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1- Abstract

The theory of measure is an important subject in mathematics; in Ash [4,5]
discusses many details about measure and proves some important results in measure
theory.

In 1986, Dimiev [7] defined the operation addition and multiplication by real
numbers on a setE = (—o,1)c R, he defined the operation multiplication on the set E
and prove that E is a vector space over R and for any a>1 E, is field, also he defined
the fuzzifying functions on arbitrary set X.

In 1989, Dimiev [6] discussed the field E, as in [7] and defined the operations
addition, multiplication and multiplication by real number on a set of all fuzzifying
functions defined on arbitrary set X, and also defined ®-measure on a measurable
space and proved some results about it.

we mention the definition of the field E_, and the fuzzifying functions on the

arbitrary set X also we mention the definition of the operations.

Definition (1.1.1) [7]:

Let (R, +,.) be a field of real numbers with usual order and E= (-0,1)cR, we
introduce the operations addition @ and scalar multiplication e on the set E as
follows:

For any x,ye Eand 1€ R we have

x®y=x+y—xy, Adox=1-(1-x)".

Proposition (1.2) [7]:
The set E with the operations®, o and the relation order, represent ordered linear
space.
Definition (1.3) [6]:
Leta >1, we introduce an operation multiplication on the set E as follows
For any x,ye Ewe have xoy=1—g %0807



Proposition (1.4) [6]:
The set E with the operations @ ,-is a field which is denoted by E_ .

Remark (1.5):
Let x,ye E

unit element in the field E,.

Definition (1.6)[6]:
Let X be arbitrary set, the map f:X — E,is said to be E, -valued fuzzifying

we denote xO@y=x®(-w)oy and Ox=(-w)ox where,, =1—," the

a?’

function.
2- ® - Measure:
In this section we mention the definition of ®—measure on a measurable space

and proved some results about it, also we defined ® —outer measure and proved some
results about it.
Definition (2.1)[5]:
A collection Fof subsets of a set Q is said to be:
a) o -ring if
1- @€ F, where @ is empty set.
2-if A,Be ¥ then ABe .

3-1f {A,} 1s a sequence of sets in  then C:JIAH eF.
b) o -field (oro -algebra) if

I- Qe F.

2- if Ae F then A°e T.

3- if {A,} 1s a sequence of sets in F then C;l A, € F. A measurable space is a pair

(Q,F) where Q is a set and Fiso -ring or o -field and a measurable set is a subset A
of Q such that Ae F.
Definition (2.2) [6]:
Let (Q, F) be a measurable space, a fuzzifying function x:F— E, is said to be:
I- @-additive if u(AuB)=u(A) ® u(B) for every disjoint sets A, B in F.

2- Accountability @ -additive if ﬂ(f] A,)=® uA,) forevery disjoint

sequence {A,} of sets of .
3- ®- measure, if #1s accountability @ - additive and non-negative
The triple (Q,F,u ) 1s called a space with @ -measure.
Theorem (2.3):
Let (Q,F,u ) be a space with® - measure and A, B e  then:
1- u(p)=0.
2- w(A)=u(ANB)® u(ANB°).
3- u(AUB)® u(AN B) = u(A)® u(B).
4- if Ac B then:
(@) u(B|A)=u(B)® (—w)o pu(A).
(b) u(A)<u(B).



Proof:
I-Since A= Augp and Ang=9¢.
U(A)= AV @) =uA)® u).
Since E, is a field = u(¢)=0.
2- Since A =(ANB)U(ANBY)).
and ( AnB)N(ANB°) =0.
= u(A)=u((ANB)U(ANBY)).

= u(ANB )®u(ANnB°).
3-SinceAUB=(AnB‘) UB and (ANB°)NB=g¢.
— w(AUB) = (ANB)) U B)
= #(ANB°) ®u(B).
U(AUB)® u(ANB)=(u(ANB) ®u(B)) ® L(ANB).
= (U(ANB)®u(ANB)) ®u(B).
= U(A)® uB).
4- (a) Since AcB=B=AU(BJA) and A ~ (B]A)=¢.
1 (B) = (AU (BJA)).
= u(A)® u(BJA).
Since E, is a field = u(B|A) = u(B)® (—w)o u(A).
(b) Since u(B|A)>- from (a) we get that x(A)< u(B).
Definition (2.4):
Let (Q,F)be a measurable space and let the fuzzifying u:F—>E, be a
® —additive, we say that u is :
1. ®-continuous from below at Ae Fif u(A,) — u(A).
For every non — decreasing sequence {A,} of sets in F which converge to A
(i.e A, TA).
2. ®—continuous from below at Ae F if u(A,) — u(A).
For every non- increasing sequence {A, } of sets in ¥ converge to
A (e A, TA).
3. ®-continuous at Ae F if it is continuous at A from above and from below.
Theorem (2.5):
Let 4 be ®@-additive fuzzifying function on measurable space (Q,F), then the
following are valid.
1- If 4 is countable ® —additive, then xis @ —continuous at A for all
Ae F.
2- If 4 i1s ®-continuous from below at every Ae F, thenu is
countable ® —additive.
3- If 4 1s continuous from above at ¢ then u is countable

® —additive.



Proof:
1- Let {A,} be an increasing sequence of sets in & which converge to A, i.e A,
TA.

(a) Let B,= A, B,=A |A_, Vn>2.

= B,NB,=¢,Vn#zm and OBn:OAn:A'
n=1

n=l1

w(A) = u(JB,) = i(A) ® (@ u(B,)).

n=1

=u<Al)@<n<:>2u<An\An_l).

K
i (A= (A)@ lin @ (u(A,
n=2
= u 1s ®—continuous from below at Ae F .
(b) Suppose that 4,1 A—AA, TAA .

A,) = MA A )= u(A,) = p(A).
So u is ®—continuous from above at Ae F.
From (a) and (b) we get that x4 is ®—continuous at Ae F .

A, )=lim a(A).

= U(A,

2-Let {A, }be a disjoint sequence of sets in F, and A:OAn :

n=1

Put B, = (JA =B,eF=B,TA.
¢=1

Since u is ®—continuous from below at Ae ¥ .
= uB,) > u(A).

Since x is ®—additive = u(B,) = u(_JA) = éﬂ(Ai).
i=1 =

=@ uA) - ulJa,) = ulJAa,)=euA,).

n=1 n=1

So u 1s countable @ —additive.
3-In the notation of (2) put C,= A|Bn =C,eF.n=12,....
=C lo.
= u(C,) = (@) =0= uA

H(A) =@ u(A) ® u(C,).

B,)—0.

So that u(A) = é"él U(A) .



3- The completion of ®-measure
In this section we construct the completion of ® —measure.
Definition (3.1)

Let (Q2,F) be a measurable space with  a o-ring and u is ®@-
measure on F , E€ Fis said to be x-null setif u(E)=0.The @-measure u is said to
be complete on Fif F contains the subsets of every g -null sets.

Theorem (3.2):

Let (Q,Fu) be a space with ©®-measure where F is o-ring and

N,={E:EcAeT and u(A)=0}jthenN, isa o-ring.
Proof:

1- Clearly pe N,.
2-Let E,E,e N, = there exists A,A, e F suchthat E c A.E, c A, and
:U(Al) = O,ﬂ(Az) =0.

E|E,cE cAe¥ So E|E,eN,.

3- Let {E,} be a sequence of sets in N, i=1,2.... =there exist a sequence
{A} i=12,..0f setsin Fsuch that E, c A.and u(A,)=0.

UE, cUA, Since Fis o-ring >UA e F.
i=1 i=1

uUA)S@uA)=0= u(UA)=0.

So UE, € N, therefore N ,is o -ring.

Theorem (3.3):
Let (Q,F,u) be a space with ®-measure where ¥ is a o-ring, define

F={(EVE)-E,:EcF,E ,E,eN,} then Aec F iff there exist sets M,N e Fsuch that
McAcN and u(N-M)=0.

Proof:
LetM,Ne Fand M c Ac Nsuch thatuy(N-M)=0,s0 A=(Nu@)—(N-A).

SinceN-AcN-MecF and u(N-M)=0.
= N -Ae Nﬂ.

Therefore A€ F .

Suppose that A € F .

Then A=(EUE)-E,, E€ F,E ,E,€N,.

Therefore there exist A, A, € Fsuch that u(A,)=0 and E, cA,, E-A, c AcCEUA,
EUA,E-AeF and

H(EUA)-(E-4,))= (A - E)u (4, nE)).

= 4((A, - E)® u(A, N E).

Since A -EcA and A,NEcCA,.

=>UA -E)=0 Au(A,nE)=0.

Sou(EUA)—(E-A,))=0.



Corollary (3.4):

Let (Q,F u) be a space with @-measure where ¥ is o-ring then Ae Fiff
A=EUM,Ee ¥ and MeN,,.
Proof:

Suppose that Ae F.
By theorem (1.3.3) there exist M,Ne ¥ suchthat Nc AcM and u(M —-N)=0

A=NU(A-N) ,Ne T.

Since A-NcM-NeFand u(M -N)=0.

= A-NeN,.

Conversely suppose A=EuUM ,E€cFAMeN,.
A=(EUM)-¢ ¢@eN,.
= Ae F.

Corollary (3.5):

Let (Q,F,u) be a space with @ -measure where F is o-ring then Ae Fiff
A=E-D with E€c ¥ and De N,.

Proof:
Suppose that Ae F.
—=There exist M,Ne F suchthat M cAcN.
and u(N-M)=0.
A=N-(N-A) ,NeF.
Since N-AcN-MecF and u(N-M)=0.
So N-AeN,,.
Conversely suppose that A= E—-D where Ee ¥ A DeN,.
=>A=(Ev@)-D D, peN,.

= AeF.
Theorem (3.6):

Let (Q,F, 1) be a space with ® -measure where Fis a o -ring then¥ is o -ring.

Proof:
l1-clearly ¢e .

2-Let {A,} i =1,2,... be a sequence of sets such that A, e F = A, =M, UN, where
M,e Fand N,e N,,.

Ua =UM,UN,).

i=1 i=1

:(gMi)U(QNi).

Since ¥ and N, are o -ring.

=>UM,eF

i=1

UN,eN,

i=1



So @Aeq_:.

3- Let A,Be F from Corollary (1.3.4) we obtain A=M, UN, B=M,UN,.
A-B=(M,UN,)—(M, UN,).

:((M1 _Mz)_Nz)U((N1 _Mz)_Nz)-

:[(M1_Mz)_Ez)U(Ez_Nz)m(M1 _Mz))]u((N1_M2)_N2)
N,cE,e¥, ulE,)=0

A-Be F.

Therefore F is o -ring.
Theorem (3.7):

Let (Q,F,u ) be a space with @ -measure and x:F — E, defined as follows
H(A)=pu(M) where A=(M UN), Mc Fand Ne N,,.

Then uis complete @-measure on F, where is restriction to F is x.
Proof:
1- u(p) = u(9) =0.

2-Let {A.}be a sequence of sets in F i=12,...

—There exist a sequence of sets {E;} in ¥ and a sequence of sets{N,}in N, such
that A =E, UN,.

aUA)=uU(E UN,).

= u(UE)LUN)

= w(UE) = ®u(E) = O u(A)
So u is @-measure on F .
3-Let Ace T ,A=Aug@,peN,.

U(A) = (AU @) = u(A) .

u is @-restriction of u to F.



4-Let Ee F and u(E)=0 ,AcCE.
E=MUN ,Me¥,NeN,.

UE)=uM) = uM)=0.

Since Ne N, = There exists E e®  suchthat NcE andu(E)=0, since
ME)=uM)=0=M,E€eN,.
ACE=MUNCMUE =>AcCcMUEeF, u(M VE)=uM)®u(E)=0=Ae N,
A=M UE)-(M UE)-A), M UE, e F,(M UE)-Ae N, = Ae T = uis complete
onF .

5- To show that the definition of x is well defined.

LetAe F=>A=M UN ,MecFand NeN,.

=3JEeF NcEand u(E)=0.
The relations M UN =(M —E)U(EN(M UN)).

and MAN = (M — E) U(E N (MAN)) show that

the class F may also be decried as there class of the form MAN,M € ¥ and
Ne N, u(MAN)= u(M UN) = u(M).

Let FAN, = F,AN,.

FFeF ,N,cEeF ,ulE)=0 1=1,2.

Then F,AF, = N,AN,.

Therefore u(F,AF,)=0=> u(F,) = j(F,) = i(F,AN,) = u(F,AN,).

So the definition of x is well defined .
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