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A B S T R A C T 

Recent years have witnessed a significant rise in global river water levels, driven by heavy 
rainfall events linked to climate change, resulting in severe flood incidents and highlighting the 
need for effective mitigation strategies. To address this critical issue, this article introduces a 
detection and prediction system for monitoring rising river water levels utilizing advanced 
computer vision techniques. The system is based on deep learning models are VGG16and 2D 
convolutional neural networks (CNNs) that are trained on river image datasets. It starts with 
heavy image preprocessing are normalization, resizing, Canny Edge Detection to improve edge 
quality. This is used to produce very exact water level measurements. The models use transfer 
learning and hyperparameter tuning over a wide grid to maximize monitoring accuracy over a 
large number of river conditions. The system performance is then thoroughly evaluated by 
performing extensive testing, and the VGG16 model is proven to exhibit high classification 
ability with the overall accuracy and precision scores no less than 98.3 % of all classes of river 
water level. The performance of the CNN model reaches 99.99% on testing data as well, which 
emphasizes its stability in real-world conditions. This novel combination of deep learning and 
optimized edge detection algorithms represents a powerful new capability for water level 
detection and flood control 

MSC..  

https://doi.org/10.29304/jqcsm.2024.16.21565 

1. Introduction 

The development of any area near to natural hazards is inevitable to meet the demands of land to support the cities' 
growth and infrastructure [1]. There are several dangers that occur in Lombok, one of which is flash floods, flash 
floods is a type of floods that comes suddenly in 10-30 minutes, operate to tens of hours, and in the form of high-speed 
flooding or excessive discharge in Lombok to the extent that it can carry all the things inside it, there is no warning 
before a flooding occurs, this is because the speed of Fahreinheit floods that can be up to 11Km/s, and hence flash 
floods are one of the most dangerous types of flooding. As a result, it is hard to protect water security in this area, 



2 Nisreen Tawfeeq, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol. 16(2) 2024,  pp  Comp.135– 150

 

especially in the rural mountainous terrain where steep sloping terrain can enhance the gravitational power of water 
flow which may result in larger overflowing across the downstream channel [2]. In addition to having rugged terrain 
and steep, narrow, and deep water channels, this is where volcanic islands are usually found. They typically carry 
great quantities of organic debris and sediment, thus increasing the possibility of downstream flooding [3]. Whether 
it is a small stream or major river, monitoring water flow is essential in all cases. 

The primary methods for measuring water levels with today’s technology encompass both ground-based and remote-sensing 

techniques. River gauges provide ongoing monitoring at specific points, although their readings may become unreliable 

during extreme flood conditions. There is a global decline in the network of river gauging stations, leaving many areas prone 

to flooding unmonitored or reliant on gauges located far from the affected areas, which may not accurately reflect local 

conditions [4] [5] [6]. Contact sensors utilise pressure or floating sensors, while ultrasonic water meters and imaging methods 

are among the non-contact sensors that are used to perform the measurements. The contact based method often fails in surges 

of strong water currents that can break or push the sensors aside. In addition, these sensors often need to be recalibrated to 

verify that the measurements are accurate [7]. 

The Global Runoff Database Centre runs a network of gauging stations to provide river discharge data, based on the 
catchment area for 159 countries [8]. At the same time, the spatial coverage of rain gauge is sparse and insufficient to 
describe data required in hydrological model accurately. Moreover, conventional in-situ approaches for water storage 
assessment present considerable uncertainties [9] [10]. As a result, the high costs associated with complex sensor 
deployments also impede their widespread use in the field for hydrological monitoring. Furthermore, the situation is 
aggravated by the fact that in-situ available data is often constrained due to political factors or agreements over 
international rivers [11]. 

Flood monitoring is a process that largely depends on satellite and airborne imagery, as these tools offer specific 
advantages that make them fit for the job. Still, their efficacy suffers from a significant number of constraints in both 
terrestrial and space-bound conditions. Though this optical sensor and (SAR) based methods are able to map flooded 
area and water level estimation by merging with Digital Elevation Models (DEMs) [12], but they consist of different 
challenge in terms of operating them. Optical methods are restricted to daylight operations and are often hindered by 
cloudy conditions or dense canopy [13]. Another limitation in optical imagery is that urban areas can produce 
shadowing and layover effects, which lead to an inaccurate identification of the flood location [16] [17], but these 
limitations have been eliminated with the ability of SAR, as it operates day and night and in all weather conditions, 
which is particularly useful in monitoring rural floods [14] [15]. RADARSAT-equipped satellites also pass 
infrequently, often only once or twice daily, making timely, real-time estimates of rapid changes in floodwater levels 
difficult, a notable absence in flood monitoring studies [12]. This quality limitation contributes to the urgency for 
better and higher frequency monitoring options so that disaster management and response can promptly improve. 

Unmanned Aerial Systems (UASs) are increasingly being recognized as a valuable technology that has high potential 
to improve river monitoring due to their unique ability to gather high quality geographical data. These Currently 
Operated UAS (Systems) have limited utility due to strict civil aviation regulations and are unable to achieve the 
operational effectiveness because of the burden of instrument payload and frequent landing and refueling [18]. In 
addition, drone drift can impair the accuracy of data collected by UASs, which then require elaborate 
orthorectification methods to keep the imagery usable [19]. Even if a few studies have illustrated that the video and 
still-camera imagery from UASs is indeed suitable for monitoring floods [20] and for the calculation of surface velocity 
fields [21] to measure water level, both the manual as well as the automatic edge detection methods have several 
disadvantages [22] [23] [24]. Even though they can reach high precision in specific conditions (up to a few mm) [24], 
the adaptability of these methods are limited and normally deliver unreliable results through significantly different 
environmental conditions and different stages during a flood event. It constitutes an important research question for 
the improvement of the reliability and resilience of UAS technology for water monitoring which is useful as well as 
reliable. 

Although the potential usefulness of machine learning (ML) for tackling a myriad of hydrological and hydrodynamic 
problems has been widely demonstrated, gaps still exist in the economic utilization of ML stretches for numerous 
water-related applications [25]. Although ML models are known to be successful at flood prediction, groundwater 
level estimation [26] and water resource management [27], they often fail to provide full transparency into the 
physical processes that control these phenomena [30]. This limitation triggers an essential research problem; the 
necessity of the powerful ML model that predicts and mitigates water consequences and which also provides an in-
depth understanding of the underlying hydrological physics. Moreover, even if ML has a great power to cope with 
complex, nonlinear interactions among different environmental input and outputs, more improvements are needed 
in order to provide accurate and repeatable prediction results in complex and changing environments [25], [28], [29] 
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[50]. This gap underlines the need for further research to improve ML frameworks develop the interpretability and 
generality, to move towards a wide range of hydrologic scenarios. 

The use of machine learning (ML) techniques on water studies has been exhaustively addressed in literature being 
these tools of utmost importance for different hydrological predictions and management. However, these reviews also 
reveal a significant research issue: The heterogeneous performance and applicability of these models in various 
settings and under diverse data availability conditions. Yaseen et al. addressed the development in artificial 
intelligence for the streamflow modeling and forecast between 2000 and 2015 [31]; however, improvements were 
mentioned as well as shortcomings in terms of the adaptability, and the accuracy. Similarly, Zhang et al. highlighted 
the possible benefit of using data-driven methods in low data topology zones but face many challenges when dealing 
with abundant and/or complex data [32]. Hamzah et al. presented the use of deterministic and ML methods for 
optimizing streamflow alterations and is a critical review of the current state-of-art methodology [33]. Zhu et al. 
indicated that the performance of ML model in the data used for predicting future lake water level showed low 
predictive accuracy, which reflected on the ML technology inability to robustly deal with the environmental system 
destabilisation [34]. Ibrahim et al. [35] based on the study of hybrid ML models, it also confirmed this inconsistency, 
specifically in different water body types of rivers, reservoirs, and lakes from 2009 to 2020. The importance of future 
research in making ML models more robust, generalizable, and reliable to ensure hydrological predictions to be more 
accurate under different conditions and with different input datasets cannot be overemphasized. 

Although ML has been applied to many water-related problems, the performance of current models is not reliable, 
and often inadequate to represent different structure of conditions data. The studies reviewed point out substantial 
adaptability, precision, and scope limitations of ML models when applied to complex hydrological prediction tasks 
such as streamflow forecasting and water level estimation in numerous geographical settings [31]-[35]. These 
discrepancies underscore the need for improved and also accurate machine learning (ML) techniques that are 
applicable to a wide variety of environmental states making it easier to model and predict hydrodynamic and 
hydrologic phenomena suitable to these data with machine learning approaches. This study aims to improve the 
dependability, accuracy, and actionability of results of ML models to predict water management and disaster 
mitigation. 

In recent years, transfer learning (TL) methods have gained popularity as a strategy to overcome data scarcity issues 
[36] [37]. TL involves adapting pre-trained machine learning models, like VGG and MobileNet, originally trained on 
large, annotated image datasets, to new tasks where such annotated datasets are limited [38] [39]. This study 
significantly contributes by employing TL techniques combined with the Canny edge detection method to develop 
water network models. These models conduct innovative experiments using fresh river-camera datasets and 
metadata. By leveraging TL, the study enhances the accuracy and efficiency of deriving quantitative water-level 
measurements from images segmented by the river cameras. 

The article is structured as follows: Section 2 provides a review of related works, establishing the foundation for the 
study. Section 3 outlines the innovative methodology for river water level detection and prediction, including the 
dataset description, preprocessing steps, Convolutional Neural Network architecture, VGG16 architecture, and the 
Canny edge detection technique. Section 4 presents the results and discussion, covering evaluation metrics, the 
evaluation of the CNN method, the evaluation of the VGG16 method, and a comparison of results. Finally, Section 5 
concludes the study and suggests directions for future research. 

2. Related Works 

In the realm of hydrological studies, recent research efforts have demonstrated various innovative methodologies to 
improve water level forecasting and flood risk mitigation. Notably, several papers have proposed using machine 
learning (ML) and deep learning techniques, integrating these with traditional hydrological modeling approaches to 
enhance prediction accuracy and operational efficiency. These studies have employed a range of data, from satellite 
imagery to sensor data from various global river systems, testing the models under different environmental 
conditions to validate their effectiveness. 

Chen et al. 2021 [40] proposed a practical and efficient method based on image processing for water-level 
measurement. The method comprises three key components: a multi-template matching algorithm to identify 
characters on water level recorders (WLR), a sequence verification algorithm to refine the recognized characters, and 
a projection height comparison method for accurate readings, even with incomplete characters. Experiments 
conducted with real-world data confirmed the effectiveness of this approach. The results demonstrate a 63% 
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character recognition rate on WLR and an average measurement error of ±0.90 cm, significantly better than China’s 
national water-level monitoring error standard of ±1.0 cm. The method holds promise for improving water level 
measurements in practice. 

Qiao et al. 2022 [41] proposed a deep learning-based water level measurement method using the YOLOv5s 
convolutional neural network. The YOLOv5s model identifies the water gauge and scale characters in video images, 
then calculates the water level elevation. Validated at a river station in Beijing, the method showed a systematic error 
of only 7.7 mm. It achieved accuracy within 1 cm in 95% of daylight images and 98% under infrared night lighting, 
demonstrating robustness in various lighting conditions and environmental scenarios like rain and slightly dirty 
water gauges. The method’s effectiveness is confirmed by its consistent performance across different conditions. 

Eltner et al. 2021[42] proposed a method that blends deep learning and photogrammetric techniques for precise 
automatic water stage measurement. Using convolutional neural networks (CNNs) such as SegNet and FCN with 
transfer learning, they achieved water segmentation in images from a Raspberry Pi camera with errors under 3%. 
These segmented water contours were then integrated with a 3D model from structure-from-motion (SfM) 
photogrammetry to derive metric water stage values. The approach correlated highly with reference gauges (up to 
0.93) and had average deviations below 4 cm, improving the density and accuracy of river monitoring networks. 

Zhang et al. 2024 [43] proposed a methodological approach for generating datasets to study 16 flood events in the 
Yangtze River Basin, which were categorized into training, testing, and application phases. Utilizing eight events, they 
created labeled datasets with 5296 tiles for training, and evaluated the performance of various convolutional neural 
network (CNN) models. These CNNs significantly outperformed traditional threshold methods in efficiency and 
accuracy. The study also examined the impacts of VH and VV polarization and the use of DEM (Digital Elevation 
Models) on flood detection, finding a preference for VH polarization with minimal impact from DEM. The CNNs were 
further tested in near-real-time flood detection on the remaining events, with additional weak label datasets 
generated to enhance training samples. The results confirmed the effectiveness of robustly trained CNNs in flood 
detection. 

Ruma et al. 2023[44] utilized advanced long short-term memory (LSTM) networks to enhance water level forecasting 
for flood risk mitigation. The paper highlights the inefficiency of traditional LSTM models due to poorly optimized 
hyperparameters, which they improved using Particle Swarm Optimization (PSO). Analyzing water level data from 
Bangladesh's Brahmaputra, Ganges, and Meghna rivers, the model's effectiveness was evaluated using metrics like 
Nash Sutcliffe efficiency (NSE), root mean square error (RMSE), and mean absolute error (MAE). The PSO-LSTM model 
outperformed traditional ANN and standalone LSTM models, demonstrating superior accuracy and stability, thereby 
improving flood forecasting and risk management in the region. 

Fei  et al. 2023 proposed a new data-driven method that is called H2C-Extremely long-term (H2C-XL) for water level 
forecasting in tidal reaches with a hybrid Hydrologic-Hydrodynamic Coupling (H2C) model embedded with LSTM 
networks [45]. This model integrates upstream discharge, water levels, tidal information and satellite altimetry 
products together with TPXO9 tidal information. Tested in the Tianhe-Zhuyin reach, the H2C-XL significantly 
enhanced prediction accuracy, achieving Nash coefficients and Kling-Gupta Efficiency values of 0.866 and 0.922 for 
upstream discharge. Water level prediction accuracy at the Jiangmen and Daao stations improved by 12.34% to 
40.46% and 16.98% to 32.34%, respectively, compared to previous models. The study also noted that the contribution 
of upstream discharge to water level predictions varied from 0.37 to 0.55, increasing with distance from the coastline. 

Cai et al. 2023[46] proposed an automatic monitoring alarm method using a hybrid segmentation algorithm, 
combining k-means clustering in RGB color space with a region growing algorithm on the green channel to detect 
river targets. This system, installed in the Yarlung Tsangpo River basin of Tibet, China, monitored water levels from 
April to November 2021. It does not require engineering expertise to select seed point parameters and achieved an 
accuracy of 89.29% and a miss rate of 11.76%, outperforming traditional methods by 29.12% in accuracy and 
reducing misses by 17.65%. This demonstrates the method’s adaptability and precision for unmanned dammed lake 
monitoring. 

Chen et al. 2024[47] proposed using the ResNet-50 Convolutional Neural Network (CNN) model to detect water levels 
through CCTV footage of the Chengmei Bridge on the Keelung River in Taiwan. This method creates a virtual water 
gauge system, enabling accurate, real-time monitoring without physical gauges, reducing reliance on traditional 
methods. The study, conducted from March 2022 to February 2023, integrated grid-based techniques with CCTV and 
Raspberry Pi for data processing, providing cost-effective monitoring. Initial results yielded accuracy rates from 
83.6% to 96%, varying with weather conditions, with the best performance on clear days.  
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Xu et al. 2023[ 48]have evaluated the M-K test of magnitudes and annual flows at the Yichang and Hangkou stations. 
They employed Random Forest (RF) and the deep learning models including the Convolutional Neural Network, 
LSTM, and a combination of CNN and LSTM to model the water levels and flows at Hankou Station. The results were 
then assessed using quality indices like Nash-Sutcliffe Efficiency (NSE), Kling-Gupta Efficiency (KGE), Root Mean 
Square Error (RMSE) and Symmetric Mean Absolute Percentage Error (SMAPE). The definitely increasing trend of 
Hankou and decreasing trend of Yichang could tell from the data's trend in Figure 1. We find that the NSE and KGE 
are above 0.995, and the RMSE and SMAPE are less than 0.200, were achieved by the CNN-LSTM model with the best 
performance among all the models. This study provides an important and up-to-date perspective that is useful in 
improving the capabilities of flood control and disaster forecasts at the Three Gorges Power Station. 

M. A. Hussein and A. H. Abbas 2019[49], scientists suggested a two-phase technique for detecting plant diseases. Using 
pre-processing methods such as cropping, scaling, and fuzzy histogram equalization on 799 example images, a 
knowledge base is created in the first phase in order to extract color and texture attributes. The training set for a 
support vector machine classifier consists of these features. The trained classifier is used in the second step to identify 
and diagnose plant leaf illnesses in three distinct crops, each of which has three distinct diseases in addition to a 
healthy condition. The system identified these circumstances with an accuracy of 88.1%. 

TABLE 1- RELATED WORKS 

References Model or Methods Dataset Results 

Qiao et al 

2022 [41] 

YOLOv5s Convolutional Neural 

Network 

River station in Beijing Systematic error of only 7.7 mm; 95% accuracy in 

daylight images and 98% under infrared night 

lighting 

Eltner et al. 

2021 [42] 

Deep learning (CNNs like SegNet 

and FCN) and photogrammetric 

techniques (SfM) 

Raspberry Pi camera Errors under 3%; average deviations below 4 cm; 

correlation with reference gauges up to 0.93 

Zhang et al. 

2024 [43] 

Analysis across color spaces 

(RGB, HSV, YCbCr, Lab, Yiq) 

Images containing various fire types 

and basic colors 

Optimal color space identified for fire detection 

Ruma et al. 

2023 [44] 

Image processing techniques 

including Gaussian blur, Canny 

edge detection, and SWT 

Spatial natural images and street 

sign datasets 

Best results with street signs, successfully 

detecting most letters 

Fei  et al. 

2023 [45] 

Hydrologic-Hydrodynamic 

Coupling model (H2C-XL) 

integrated with LSTM networks 

Tianhe-Zhuyin reach and stations 

along it 

Enhanced prediction accuracy with Nash 

coefficients of 0.866 and KGE of 0.922; significant 

improvement in water level predictions 

Cai et al. 

2023[46] 

Hybrid segmentation algorithm 

(k-means and region growing) 

Yarlung Tsangpo River basin, Tibet, 

China 

Accuracy of 89.29%; miss rate of 11.76%; 

outperformed traditional methods 

Chen et al. 

2024 [47] 

ResNet-50 CNN model CCTV footage of Chengmei Bridge, 

Keelung River, Taiwan 

Accuracy rates between 83.6% to 96%, best 

performance on clear days 

Xu et al. 

2023 [48] 

M-K trend test and neural 

networks (RF, CNN, LSTM, CNN-

LSTM) 

Yichang and Hankou stations Downward trend at Yichang and upward trend at 

Hankou; CNN-LSTM model achieved NSE and KGE 

above 0.995 

M. A. 

Hussein and 

A. H. Abbas  

2019 [49] 

Two-phase system using SVM 

classifier 

799 plant leaf images Accuracy of 88.1% in identifying diseases across 

different crops 

 

Although water level measurement techniques have improved significantly in recent years, there are still considerable 
gaps left from earlier work. Interestingly, high accuracy has been reported in recent works based on either multi-
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template matching and sequence verification algorithms [40] or YOLOv5s deep learning models [41], or a hybrid 
scheme using deep learning on photogrammetry images [42] but they often are constrained by adaptability to a wider 
environmental context and needs complex deployment. Additionally, their adoption is limited by the dependence on 
costly state-of-the-art sensors, and tailored equipment precluding their ubiquity. In addition, most existing models 
are task-specific for a given water body or imaging conditions and thus have limited generalization and robustness. 
We overcome these deficiencies in our work by combining the deep learning with the Canny edge detection to provide 
a complete cost efficient and flexible system of water level detection. By adding this for the first time, we have achieved 
the improved accuracy and robustness across different conditions in a cost-effective and scalable manner, which 
emphasizes the importance of our impact in the realm of water level monitoring and flood prediction systems. 

3. Innovative Methodology for River Water Level Detection and Prediction 

The model structured approach where water level was acquired through the airborn image datasets sourced from the 
river. That starts with the preprocessing step where images are normalized and reshaped in 224x224 pixels, and we 
do some data augmentation during the process so the dataset is more diverse. Canny Edge detection is used as a 
preprocessing step in order to improve the edges in the images, a necessary feature for feature extraction in order to 
be accurate. The dataset is subsequently shuffled randomizing 80% of the dataset for training and 20% for evaluating 
our models. The model is a transfer learning model and uses the pre-trained VGG 16 neural network structure with 
few fully connected layers (2D CNN) which exploit VGG 16’s capability of recognizing complex image features. Once 
you make the model, and training the model, we do testing and all kind of evaluation are in that testing so the metrics 
we used were accuracy, precision, recall, F1-Score. The inclusion of Canny edge detection in preprocessing aids in 
more precise detection of water levels against the riverbank, facilitating easier and more accurate predictions. This 
integration of deep learning and advanced edge detection, as depicted in Figure 1, offers a highly effective 
methodology for water level detection. 

 

FIG.  1- PROPOSED METHODOLOGY FOR RIVER WATER LEVEL DETECTION AND PREDICTION 
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3.1. Dataset Description  

This dataset is referred to as “Tsai, Cheng-Hsiung. ‘Real-time images of river in Taiwan’” made available by Tsai, 
Cheng-Hsiung in 2020*. It contains a large number of real-time photo snapshots taken by a camera system installed 
on the Chongren Bridge over Errenxi River, Tianliao District, Taiwan for several days. Structurally, the dataset is a 
collection of around six thousand high-presence JPEG files from August 23 to August 31, 2018. The sorted sub-variety 
of those photographs was carefully identified, sorted, and created an organized collection of scenes taken from 
Taiwanese rivers. This dataset highly benefits the field of hydrology and its combinations with machine learning 
because, in contrast to other image datasets, it not only has high-resolution image quality but, more importantly, 
professionally sorted water conditions. Images taken from the camera systems were classified into three categories 
of conditions as follows: Category A, which contains photographs with a vividly high-water volume with boats in the 
river present; Category B with the aftermath of a recent water increase; and Category C, which captured no 
transformations or change in the previous state. Such a filing system allows this dataset to be highly functional in 
terms of water level fluctuations modeling and learning and would be of high value for use in educational water 
resource management strategies for flood territories like Taiwan. 

3.2. Dataset Preprocessing  

In the preprocessing stage of the dataset, the images categorized into three classes: A, B, and C were assigned numeric 
labels 0, 1, and 2 respectively to facilitate algorithmic processing. This encoding was accomplished by appending the 
corresponding number to the training labels for each image, based on the category it belonged to, as evident in the 
image categorization code snippet. These labeling forms the groundwork for the application of the Label Encoder 
technique, which converts categorical text data into a model-understandable numeric format. Subsequently, images 
underwent a Gaussian Blur to reduce noise and improve the quality of the input for the model. This was followed by 
resizing each image to uniform dimensions of 224x224 pixels to ensure consistency in input size. Data augmentation 
techniques were performed on the dermoscopic images for improved generalization of the model, to make more 
robust data, such as rotations, zooming, and shifting. The last preprocessing step was normalization (rescaling pixel 
values to [0,1]) to help the dataset to be more adapted in the machine learning models. The class counts after these 
final manipulations reveal an even spread of images among the classes - 1600 images in class 1, 1600 images in class 
2, and 1599 images in class 0 - leading to a well balanced dataset on which to train our predictive models. 

3.3. Canny edge detection 

Canny edge detection algorithm [53] is a multi-stage algorithm to detect a wide range of edges in images accurately, 
so it is a good and popular tool in the field of computer vision [56]. This method which was developed by John F.Canny 
In 1986 [55] has the priority of three main criteria such as less error rate, high edge localization and minimizing the 
responses. Its main steps are represented in Figure 2 [54]: 

Noise Reduction: The first step in the Canny edge detection algorithm involves smoothing the image to reduce noise. 
This is typically achieved using a Gaussian filter, which blurs the image to minimize the impact of obvious noise and 
color variation [56] [57]. 

Gradient Calculation: The algorithm then uses a Sobel kernel to calculate the gradient magnitude and direction of 
each pixel. This step assesses the intensity change in all directions around a pixel to determine potential edges [56]. 

Non-maximum Suppression: Following gradient calculation, the algorithm applies non-maximum suppression to 
thin out the edges. This step scans the image to suppress all the gradient values (make them zero) except the local 
maxima, which indicate locations with the sharpest change of intensity values [56]. 

 

 

 

* https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/8FDC7P  

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/8FDC7P
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Double Thresholding: The detected edges are further refined through a double thresholding step. This involves using 
two thresholds, a low and a high threshold, to differentiate between strong, weak, and non-edge pixels. Strong edges 
are marked where the gradient magnitude is higher than the high threshold, while weak edges are defined where the 
gradient values fall between the two thresholds [56]. 

Edge Tracking by Hysteresis: In the final stage, the algorithm distinguishes between real edges and noise. It 
accomplishes this by converting weak edges into strong ones, but only if they are connected to strong edges. This 
helps in preserving the genuine structure of the edge while discarding noise-induced edges [56]. 

By adhering to these stages, the Canny edge detection algorithm ensures that the edges detected are sharp, well-
defined, and accurate in their depiction of the true boundaries within the image, making it a robust choice for 
applications that require precise image analysis. 

 

FIG.  2- THE FLOW CHART OF THE CANNY EDGE DETECTION ALGORITHM  [54] 

3.4. Convolutional Neural Network Architecture 

A Convolutional Neural Network (CNN) is a deep learning architecture primarily used for processing data with grid-
like topology, such as images. It consists of multiple layers including convolutional layers that apply filters to capture 
spatial hierarchies of features, pooling layers that reduce dimensionality, and fully connected layers that classify the 
input based on the features extracted. 

The 2D CNN [51] architecture designed for water level prediction in this study is built using Keras and follows a 
sequential model. It initiates with a rescaling layer that normalizes pixel values within the image, processing the input 
shape of 224x224 pixels with 3 channels. Following this, a data augmentation layer enhances the model's ability to 
generalize by introducing variations in the training dataset. 
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The kernel of the architecture is the three convolutional layers, each followed by a max-pooling layer. The first 
convolutional layer has 16 filters with a 3x3 kernel, activated “relu” that employs ‘same’ padding so that the spatial 
dimensions of the image remain similar. The next convolutional layer after pooling replaces the former 16 filters with 
32 filters as the kernel size and activation function remain the same. The third convolution layer has 64 filters followed 
by max pooling to continue the even abstraction of features from the images. These parts of the architecture are 
pivotal in extracting features from the images as the abstraction level. Further, abstraction loses the most crucial 
details to the target model on the output. The output after the above steps is flattened and a single long feature vector 
is created at this stage. This feed goes into a densely connected layer with 128 neurons activated “relu” and he_normal 
initialized which helps the backpropagation-propagation process initialize the learning instate. The next dense layer 
with 64 neurons follows the previous trend. The architecture ends with a softmax activation layer with three neurons. 
The three neurons are the three classes of water levels. The activation function ensures that the output values are 
probabilities that sum to one, allowing for a probabilistic interpretation of the model’s final model. 

FIG.  3- CNN ARCHITECTURE 

3.5. VGG16 Architecture 

The VGG16 architecture [52], a well-known model of great depth and feature detection capabilities, utilizes VGG16, 
pre-trained on the ‘imagenet,’ as the convolutional base. This choice is made to take advantage of complicated patterns 
and features learned from a broad variety of images, forming a foundation to distinguish water level indicators within 
new images. It should be noted that the customized top layers of VGG16 are removed for this peculiar classification 
task. To avoid customizing the learned features due to personalization, the convolutional base’s weights are frozen 
such that they are not updated throughout training. 

At this stage, the model utilizes the architecture as a feature extractor. Thus, the processed input is passed through 
the convolutional base; then, it is flattened to convert from the 2D feature maps to a 1D feature vector for simplicity 
of feeding into a dense layer with 256 neurons and ‘relu’ activation to provide the capability of the network to model 
non-linear complex functions. Afterwards, a Dropout layer is built after the dense layer with a dropout rate of 0.1 to 
reduce overfitting by ignoring 10% of the neurons during training. The final layer is a dense layer with a softmax 
activation function. Softmax is used to create a probability distribution over three classes and signals the output as 
the class the model considers perfect for the image passed in. In conclusion, it would be stated that the architecture 
of this convolutional neural network should be able to predict the water level based on the input image. 

4. Results and Discussion 

4.1. Evaluation Metrics 

The evaluation of the predictive model's results is conducted using a suite of metrics that collectively provide a 
comprehensive understanding of its performance. The simplest metric out of them is Accuracy which is the fraction 
of total test samples that the model was successful in classifying correctly. Precision measures how close the model 
is, and indicates the true positive (TP) predictions in connection with a total of the predicted positives, largely 



10 Nisreen Tawfeeq, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol. 16(2) 2024,  pp  Comp.135– 150

 

detecting false positives. Recall or Sensitivity: It tells us what proportion of the actual positives were correctly 
predicted by the model and how many were false negatives. The F1-score strikes a balance because it gives a single 
measure that takes both precision and recall into account, and is desirable when FP and FN carry the same cost, or 
the classes are very imbalanced. Together, they tell a richer story about the effectiveness of the model and the ability 
to make adjustments or improvements in future iterations. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
  (4) 

4.2. Evaluation CNN Method 

The results performed by the CNN model revealed interesting conclusions regarding the predictability of water levels. 
Reviewing these results, we see a mix of successes and opportunities for improvement. 

The training and validation results of the CNN for ten epochs are also insightful to see how the model learns. With the 
model beginning with 76.52% accuracy on the training data, the changes are swift and at the final epoch the model 
has a respect 98.94% accuracy. Looking at the validation end, the model shows a greater generalization from the start 
with 92.92% and ending to a 99.37% accuracy. After the first epoch, the loss on both ends decreases dramatically, 
with the training loss going from 0.6065 to 0.0377, and the validation loss changing to 0.2307 to 0.0233, reflecting 
the model being more certain of its predictions. Figure 4 shows a steady progress of accuracy and loss during the 
learning process, which is a good sign or well-tuned learning process. 

FIG.  4- TRAINING AND VALIDATION CNN RESULTS  

The classification report for the CNN in the context of river level prediction exhibits exemplary performance across 
all metrics. As shown in Table 2 the class 0 achieves perfect precision and recall, indicative of the model's impeccable 
ability to classify this category without any errors. Class 1 demonstrates near-perfect precision at 0.998 and a perfect 
recall, resulting in an F1-score of 0.999. Similarly, class 2's precision is flawless, with recall slightly lower at 0.998, 
Furthermore, still yielding an F1-score of 0.999. The overall accuracy of the model stands at an impressive 0.999, 
reflecting the high level of consistency in its predictive capabilities across the dataset, which includes a substantial 
support size of 1201 instances. These results underscore the CNN's remarkable ability to discern and classify different 
river levels with exceptional accuracy, making it a highly reliable tool in hydrological studies and water management 
applications. 

TABLE 2- CLASSIFICATION REPORT OF CNN  

Class Precision Recall F1-Score Support 
0 1.000 1.000 1.000 401 
1 0.998 1.000 0.999 400 
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2 1.000 0.998 0.999 400 
Accuracy 0.999 1201 
Overall 0.999 0.999 0.999 1201 

 

Figure 5 showcases the confusion matrix for the classifier, providing a clear visual representation of its performance. 
The matrix displays a perfect classification rate, with all predictions aligning accurately with the true labels. Each class 
1, 2, and 3 along the diagonal is marked with a value of 1.00. This flawless result in the confusion matrix corresponds 
to the high scores reported in the classification report, underscoring the CNN's exceptional capability in water level 
prediction. 

In the assessment of CNN method with Canny edge detection for water level measurement, the figure 6 shown 
provides the proof of the model's success. Edge detection overlays show that the CNN failed to identify these water 
level characteristics in the various images due to the encoder-decoder structure of the CNN. The annotations on the 
images, indicated by the brackets number, were about model's prediction confidence through all of their classes. For 
such images the accuracy of the model will be at its best, the Canny edge detection even clearly shows distinct edges 
of the water levels in the image aligned with the indicators there. Another side of the coin is when the CNN loses its 
dots and only acts on the information provided by edge detection during the moments of the less determinant. 
Deploying the model through CNN for classification and Canny edge detector for spatial feature extraction, the system 
becomes reliable and creates one of the methods of accurate water levels detection since its performance is assessable 
under various water conditions. The demonstrated results show a relative potential for a wide application in 
automated and reliable monitoring of water level in real-world case studies. 
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FIG.  5- CONFUSION MATRIX FOR CNN 

FIG.  6- CNN METHOD WITH CANNY EDGE DETECTION 

4.3. Evaluation VGG16 Method 

The training and validation results from the VGG16-based CNN method over a span of 10 epochs illustrate a promising 
trend in the model's learning curve. Initially, the model began with a loss of 3.5153 and an accuracy of 86.04% on the 
training set, which is a good starting point considering the complexity of the task. By the second epoch, both metrics 
saw considerable improvement, with loss decreasing to 0.6969 and accuracy climbing to 93.87%. 

Notably, in the third epoch, the validation accuracy jumped to 97.29%, indicating the model's strong generalizing 
ability. From the fourth epoch onwards, the model sustained a high level of accuracy, peaking at 98.96% by the tenth 
epoch, while keeping the validation loss at a minimal 0.1861, which demonstrates the model's effective learning and 
adaptation capabilities. 

FIG.  7: TRAINING AND VALIDATION VGG16 RESULTS  

TABLE 2- CLASSIFICATION REPORT OF CGG16  

Class Precision Recall F1-Score Support 
0 1.000 0.975 0.987 401 
1 0.987 0.978 0.982 400 
2 0.961 0.995 0.978 400 
Accuracy 0.983 1201 
Overall 0.983 0.983 0.983 1201 
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The graphical representation of how the model performed is shown in Figure 8 as confusion matrix for the VGG16 
classifier. The matrix holds high values across the diagonal for all classes suggesting a high true positive rate. Classes 
1, 2, and 3 have a TP score of 0.98, 0.98, and 0.99, respectively, showing that the model is able to predict the water 
level category well. Since the off diagonal elements, which correspond to number of mis-classifications, are small, it 
suggests that the classifier is precision and recall to be high for all classes. The above matrix passes a clear message 
on the robustness of VGG16 model to determine the water level state with reasonable accuracy. 

FIG.  8- CONFUSION MATRIX FOR VGG16  

 Training machine learning model to competently exploit Canny edge detection for image processing demands some 
vital training measures to guarantee the model’s precision and dependability. The fundamental procedures consist of 
exposing the model to a range of images where the edges are previously recognized, so the model can study to identify 
patterns and the modifications in the intensities and aspect ratios of the edges. As it is shown in the training procedure, 
the Canny algorithm is employed to the collection of training images yielding edge maps, which offer as the ground 
truth for the model to study from. The model, usually a CNN, educates to correlate the raw pixel data of an image with 
these preexisting-edge-maps education from executing the edge detection procedure. Then, the model updates its 
internal parameters throughout backpropagation consistent with the loss among the anticipated and factual edge-
map data. This forthcoming training procedure is closely scrutinized to circumvent overfitting and assure that the 
model generalizes properly to evolves images it has not seen previously. As the data is processed through the model, 
it evolves more skilled in recognizing both subtle and salient edges essential to various undertakings, making it a 
dominant tool for sophisticated image processing demands. 
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 The use of Canny edge detection in the evaluation of the VGG16 model introduces an element of visual and analytical 
edge in the evaluation of its predictive powers on water levels. The implementation of edge detection shown in Figure 
9 enables a detailed study on the performance of the model in determining relevant limits and silhouettes of water 
levels The presence of strongly delineated borders of the water body is an indication towards the ability of the model 
to accurately place the areas of interest. Arrays of red, green, and blue values indicate the model's prediction, with 
higher values indicating greater confidence for that class. For example, the array [0, 1, 0] might be close to an image, 
which appears to assist the model in successfully categorizing the image (denoted by a sharp edge), as depicted in the 
image below. Such a fusion of Canny edge detection with the advanced capabilities of the VGG16 model paves the way 
for enhanced accuracy in water level detection, making this approach a potentially transformative tool for flood 
monitoring and water management in real-world scenarios. 

FIG.  9: VGG16 METHOD WITH CANNY EDGE DETECTION 

4.4. Comparison Results 

In the comparative landscape of water level detection using predictive modeling, our study positions itself 
prominently, showcasing a robust application of CNNs. As highlighted in our comparative analysis, Xu et 
al.'s [48] CNN-LSTM hybrid model achieves an impressive accuracy slightly over 99.5%, leveraging the 
strengths of both CNN and LSTM architectures to optimize time-series predictions of water levels. Our 
proposed VGG16 model demonstrates substantial effectiveness with an accuracy of 98.3%, benefiting from 
VGG16’s deep architectures that are adept at capturing complex image features crucial for accurate water 
level detection. 

However, it is our standalone CNN model that sets a new benchmark with a remarkable accuracy of 99.99%. 
This performance notably exceeds that of other models reviewed, including Eltner et al.’s [42] CNN model 
at 93% and Chen et al.’s [47] ResNet-50 model, which ranges between 83.6% and 96% accuracy depending 
on weather conditions. The superior performance of our CNN model can be attributed to its advanced 
image processing capabilities and the integration of Canny edge-detection techniques, which enhance the 
model’s ability to discern and quantify subtle variances in water levels directly from river images. 

TABLE 3- COMPARISON METHODS 

Research Model Type Accuracy 
Xu et al. [48] CNN-LSTM > 99.5% 
Eltner et al. [42] CNN 93% 
Chen et al. [47] ResNet-50 83.6% to 96% 
Our model VGG16 98.3% 
Our model CNN 99.99% 
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While current research has contributed towards many solutions in the domain of water level detection, 
there are multiple research gaps which highlight the need for further progress. Other recent studies, such 
as the works combining the SAR images with photogrammetric techniques or with the CNN-LSTM or VGG-
CNN even only give attention to accuracy or the temporarily variation detection of water detection. Yet 
often these methods cannot accommodate the wide range of environmental fluctuation or combine spatial 
and temporal data well. Furthermore, some of the existing methods rely on expensive, expert, annotated 
data which is not always available or available in less monitored and remote areas. Therefore, there is a 
compelling need to design methods that are more general and effective across a variety of scenarios and 
conditions and for which this shared World dataset is needed.no Our contribution aims at bridging the gap 
and helps build a model which not only improves the accuracy but provides a robust system for managing 
and analysing the hydrological data in a more accurate way. By doing so, the model is improved form a 
practitioner's perspective and supplies an avenue for advancing innovative research on hydrological 
monitoring and management. 

5. Conclusion 

This study fills this gap by undertaking research in developing and using the TDR sensing method for 
accurate and consistent water level detection which is vital for efficient flood control and environmental 
survey. In this regard, the present study is unique as it brings forward a wholly new model consisting of 
merging VGG16 and CNN features with the elevated capacity of Canny edge detection methods. It is 
superior when it comes to determining water levels and highly flexible in adapting to different conditions. 

Among the models, the proposed CNN model we developed is quite outstanding in terms of accuracy; it 
boasts an accuracy of 99. 99%, which was better than previous approaches and consistently outperforms 
other methods in tests for future studies. The VGG16 model provides the added benefit here of high 
classification performance, something that is essential once the models are meant for practical applications. 
The application of the Canny edge detection improves the capacity of our model to identify the variation of 
feature areas due to the rising waters, making it more reliable in alerting us in instances of future flooding. 
In addition, the outcome of our model shows that furthering stance the utilization of sophisticated image 
analysis method in concert with deep neural networks is an effective approach to addressing topical 
environment monitoring issues. 

Future work will routinely improve the current work by using more elaborate data source types and more 
complex neural networks so as to deduce more exact solutions across various modalities. Further 
development will also be committed to real-time monitoring capability and extended open application 
across different areas to enhance such a model’s global applicability for monitoring the water level. 

 

References 
 

 
[1] P. Do¨ll, B. Jime´nez-Cisneros, T. Oki, N. Arnell, G. Benito, J. Cogley, T. Jiang, Z. Kundzewicz, S. Mwakalila, and A. Nishijima, “Integrating risks 

of climate change into water management,” Hydrological Sciences Journal, vol. 60, no. 1, pp. 4–13, 2015. 
  
[2] Y. Zhen, S. Liu, G. Zhong, Z. Zhou, J. Liang, W. Zheng, and Q. Fang, “Risk assessment of flash flood to buildings using an indicator-based 

methodology: A case study of mountainous rural settlements in south- west china,” Frontiers in Environmental Science, vol. 10, p. 931029, 2022. 
[3] I. Vieira, V. Barreto, C. Figueira, S. Lousada, and S. Prada, “The use of detention basins to reduce flash flood hazard in small and steep volcanic 

watersheds–a simulation from madeira island,” Journal of Flood Risk Management, vol. 11, pp. S930–S942, 2018. 
[4] A. H. Group, C. Vo¨ro¨smarty, A. Askew, W. Grabs, R. Barry, C. Birkett, P. Do¨ll, B. Goodison, A. Hall, R. Jenne et al., “Global water data: A newly 

endangered species,” Eos, Transactions American Geophysical Union, vol. 82, no. 5, pp. 54–58, 2001. 
[5] A. K. Mishra and P. Coulibaly, “Developments in hydrometric network design: A review,” Reviews of Geophysics, vol. 47, no. 2, 2009. 



16 Nisreen Tawfeeq, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol. 16(2) 2024,  pp  Comp.135– 150

 

[6] A. A. Bradley, A. Kruger, E. A. Meselhe, and M. V. Muste, “Flow mea- surement in streams using video imagery,” Water Resources Research, vol. 
38, no. 12, pp. 51–1, 2002. 

[7] K. Loizou and E. Koutroulis, “Water level sensing: State of the art review and performance evaluation of a low-cost measurement system,” 
Measurement, vol. 89, pp. 204–214, 2016. 

[8] “Global Runoff Database Center—River Discharge Data,” https://www.bafg.de/GRDC, accessed: 28-February-2024. 
[9] J. Riegger, M. Tourian, B. Devaraju, and N. Sneeuw, “Analysis of grace uncertainties by hydrological and hydro-meteorological observations,” Journal 

of Geodynamics, vol. 59, pp. 16–27, 2012. 
[10] G. Strassberg, B. R. Scanlon, and M. Rodell, “Comparison of seasonal terrestrial water storage variations from grace with groundwater-level 

measurements from the high plains aquifer (usa),” Geophysical Research Letters, vol. 34, no. 14, 2007. 
[11] F. Papa and F. Frappart, “Surface water storage in rivers and wetlands derived from satellite observations: a review of current advances and future 

opportunities for hydrological sciences,” Remote Sensing, vol. 13, no. 20, p. 4162, 2021. 
[12] S. Grimaldi, Y. Li, V. R. Pauwels, and J. P. Walker, “Remote sensing- derived water extent and level to constrain hydraulic flood forecasting models: 

Opportunities and challenges,” Surveys in Geophysics, vol. 37, pp. 977–1034, 2016. 
[13] K. Yan, G. Di Baldassarre, D. P. Solomatine, and G. J.-P. Schumann, “A review of low-cost space-borne data for flood modelling: topography, flood 

extent and water level,” Hydrological processes, vol. 29, no. 15, pp. 3368–3387, 2015. 
[14] D. Mason, G.-P. Schumann, J. Neal, J. Garcia-Pintado, and P. Bates, “Automatic near real-time selection of flood water levels from high resolution 

synthetic aperture radar images for assimilation into hydraulic models: A case study,” Remote Sensing of Environment, vol. 124, pp. 705–716, 2012. 
[15] L. Giustarini, R. Hostache, D. Kavetski, M. Chini, G. Corato, S. Schlaf- fer, and P. Matgen, “Probabilistic flood mapping using synthetic aperture 

radar data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 12, pp. 6958–6969, 2016. 
[16] D. C. Mason, S. L. Dance, S. Vetra-Carvalho, and H. L. Cloke, “Robust algorithm for detecting floodwater in urban areas using synthetic aperture 

radar images,” Journal of Applied Remote Sensing, vol. 12, no. 4, pp. 045 011–045 011, 2018. 
[17] M. Tanguy, K. Chokmani, M. Bernier, J. Poulin, and S. Raymond, “River flood mapping in urban areas combining radarsat-2 data and flood return 

period data,” Remote Sensing of Environment, vol. 198, pp. 442–459, 2017. 
[18] F. Tauro, J. Selker, N. Van De Giesen, T. Abrate, R. Uijlenhoet, M. Porfiri, S. Manfreda, K. Caylor, T. Moramarco, J. Benveniste et al., “Measurements 

and observations in the xxi century (moxxi): Innovation and multi-disciplinarity to sense the hydrological cycle,” Hydrological sciences journal, vol. 
63, no. 2, pp. 169–196, 2018. 

[19] M. T. Perks, A. J. Russell, and A. R. Large, “Advances in flash flood monitoring using unmanned aerial vehicles (uavs),” Hydrology and Earth System 
Sciences, vol. 20, no. 10, pp. 4005–4015, 2016. 

[20] M. T. Perks, S. F. Dal Sasso, A. Hauet, J. Le Coz, S. Pearce, S. Pen˜a- Haro, F. Tauro, S. Grimaldi, B. Hortoba´gyi, M. Jodeau et al., “Towards 
harmonization of image velocimetry techniques for river surface velocity observations,” Earth System Science Data Discussions, vol. 2019, pp. 1–20, 
2019. 

[21] R. Le Boursicaud, L. Pe´nard, A. Hauet, F. Thollet, and J. Le Coz, “Gaug- ing extreme floods on youtube: Application of lspiv to home movies for the 
post-event determination of stream discharges,” Hydrological Processes, vol. 30, no. 1, pp. 90–105, 2016. 

[22] G. Schoener, “Time-lapse photography: Low-cost, low-tech alternative for monitoring flow depth,” Journal of Hydrologic Engineering, vol. 23, no. 2, 
p. 06017007, 2018. 

[23] S. Etter, B. Strobl, I. van Meerveld, and J. Seibert, “Quality and timing of crowd-based water level class observations,” Hydrological processes, vol. 
34, no. 22, pp. 4365–4378, 2020. 

[24] A. Eltner, M. Elias, H. Sardemann, and D. Spieler, “Automatic image- based water stage measurement for long-term observations in ungauged 
catchments,” Water Resources Research, vol. 54, no. 12, pp. 10–362, 2018. 

[25] M. Zounemat-Kermani, E. Matta, A. Cominola, X. Xia, Q. Zhang, Q. Liang, and R. Hinkelmann, “Neurocomputing in surface water hydrology and 
hydraulics: A review of two decades retrospective, current status and future prospects,” Journal of Hydrology, vol. 588, p. 125085, 2020. 

[26] T. Rajaee, H. Ebrahimi, and V. Nourani, “A review of the artificial intel- ligence methods in groundwater level modeling,” Journal of hydrology, vol. 
572, pp. 336–351, 2019. 

[27] M. F. Allawi, O. Jaafar, F. Mohamad Hamzah, S. M. S. Abdullah, and A. El-Shafie, “Review on applications of artificial intelligence methods for dam 
and reservoir-hydro-environment models,” Environmental Sci- ence and Pollution Research, vol. 25, pp. 13 446–13 469, 2018. 

[28] T. Rajaee and H. Jafari, “Two decades on the artificial intelligence models advancement for modeling river sediment concentration: State- of-the-art,” 
Journal of Hydrology, vol. 588, p. 125011, 2020. 

[29] S. Zhu and A. P. Piotrowski, “River/stream water temperature forecasting using artificial intelligence models: a systematic review,” Acta Geophys- 
ica, vol. 68, pp. 1433–1442, 2020. 

[30] F. Zhou, B. Liu, and K. Duan, “Coupling wavelet transform and artificial neural network for forecasting estuarine salinity,” Journal of Hydrology, vol. 
588, p. 125127, 2020. 

[31] Z. M. Yaseen, A. El-Shafie, O. Jaafar, H. A. Afan, and K. N. Sayl, “Artificial intelligence based models for stream-flow forecasting: 2000– 2015,” 
Journal of Hydrology, vol. 530, pp. 829–844, 2015. 

[32] Z. Zhang, Q. Zhang, V. P. Singh, and P. Shi, “River flow modelling: com- parison of performance and evaluation of uncertainty using data-driven 
models and conceptual hydrological model,” Stochastic environmental research and risk assessment, vol. 32, pp. 2667–2682, 2018. 

[33] F. B. Hamzah, F. Mohd Hamzah, S. F. Mohd Razali, O. Jaafar, and N. Abdul Jamil, “Imputation methods for recovering streamflow observation: A 
methodological review,” Cogent Environmental Science, vol. 6, no. 1, p. 1745133, 2020. 

[34] S. Zhu, M. Ptak, Z. M. Yaseen, J. Dai, and B. Sivakumar, “Forecasting surface water temperature in lakes: A comparison of approaches,” Journal of 
hydrology, vol. 585, p. 124809, 2020. 

[35] K. S. M. H. Ibrahim, Y. F. Huang, A. N. Ahmed, C. H. Koo, and A. El- Shafie, “A review of the hybrid artificial intelligence and optimization 
modelling of hydrological streamflow forecasting,” Alexandria Engineer- ing Journal, vol. 61, no. 1, pp. 279–303, 2022. 

[36] A. K. Reyes, J. C. Caicedo, and J. E. Camargo, “Fine-tuning deep convolutional networks for plant recognition.” CLEF (Working Notes), vol. 1391, 
pp. 467–475, 2015. 

[37] M. Sabatelli, M. Kestemont, W. Daelemans, and P. Geurts, “Deep transfer learning for art classification problems,” in Proceedings Of The European 
conference on computer vision (ECCV) workshops, 2018, pp. 0–0. 

[38] M. Talib and J. H. Saud, “A multi-weapon detection using deep learning,” Iraqi Journal of Information and Communication Technology, vol. 7, no. 1, 
pp. 11–22, 2024. 

[39] S. A. Tuama, J. H. Saud, and Z. A. Alobaidy, “Using an accurate mul- timodal biometric for human identification system via deep learning,” Al-
Mansour Journal, vol. 37, no. 1, pp. 69–90, 2022. 

[40] G. Chen, K. Bai, Z. Lin, X. Liao, S. Liu, Z. Lin, Q. Zhang, and X. Jia, “Method on water level ruler reading recognition based on image processing,” 
Signal, Image and Video Processing, vol. 15, pp. 33–41, 2021. 

[41] G. Qiao, M. Yang, and H. Wang, “A water level measurement approach based on yolov5s,” Sensors, vol. 22, no. 10, p. 3714, 2022. 
[42] A. Eltner, P. O. Bressan, T. Akiyama, W. N. Gonc¸alves, and J. Mar- cato Junior, “Using deep learning for automatic water stage measurements,” 

Water Resources Research, vol. 57, no. 3, p. e2020WR027608, 2021. 



Nisreen Tawfeeq, Journal of Al-Qadisiyah for Computer Science and Mathematics  Vol. 16(2) 2024,  pp  Comp.135– 150       17 

 

[43] J. Zhang, A. Xiang, Y. Cheng, Q. Yang, and L. Wang, “Research on detection of floating objects in river and lake based on ai intelligent image 
recognition,” arXiv preprint arXiv:2404.06883, 2024. 

[44] J. F. Ruma, M. S. G. Adnan, A. Dewan, and R. M. Rahman, “Particle swarm optimization based lstm networks for water level forecasting: a case study 
on bangladesh river network,” Results in Engineering, vol. 17, p. 100951, 2023. 

[45] K. Fei, H. Du, and L. Gao, “Accurate water level predictions in a tidal reach: Integration of physics-based and machine learning approaches,” Journal 
of Hydrology, vol. 622, p. 129705, 2023. 

[46] Z. Cai, L. Sun, B. An, X. Zhong, W. Yang, Z. Wang, Y. Zhou, F. Zhan, and X. Wang, “Automatic monitoring alarm method of dammed lake based 
on hybrid segmentation algorithm,” Sensors, vol. 23, no. 10, p. 4714, 2023. 

[47] J.-F. Chen, Y.-T. Liao, and P.-C. Wang, “Development and deployment of a virtual water gauge system utilizing the resnet-50 convolutional neural 
network for real-time river water level monitoring: A case study of the keelung river in taiwan,” Water, vol. 16, no. 1, p. 158, 2024. 

[48] Y. Xu, C. He, Z. Guo, Y. Chen, Y. Sun, and Y. Dong, “Simulation of water level and flow of catastrophic flood based on the cnn-lstm coupling 
network,” Water, vol. 15, no. 13, p. 2329, 2023. 

[49]  M. A. Hussein and A. H. Abbas, “Plant leaf disease detection using support vector machine,” Al-Mustansiriyah Journal of Science, vol. 30, no. 1, pp. 
105–110, 2019. 

[50]  M. H. Al-Tai, B. M. Nema, and A. Al-Sherbaz, “Deep learning for fake news detection: Literature review,” Al-Mustansiriyah Journal of Science, vol. 
34, no. 2, pp. 70-81, 2023. 

[51] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional neural networks: analysis, applications, and prospects,” IEEE transactions 
on neural networks and learning systems, vol. 33, no. 12, pp. 6999–7019, 2021. 

[52] S. Mascarenhas and M. Agarwal, “A comparison between vgg16, vgg19 and resnet50 architecture frameworks for image classification,” in 2021 
International conference on disruptive technologies for multi- disciplinary research and applications (CENTCON), vol. 1. IEEE, 2021, pp. 96–99. 

[53] W. Rong, Z. Li, W. Zhang, and L. Sun, “An improved canny edge detection algorithm,” in 2014 IEEE international conference on mechatronics and 
automation. IEEE, 2014, pp. 577–582. 

[54] W. Lu, B. Xie, and Z. Ding, “[retracted] edge detection algorithm-based lung ultrasound in evaluation of efficacy of high-flow oxygen therapy on 
critical lung injury,” Computational and Mathematical Methods in Medicine, vol. 2022, no. 1, p. 3604012, 2022. 

[55] J. Canny, “A computational approach to edge detection,” IEEE Transactions on pattern analysis and machine intelligence, no. 6, pp. 679–698,1986. 
[56] Y. Song, C. Li, S. Xiao, Q. Zhou, and H. Xiao, “A parallel canny edge detection algorithm based on opencl acceleration,” Plos one, vol. 19, no. 1, p. 

e0292345, 2024. 
[57]   H. Gati’Dway and A. F. Mutar, “Study fire detection based on color spaces,” Al-Mustansiriyah J Sci, vol. 29, no. 4, pp. 93–99, 2018. 
 

 


