2]:-Le t         be quasi normal operators, such that             
∗       

∗    then 
     is quasi normal.  

Definition (2.5), [5]:-A bounded linear operator        be a bounded linear is N-quasi normal if  ( ∗ )  
 ( ∗ )   

Theorem (2.6), [5]:-Let       be N-quasi normal and        be quasi normal then the product      is N-
quasi normal if the they satisfy            and  

∗       
∗ . 

Definition (2.7), [4]:-A bounded liner operator      is said to be n-power quasi-normal operator if 
  ( ∗ )  ( ∗ )   

Theorem (2.7), [9]:-If       is n-power quasi-normal operator, then   is also a n-power quasi-normal 
operator, where   . 

Definition (2.8), [10]:- Let        is a bounded liner operator is said to be (K-N) quasi-normal operator if 
  ( ∗ )   ( ∗ )    

Theorem (2.9), [10]:-Let    be (K-N) quasi normal operator and    is  -quasi normal operator, such that,(    )  
(    ) and     

∗    
∗    then     is (K-N) quasi normal operator. 

Theorem (2.10), [10]:-Let           be two (K-N) quasi normal operators such that  
   

∗    
   

∗    
∗   

  
∗     then      is (k-N) quasi normal operator. 

Corollary (2.11), [10]:- Let           be two (K-N) quasi normal operators, such that  
   

∗    
   

∗    
∗   

  
∗     then      is (K-N) quasi normal operator. 

 

3. Main results 

Definition (3,1) -Let       be a bounded linear operator then   is said to be( ∗   ) quasi normal operator 
(( ∗   ) -QNO) if ( ∗) ( ∗ )   ( ∗ ) ( ∗)   

Example (3.2)- 

   *
  
  

+ is( ∗   ) -QNO where             

The following result hold for     but not a complex value of   

Propositions (3.3): Let      is ( ∗   )   -QNO then.    is  ( ∗   ) -QNO where    . 

Proof: 

((  )∗) ((  )∗(  ))
 
 (  ∗) ((  ∗)(  ))

 
 

   ( ∗) (  ∗) (  )  

   ( ∗)   ( ∗)      

      ( ∗) ( ∗)    

       ( ∗)   ( ∗)  
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    ( ∗)       ( ∗)  

  (  ∗) (  ) (  ∗)  

  ((  )∗(  ))
 
((  )∗)  

((  )∗) (  )∗(  )   (  )∗(  ) ((  )∗) , hence the   is( ∗   )        

Propositions (3.4): Let      is ( ∗   )  -QNO then.   ⁄  is ( ∗   )  -QNO where M is closed sub space.  

((  ⁄ )
∗
)
 

((  ⁄ )
∗
(  ⁄ ))

 

 (( 
∗

 ⁄ ))
 

(( 
∗

 ⁄ )(  ⁄ ))
 

 

 (
( ∗) 

 
⁄ )( 

∗ 
 ⁄ )

 
 

 (
( ∗) 

 
⁄ )(

( ∗ ) 

 ⁄ ) 

 ( 
( ∗ ) ( ∗) 

 
⁄ ) 

 ( 
( ∗ ) 

 ⁄ )(
( ∗) 

 
⁄ ) 

 ( (( 
∗

 ⁄ )(  ⁄ ))
 

) (( 
∗

 ⁄ ))
 

 

  ((  ⁄ )
∗
(  ⁄ ))

 

((  ⁄ )
∗
)
 

 

Then   ⁄   is( ∗   ) -QNO   

 

Remark  (3.5): Let   and   be two ( ∗   ) -QNO then       is not necessary ( ∗   ) -QNO. To illustrate that 
consider the following example.  

Example (3.6)- 

   [
    
   
     

]     and           [
   
   
   

]  

      [
        
   
     

]  

If         and      

((     )
∗) ((     )

∗(     ))
 
 [
              

   
           

] ( ) 

((     )
∗(     ))

 
((     )

∗)  [
            
   

              
] ( )  

( )  ( ) 
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Then        is not ( ∗   )  -QNO  

Theorem (3.7) Let           be ( ∗   ) -QNO on a Hilbert space s.t.   
∗  
∗         

∗     then 
     ( 

∗   )  -QNO.  

Proof:-  

(((     )
∗) ((     )

∗(     ))
 
)  ((  

∗    
∗) ((  

∗    
∗)(     ))

 
) 

 ((  
∗)   (  

∗)     
∗    (  

∗) )((  
∗   (  

∗)     
∗    (  

∗) )(  
     

          
 ))

 ((  
∗)  (  

∗) )(((  
∗)  (  

∗) )(  
    

 )) 

 ((  
∗)  (  

∗) )((  
∗)   

  (  
∗)   

  (  
∗)   

  (  
∗)   

 ) 

 ((  
∗)  (  

∗) )((  
∗)   

  (  
∗)   

 ) 

 ((  
∗) (  

∗)   
  (  

∗) (  
∗)   

  (  
∗) (  

∗)   
  (  

∗) (  
∗)   

 ) 

 ((  
∗)   

∗  
  (  

∗)   
∗  
 ) 

Since   and   are( ∗   ) -QNO 

  ((  
∗)   

 (  
∗) )   ((  

∗)   
 (  

∗) ) 

  (((  
∗)   

 (  
∗) )  ((  

∗)   
 (  

∗) )) 

Therefore;       is ( ∗   ) -QNO   ■  

Remark (3.8) 

Let   and   be two ( ∗   ) -QNOs then      is not necessarily a ( ∗   )  -QNO as shown below. 

Example (3.9) 

   [
    
   
     

]     and           [
   
   
   

]  

     [
    
   
   

]  

If         and      

((    )
∗) ((    )

∗(    ))
 
 [
      
   
   

] ( ) 

((    )
∗(    ))

 
((    )

∗)  [
          
   
   

] ( )  

( )  ( ) 

Then       is not ( ∗   )  -QNO  

Theorem (3.10) 

Let               be( ∗   )  -QNO and  ∗ quasi normal operator respectively such that,           
and  

∗       
∗, then      is( ∗   )  -QNOs.  
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Proof:-  

((    )
∗) ((    )

∗(    ))
 
   ((    )
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∗  
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∗))
 

 

  ((    )
∗) (    )

 ((    )
∗)  

  ((    )
∗) (    )

 ((    )
∗)  

((    )
∗) ((    )

∗) (    )
   ((    )

∗) (    )
 ((    )

∗)  

Therefore; the product      is ( ∗   )  -QNO    

4. Conclusion 

An introduction to a novel quasi-normal operator is given, specifically the ( ∗   )  quasi-normal operator. This 
was accompanied by the presentation of associated theorems, propositions, and illustrative examples to clarify this 
concept. Furthermore, the necessary and sufficient conditions for both addition and multiplication of operators to 
be ( ∗   )  quasi-normal operator is given. 
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