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Abstract 
 

  In this paper, we consider semiparametric regression model where the mean function of this model has 

two part, the parametric ( first part ) is assumed to be linear function of p-dimensional covariates and 

nonparametric ( second part ) is assumed to be a smooth penalized spline. By using a convenient 

connection between penalized splines and mixed models, we can representation semiparametric 

regression model as mixed model. Bayesian approach is employed to making inferences on the resulting 

mixed model coefficients, and we prove some theorems about posterior. 

 
Keywords 
 

  Mixed models, Semiparametric regression, Penalized spline, Bayesian inference, Prior density, Posterior 

density, Bayes factor. 

 

1. Introduction 
 

Consider the model: 

                         (1) 

  Where  response variables and the unobserved errors are  are known to 

be i.i.d. normal with mean 0 and covariance  with  known. 

  The mean function of the regression model in (1) has two parts. The parametric ( first 

part ) is assumed to be linear function of p-dimensional covariates  and nonparametric 

(second part)  is function defined on some index set . Inferences a bout 

model (1) such as its estimation as well as model checking are of interest.  

   A Bayesian approach to (fully) semiparametric regression problems typically requires 

specifying prior distributions on function spaces which is rather difficult to handle. The 

extent of the complexity of this approach can be gauged from sources such as Angers and 

Delampady (see [1]), and Lenk (see[7]), and so on.  

  In this paper, a simple Bayesian approach to semiparametric regression, so that with the 

help of a reference prior they can be transformed to prior density functions. By using 

penalized spline for the nonparametric function ( second part ) of the model (1) we can 

representation semiparametric regression model (1) as mixed model and Bayesian 

approach is employed to making inferences on the resulting mixed model coefficients, and 

we prove some theorems about posterior. 
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2. Mixed Models 
 

   The general form of a linear mixed model for the ith subject (i = 1,…, n) is given as 

follows (see [9,12,13]), 

   ,                       (2) 

where the vector  has length ,  and  are, respectively, a  design matrix and a 

 design matrix of fixed and random effects.  is a p-vector of fixed effects and  

are the -vectors of random effects. The variance matrix  is a  matrix and  is a 

 matrix. 

   We assume that the random effects  and the set of error 

terms  are independent. In matrix notation, 

                                               (3) 

Here   has length , is a  design matrix of 

fixed effects, Z is a  block diagonal design matrix of random effects,  , 

 is a q-vector of random effects,  is a  matrix and 

 is a  block diagonal matrix. 

3. Spline Semiparametric regression and Prior  

 The model (1) can be expressed as a smooth penalized spline with q degree, then it's 

become as (see [12]): 

 ,                 (4) 

where  are inner knots . 

  By using a convenient connection between penalized splines and mixed models. Model 

(4) is rewritten as follows (see [9,12,13]) 

                                                                                                      (5) 

where 

  ,      ,  ,  

 
We assume that the function  is: 

                                                                 (6) 

And its prior guess  can be written as: 

                                                                         (7) 
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Further, some of the a priori information penalized spline coefficients can be translated 

into: 

;               

  ;                                                    (8) 

 ;               

  The term  in (5) is the pure polynomial component of the spline, and  is the 

component with spline truncated functions with covariance , where . Letting 

 be the parameter vector, the mixed model specifies a  prior on  as 

well as the likelihood, . To specify a complete Bayesian model, we also 

need a prior distribution on . Assuming that little is known about β, it makes 

sense to put an improper uniform prior on β. Or, if a proper prior is desired, one could use 

a  prior with  so large that, for all intents and purposes, the normal distribution 

is uniform on the range of β. Therefore, we will use . We will assume that the 

prior on  is inverse gamma with parameters  and  – denoted  – so that its 

density is  

                                              (9) 

Also, we assume that: 

 
   Here  are “hyperparameters” that determine the priors and must be chosen 

by the statistician. These hyperparameters must be strictly positive in order for the priors 

to be proper. If  and  were zero, then  would be proportional to the improper 

prior  , which is equivalent to log( ) having an improper uniform prior. Therefore, 

choosing  and  both close to zero (say, both equal to 0.1) gives an essentially 

noninformative, but proper, prior. The same reasoning applies to . The model we 

have constructed is a hierarchical Bayes model, where the random variables are arranged 

in a hierarchy such that distributions at each level are determined by the random variables 

in the previous levels. At the bottom of the hierarchy are the known hyperparameters. At 

the next level are the fixed effects parameters and variance components whose 

distributions are determined by the hyperparameters. At the level above this are the 

random effects, u and , whose distributions are determined by the variance components. 

The top level contains the data y. ( see [13] ) 

 

4. Posterior calculations
 

We have the model 

                                     (10) 

where  

  Unless  has a normal prior distribution or a hierarchical prior with a conditionally 

normal prior distribution, analytical simplifications in the computation of posterior 

quantities are not expected. For such cases, we have the joint posterior density of the 

penalized spline coefficients  and the error variances  and  given by the expression. 
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Where  is the likelihood. From (14),  can be expressed as 

  

Proceeding further, suppose  of the form 

                                                (11) 

which is constant in , is chosen. 

  Markov Chain Monte Carlo (MCMC) based approaches to posterior computations are 

now readily available. For example, Gibbs sampling is straightforward (see [ 1,13]).  

 Note that  

where  

and  

we see 

                                      (12) 

However, the prior of  given  specified that   

Therefore, it follows that 

                                        (13) 

where  

                                                       (14) 

where 

                                                (15) 

                             (16) 

We can rewrite covariance of Y given  and  as 

 

                     , where . 

Result 1: 

                                  (17) 

Proof: 

Since  
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 By same way we can prove the covariance is . 

Now proceeding as in [3], we employ spectral decomposition to obtain  , 

where  is the matrix of eigenvalues and B is the orthogonal matrix of 

eigenvectors. Thus,  

 
                                 

where  = . Then, the first stage (conditional) marginal density of Y given  and  

can be written as 

  

 ,                               (18) 

  where . We choose the prior on ,  = , qualitatively similar 

to the used in [1]. Specifically, we take   to be proportional to the product of an 

inverse gamma density  for  and the density of a 

 distribution for  (for suitable choice of , , b and a ). Conditions apply on a and 

b such that (see [1]): 

The prior covariance of   is infinite. 

The fisher information number  is minimum. 

The prior mode  is greater than 0. 

This can be done by choosing  and  

 Once  is chosen as above, we obtain the posterior density of  given , the 

posterior mean and covariance matrix of  as in the following theorems. 

Theorem1: the posterior density of  given  is: 

   (19) 

Proof: 
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Theorem2: The posterior mean and covariance matrix of  are: 

                                                                       (20) 

And  

                        
(21) 

where  

 

Proof: 

 

From (14): 

 
               

               

               

Since B is the orthogonal matrix of eigenvectors, then and . 
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  Therefore  

 
              

where the expectation  is taken with respect to  ( see theorem 1 

above ). And by the same way we can prove the variance of   given . 

 

5. Model checking and Bayes factors 

  An important and useful model checking problem in the present setup is checking the two 

models 

 versus . 

  Under is given the prior , whereas under , 

 induced by  is the only part needed. In order to conduct the model 

checking, we compute the Bayes factor, , of  relative to : 

                                                          (22) 

where  is the predictive (marginal) density of  under model  We have 

                                

and 
                                

  As in the previous section  will be constant in F, while  is inverse gamma and 

is independent of  which is given the  prior distribution. (Equivalently, 

 is given the  , Specifically,  , where  

and  (small) are suitably chosen. Therefore, 
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      (23) 

  Further, using (13) it follows that:  

            (24) 

  Therefore, 
  

 

         

  

  

  

                                                (25) 

  

6.1. Prior robustness of Bayes factors
 

  For any constant  also contributes the same prior information about F. Therefore, a 

study of the robustness of the Bayes factor. Here we consider a sensitivity study using the 

density ratio class defined as follows. Since the prior π that we use has the form 

,  

we consider the class of priors 

 
  For specified . We would like to investigate how the Bayes factor (22) 

behaves as the prior π varies in . We note that for any  , the Bayes factor  has the 

form 

 
  Even though the integration in the numerator above need not involve , , we do so to 

apply the following result (see [1,2,3,7,9] ).  

  Consider the density-ratio class  
  

 , for specified non-negative functions  and . Further, let  be the usual 

decomposition of  into its positive and negative parts, i.e.,  and 

. Then we have the following theorem.  
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Theorem 3: For functions  and  such that , for i = 1, 2, and with  

positive a.s. with respect to all , 

 
is the unique solution  of 

                     (26) 

 
is the unique solution  of 

                     (27) 

 

Proof: 

  To prove first part  

 

 

 
  By theorem 4.1. in DeRobertis and Hartigan (1981)

 
( see [6]). 

where ,  

 
and let  then 

 

 
  Then the  is the solution of , now to prove unique solution suppose 

  , and  . Then 

 and  it follows that  if and only if 

.Moreover, for any , 

 implies   which in 

turn implies ; thus ;  if and only if 

. Hence, then   is the unique 

solution.  

  Now to prove second part   
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  Also by theorem 4.1. in DeRobertis and Hartigan (1981) ( see [6] ), 

where ,  

 

 

 
  By same way of proof the unique of first part above ( the proof complete) . 

  Now we shall discuss this result for the Gaussian membership function only. Then, since 

the prior π that we use has the form , and we don’t intend to vary 

 in our analysis, we redefine  as 

 
  For specified . Now, were express  as 

 
where 
                                             

 
  Then by theorem 3 is readily applicable, and we obtain the following theorem: 

 

 

Theorem 4: 

 is the unique solution  of 

                                  (28) 

 and   is the unique solution  of 

                                  (29) 

 

Proof: 

          To prove part one  
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  Then,  

, then 

 

 

 
To prove second part    

 

 

 
  Then,  

, then 

 

 

 
  By same as the unique prove to first part in theorem 3. 

 

5. Conclusions  

  In this paper we suggest approach to semiparametric regression by proposing an 

alternative to dealing with complicated analyses on function spaces. First the penalized 

spline is used for the model and by using a convenient connection between penalized 

splines and mixed models, we can representation semiparametric regression model as 

mixed model. The penalized spline assumed on  and pure polynomial on prior . 

Furthermore we obtain the posterior density of  given , the posterior mean and 

covariance matrix of  ( theorem 1, 2 ), and a Bayesian test is proposed to check whether 

the baseline function  is compatible with the data or not and we proved the prior 

robustness of Bayes factors ( theorem 3, 4 ). 
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