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A B S T R A C T 

Network communication has grown rapidly with massive demands of services. Moreover, 
resource allocation in networking is a fundamental and crucial issue that cannot ensure the 
network's stability and efficiency with the myriad requirements of different services. Various 
vertical businesses may seek varied network services, particularly in the Fifth-Generation 
networks and Beyond (5G+).  The pros of Fifth-Generation communication networks are to 
outperform 4G in performance by having higher bandwidth, minimum latency, more capacity, 
and QoS (Quality of Service).  Software-Defined Network (SDN) and Network Function 
Virtualization (NFV) are two technologies that are combined in the next generation cellular 
network to provide improved network management. The primary idea behind resource 
allocation (RA) in the next generation network is the concept of network slicing where the 
network resources are virtually partitioning into many separate networks. Each separated 
network must satisfy the unique needs of the required service to achieve the required QoS.  In 
this survey, we focus on resource management issues related to network slicing and tackling 
the biggest obstacles in this field while offering a thorough and up-to-date overview of this 
field. Thus, thorough analysis of the allocation of resources on the access side and core side of 
the network communication was sought. Also, demonstrates how revolutionary techniques 
that are used to support the management of sliced networks which are based on Machine 
Learning (ML) and Artificial Intelligence (AI). Importantly, use appropriate ML techniques 
such as deep learning for predicting the network condition and Reinforcement learning to 
learn optimal allocation policy without depending on prior knowledge and other techniques 
such as classification and clustering to aggregate the similar needs of users into separate 
slices. This could help to enhance resource utilization by allocating a sufficient amount of 
resource as needed based on ML algorithms and optimal utilization of resources and reducing 
operational costs by real-time adjustment of it based on user demands and network 
conditions.  

MSC.. 
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1. Introduction  

It has been expected that the fifth-generation subscribers will approach three billion and fifty million in  2026. In 
this regard, the use rate of data will be exceeded about 35 GB/ month for each user. The outcome of this estimation 
may result in 400 use cases in 70 industries (Ericsson 2021). Older generations such as 2G, 3G, and 4G were 
constructed for communication of human-based. Nevertheless, this design has a limitation of flexibility that is 
required for the recent generation of 5G and beyond (Ksentini and Nikaein 2017). Therefore, the separation of the 
network into slices has been known by Next Generation Mobile Network (NGMN) (Ksentini and Nikaein 2017).  
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In 5G and future networks, a sliced network has growing traction as a potential option for the effective utilization of 
resources to meet this urgent need (Liu, DIng, and Liu 2021). Building a unique physical network for every business 
scenario would unavoidably result in issues like difficult network maintenance and operation, excessive expense, 
and limited scalability.  

Thus, network slicing technology arises at the opportune time to enable many corporate applications with disparate 
performance requirements on one network's physical infrastructure. To fulfill the diverse business needs of 5G, 
operators can employ network-slicing technology to split actual network infrastructures into many simulated 
networks,   in accordance to the distinct business needs of 5G networks. This allows for customization and 
differentiation among users. 

        

1.1. Network Slicing: 
  

The main purpose of separating the network's physical infrastructure into various dependent networks is to obtain 
specific needs and get a higher service quality (Ordonez-Lucena et al. 2017). This is carried out by separating the 
networks virtually according to top priority in which many tenants can share computers, storage resources, and 
network. A particular slice will have a collection comprising functions of networks (NF) and their corresponding 
amount of resource allocations. This E2E is independently conceptualized to provide End-to-End (E2E) services 
based on demands for each job (Rost et al. 2017). There are many sorts of slices such as enhanced Mobile 
Broadband (eMBB), Ultra-Reliable and Low Latency Communications (URLLC), and massive Machine-Type 
Communications (mMTC). All these types are depending on the 3GPP TS (Ji et al. 2018). This technique enhances the 
network resources to be sorted logically based on service requirements to provide better performance and 
separation of resources (Pang and Zhang 2020). The pathway of network slices depends on (SDN) and (NFV) that 
enabled network programmability, flexibility, with modularity needs (Ordonez-Lucena et al. 2017).   

1.2. The Technologies that Enabling of Software-defined 5G Networks: 

1.2.1. Software-Defined Network (SDN)  

The traditional IP network includes three interconnected layers: control plane, data plane, and management layer 
(Thirupathi et al. 2019). However, the formulation of policies is the responsibility of the plane of management , 
which are incorporated via the control planes that permit the flow of traffic through the enforcement of the rules 
that are set by the plane of control. This platform has numerous issues via limiting innovation. Thus, difficult to 
solve misconfiguration makes it costly to add new network capabilities. To solve these issues, SDN isolates network 
control from the introduced layer using network programmability, as seen in (Figure 1). This is performed for 
improvement the flexibility of networks, controllability, and softwarization (Bakhshi 2017). The benefits of 
Separated control plane from the data plane hardware are to enable the controller to construct network forwarding 
devices lighter and more cost-effective than conventional routers and switches. The distributed network (SDN) 
controller's responsibilities include network cognition, collecting and evaluating information from a wider network 
viewpoint, and regulation decision-making for automated optimization of network and administration (Asakipaam, 
Kponyo, and Gyasi 2023). However, SDN is defined as an adaptable resource management paradigm that offers 
intelligent controller on the network. By separating the control plane from the data plane, traffic flows can be 
modified to meet the QoS of an Industrial Internet of Things (IIoT) requirements (Bektas et al. 2019; Haque and 
Abu-Ghazaleh 2016). SDN transmission of packets relies on flow-based processing rather than individual packet 
handling. which sets it apart from traditional IP networking. Various network hardware technologies can be 
accommodated by the flow abstraction, which is not dependent on them. The Network Operating System (NOS), 
sometimes referred to as the logically centralized controller, monitors and controls the network with a 
comprehensive global point of view. Network programmability, together with adaptable network 
administration, reconfiguration, and protocol evolution, are made possible by the ability to write network 
applications on top of the Network Operating System (NOS). In particular, if  there's exist a needs to be add an 
additional feature to the network, it could be integrated by installing a supplementary application onto the existing 
network operating system (NOS). This eliminates the need to add supplementary, expensive hardware,   need to 

install additional, costly hardware, which is necessary in conventional networks (Haque and Abu-Ghazaleh 2016) . 
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Figure 1. the architecture of an SDN, Taken from (Haque and Abu-Ghazaleh 2016). 

The standards of an SDN establish the two Application Programming Interfaces (APIs) that connect the Control 
Plane, and Data Plane, with network applications. To be more precise, The southbound API facilitates the work of 
controller unit by transmitting the control rules to the data plane components, while the northbound API is 
established between network-based applications and the controller. 

1.2.2. OpenFlow  

The OpenFlow protocol demonstrates a standard interaction among the control and data planes. OpenFlow is a 
protocol that allows for the control of network resources by programming flow tables in supported switches, which 
are responsible for packet forwarding. the flow table is one of the main components of an Open Flow Switch, which 
is a collection of rules and related actions, an OpenFlow protocol that allows the controller to configure and update 
the information of the flow table, and a secure channel for communication. OpenFlow switches delegate decision-
making authority for packet forwarding to the controller; they do not possess this capability (Oulahyane et al. 2024). 
These switches implement flow table-specified policies to perform data plane operations including packet 
forwarding and discarding. They are compatible with Ethernet switches that support OpenFlow and routers. A 
packet received by an OpenFlow-enabled switch is compared to the flow table that has been saved to carry out 
operations such as forwarding (directing it to a specified port, the controller, or the regular processing queue), 
dropping, or modifying. A control packet is delivered to the controller for the necessary actions if there is no match 
founded. Figure 2 depicts a network of commercial switches and access points with OpenFlow functionality. The 
OpenFlow Protocol permits a switch to be handled by two or more controllers for improved performance or 
resilience. In this example, all of the Flow Tables are managed by a single controller (Kreutz et al. 2008) . 
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Figure 2. An OpenFlow Switch.  a remote controller managing the Table of Flow via the Secure 
Channel, taken from (Kreutz et al. 2008). 

1.2.3. Network Function Virtualization (NFV) 

 Traditionally, network services like firewalls, intrusion detection systems, and network optimizers have 
been carried out by service providers using specialized hardware middleboxes (Jin et al. 2013). However, 
With the extensive connectivity of 5G networks and their varied traffic demands, these specialized 
hardware middleboxes are costly and restrict deployment and administrative flexibility (Bega et al. 
2020). By providing network services in a virtual environment as a service and enhancing resource 
consumption, application performance, and network resource usage, Network Function Virtualization 
(NFV) overcomes these drawbacks. Additionally, NFV makes network orchestration and administration 
more flexible (Van Rossem et al. 2016). This is achieved by employing VNFs, which operate on virtual 
machines (VMs) constructed on general-purpose hardware and managed by hypervisors, to implement 
each service in software (Nyanteh et al. 2021). Robust and customized network services can be produced 
by combining multiple VNFs, which can be hosted in big data centers as well as smaller locations near the 
edge of the network (ETSI 2017). Figure 3 demonstrates the idea of virtualizing network functions. 

 

Figure 3. Virtualization of Network Functions, taken from (Asakipaam, Kponyo, and Gyasi 2023) 

2. Literature Review   

Reviewing relevant research about resource allocation in next-generation networks is the aim of this 
section 
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control and user planes. These functions include User Plane 

Function (UPF), Access and Mobility Management Function 

(AMF), and Session Management Function (SMF), which 

manages IP allocation and user plane services [22]. The UPF 

serves as a public Internet user plane gateway, anchoring 

mobility and classifying incoming flow QoS. By using 

softwarization, 5G networks can separate services and 

functions from hardware and offer customized network 

services to multiple users [23]. Figure 1 illustrates the 

architectural design of a 5G network. 

 

Figure 1 5G Network Architecture 

2.2. Enabling Technologies for Softwarized 5G Cellular 

Networks 

2.2.1. Software-Defined Networking (SDN) 

 

Figure 2 SDN Architecture 

Traditional IP networks consist of three interlinked planes: 

control, data, and management [24]. The management plane 

sets new policies, which the control plane implements, while 

the data plane enables traffic flow by enforcing the policies 

set by the control plane. This architecture leads to difficulties 

in maintaining the networks, handling misconfigurations, 

limited room for innovation, and high costs when adding new 

network capabilities [25]. To overcome these challenges, 

SDN employs softwarization, as depicted in Figure 2, to 

separate network control from the forwarding layer and 

network programmability to make the network more flexible 

and controllable [26]. By isolating control plane functions, 

SDN simplifies the data plane hardware, resulting in lighter 

and more straightforward networking forwarding devices 

compared to traditional routers/switches. The SDN controller 

is responsible for network intelligence, maintaining a wider 

network view, and making policy decisions for automatic 

network optimization and management [27]. 5G networks 

have applied this technique to separate NR and 5GC hardware 

components from their networking and service capabilities. 

SDN has enabled the disaggregation of NR, with radio units 

serving as simple transceivers and control and processing 

done via open standards in software. 

2.2.2. Network Function Virtualization (NFV) 

 

Figure 3 Virtualization of Network Functions 

Traditionally, service providers have utilized dedicated 

hardware middleboxes to execute network functions such as 

firewalls, intrusion detection systems, and network optimizers 

[28]. However, these dedicated hardware middleboxes are 

expensive and limit deployment and administrative flexibility, 

particularly with the massive scale connection of 5G networks 

and diverse traffic requirements [29]. Network Function 

Virtualization (NFV) addresses these limitations by delivering 

network functions in a virtual environment as a service, 

improving resource consumption, application performance, 

and network resource utilization. NFV also enables flexible 

administration and orchestration of networks [30].  

This is accomplished by implementing each service in 

software using VNFs that run on VMs built on general-

purpose hardware and controlled by hypervisors [31]. Several 

VNFs can be joined to create robust and tailored network 

services and can be hosted in both large data centers and 

smaller facilities at the network's edge [32]. Figure 3 

illustrates the concept of network function virtualization. 
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2.1. Machine Learning-Based Resource Optimization Algorithms 
Machine learning is becoming a fundamental element of our daily being alive since it is now widely 
embedded in many technologies and applications. Machine learning approaches can convert data into 
Suitable algorithm that salutes the platform's needs (Luu et al. 2020). It is a software that can be utilized 
for purposes of learning from data. To efficiently extract information, the type of algorithm and its 
corresponding job must have a thorough knowledge to match what we want to obtain from the data we 
have. Although there are varied machine learning methods with several categories, ML is basically 
categorized depending on the involvement of human monitoring in the learning process. These categories 
are supervised, unsupervised, and reinforcement learning. In addition, the emergence of deep learning 
(DL) provides the capability to simplify complicated optimization problems. The following briefly 
describes some machine learning categories. Additionally, we provide supplementary resources for those 
seeking a more deep understanding of each topic (Nurcahyani and Lee 2021). 

2.1.1. Reinforcement Learning (RL) 

One kind of machine learning technique called reinforcement learning allows an agent to learn in an 
interactive setting by making mistakes and getting feedback from its experiences and actions. 
Reinforcement learning involves rewarding an agent based on its performance in a given scenario. The 
agent's objective in this kind of machine learning will be to maximize the long-term reward that it 
receives. While mapping between inputs and outputs is a common feature of both supervised and 
reinforcement learning, in contrast to supervised learning, rewards and penalties are utilized as signals to 
enhance the system's overall performance. The primary distinction between reinforcement learning (RL) 
and other machine learning techniques is that in RL, the agent makes decisions without referencing past 
information. In each state, the agent selects an action from a range of options, and it determines the 
quality of the action depending on input from the system. This makes it possible to handle complicated 
decision-making problems while supplying the minimal amount of information required to do so (Azimi 
et al. 2022; Cao et al. 2024) As proven in (Han, Feng, and Schotten 2018) , the Markov Decision Process 
(MDPs) can be recruited to provide an optimal policy for NS. This involves linking each unique "state" to 
an associated "action" of the system, which in turn produces a "reward, MDP doesn't need historical data 
and only depends on the current state. The reward function in NS resource handling issues is typically 
non-convex over a large space of policy. Because of this, professionals in this industry frequently decide 
to use Reinforcement Learning, which is renowned for its great efficacy and practical application in 
resolving Markovian choice issues. An innovative attempt was made to use RL to improve the network 
slicing mechanism (Bega et al. 2017), whereby the authors have shown that their Learning solution (QL) 
can considerably exceed randomized benchmark policies and effectively approach the ideal admission 
policy that optimizes the revenue of MNO's. The Q-learning approach can be implemented in an online 
learning way with a far more reasonable calculation cost than the value iteration method, which only 
slightly reduces revenue in exchange for achieving the optimum. Additionally, by carefully choosing the 
reward functions, RL algorithms can be created without a model, which greatly increases their resilience 
against inaccurate estimates of the slicing statistics, as previously shown in (Bega et al. 2017). authors of 
(Oladejo and Falowo 2018) tried to use reinforcement learning (RL) for congestion control within a slice, 
or resource allocation. With this goal in mind, they have put forth a system in which the MNO makes 
policy-based judgments on the availability of resources at any given time as well as the priorities of 
individual slices, and real-time slice elasticity is achieved based on requests for the grant of additional 
resources from each existing slice. This allows an admission-control-like mechanism to complete the 
cross-slice resource allocation task. It has been demonstrated that a Q-learning method significantly 
increases slice flexibility. (Bektas et al. 2019) suggested deep learning approach-based resource 
allocation techniques to offer effective resource management; however, the training process is 
computationally expensive or the training data are unavailable, making the proposed deep learning 
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approach unsuitable for large-scale systems and unable to achieve the requirements of dynamic slices 
and hence degraded QoS. In dynamic contexts, the reinforcement learning (RL) technique can adjust to 
the changes. It has therefore been used for resource scheduling (Messaoud et al. 2021), and optimization 
of assignments (Y. Zhou et al. 2020). By continuously interacting with the environment, which can be 
represented as (MDP), the RL agent can enhance its policies (Hernandez-Leal, Kartal, and Taylor 2019).  

2.1.2. Supervised learning: 
Using the provided data, the supervised learning aims to estimate the mapping. The goal data serves as 
the controller for the learning in supervised learning. A dataset with labels is comprised of the goal data. 
With this labeling, the supervisor can offer information if the machine makes a mistake while learning. In 
this manner, the algorithm fine-tunes itself to improve accuracy. Classification and regression are the two 
task classes in supervised learning, which are based on the output of the type of learning process. When 
obtaining a labeled dataset proves to be challenging, unlabeled data can be used in the learning process to 
facilitate the classification process. it refers to this type of learning as semi-supervised learning. Semi-
supervised learning is the term for this type of learning. Unsupervised and supervised learning are 
combined to create semi-supervised learning. The goal of this kind of learning is to enhance the 
effectiveness of grouping or categorization. There are many unlabeled datasets and few labeled datasets 
used in this learning approach. In semi-supervised learning, supervision information from labeled 
datasets is used to improve clustering tasks by guiding which unlabeled datasets belong to the same class 
(van Engelen and Hoos 2020).  

Several studies utilized AI technology to obtain knowledge about different types of services and classify 
network traffic.  They devised strategies for allocating network slices based on these classification and 
prediction outcomes. They also employed dynamic scaling technology to automatically expand slices and 
monitor the usage status of each slice by evaluating the current network conditions.  The study offered 
and built an AI-based traffic classifier and resource allocation mechanism for slicing, along with 
techniques for slicing allocation (Z. X. Wu et al. 2024). One branch of supervised learning is Artificial 
neural networks (ANNs), the most significant component of contemporary techniques that depend on 
artificial intelligence, which are well-known for their effectiveness in simulating non-linear systems. This 
can help improve reinforcement learning (RL) techniques into deep reinforcement learning (DRL) 
techniques, as the deep Q-Learning technique described in (Ye, Li, and Juang 2019)  allocates DRL 
resources to provide a novel and promising policy in V2V communications. They integrated Q-learning, 
Deep Q Networks, and the Markov decision process (MDP) into RL. This algorithm draws comparisons 
between its performance and that of a neuronal network in a biological system. Artificial neural network 
(ANN) models that are mathematically based imitate the organic architecture of the human brain. In this 
sense, abstraction and generalization—two unique capacities of an organism—can be carried out by the 
ANN algorithm. In order to identify patterns in the input data and forecast the results of a fresh dataset 
that is comparable, the ANN algorithm goes through a learning process. ANN requires two fundamental 
building blocks: synapses/edges and neurons/nodes. The input, output, and hidden layers are the various 
layers that make up an artificial neural network. The output layer is responsible for forecasting the 
outcome of the learning process, whereas the input layer works directly with the input data. The heart of 
an ANN is the buried layer, where the processes of computing and learning take place. Neurones are 
found in every stratum. Neurones in one layer are connected to neurons in the next layer by means of 
edges that have a specific weight. Information from the input that may contribute to the generation or 
inhibition of the signal that is transmitted at each layer is contained in the weights on the edges. The deep 
neural network (DNN) or DL algorithm is built on the backbone of ANN. One of the machine learning 
subdomains known as deep learning (DL) is able to extract predictions from the input data and identify 
hidden patterns in the dataset. DL consists of interconnected input and output layers as well as several 
hidden layers between them (Nurcahyani and Lee 2021). Deep-Q Network was trained using training and 



Azhar Hamza et al., Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol. 16(3) 2024,  pp  Comp. 44–59                     7 

 

 

7 

testing stage algorithms. Every agent can learn how to meet the V2V constraints with the use of a ℰ-
greedy policy while limiting barriers to V2I communications; the proposed method's shortcoming is that 
it has a little amount of interference. 

Shen et al. (Shen et al. 2021) proposed  Uplink scheduling is improved by the DRL-Based Scheme for 
Resource Allocation at 5G Service-Oriented RoF-MmWave RAN, however it has an allocation fairness 
problem. 

Xiong et al. (Xiong et al. 2019) DRL can be used to tackle important ideas linked to RA challenges that 
have been studied in 5G and beyond. They put into practice the DRL-based module for network slicing 
throughput optimization for 5G and beyond. They took into consideration a (state-actions) pair for the Q 
value, a greedy system for the best rewards from current actions, and a Q-learning list to keep the 
mapping of the system. They used mathematical formulas, which necessitated a powerful computer. 

Li et al.(Sánchez, Casilimas, and Rendon 2022)  provides a summary of Q-Learning and RL and explains 
the motivation behind creating Deep Q-Learning (DQL) using Q-Learning Network Slicing. They oversee 
resource distribution via DQL for radio resource slicing and the priority-based core network. Another 
option that DQL might offer is to serve people first by offering enhanced lucrative value in order to make 
better use of the computing resources and cut down on wait time. To guarantee QoE per user, DQL 
improves network slicing's effectiveness and adaptability. Its drawbacks include the slow learning rate 
and expensive GPU. Wang et al. (Z. Wang et al. 2020) proposed  Although the DRL-MDP and DDPG 
algorithms improve the usefulness for MVNO by allocating resources at the edge network slicing, their 
complexity is a drawback.  the study by Nguyen et al. (Nguyen et al. 2021) examined the most recent 
iterations of the resource management and machine learning techniques. These approaches are applied 
to cloud computing, edge computing, and fog computing in the 5G vehicular network. They fulfill many 
QoS requests. The authors suggested a vehicle communication system based on FDRL. UAVs and their 
role in assisting with vehicular communication . 

2.1.3. Unsupervised learning 
Unsupervised learning algorithms are typically employed for clustering tasks, where they are given a set 
of unlabeled data and asked to accurately anticipate the outcome. K-means, fuzzy C-means, Principal 
Component Analysis (PCA), Auto encoders (AEs), Self-Organizing Maps (SOMs), hidden Markov Model 
(HMM), and restricted Boltzmann machine (RBM) are examples of common unsupervised techniques. 
Additionally, Deep Learning (DL) techniques like Convolutional Neural Networks (CNNs) and Long Short-
Term Memory (LSTM) algorithms can perform better when unsupervised machine learning (ML) is 
applied (Zhang and Zhu 2020). 

• K-means: This technique is used for grouping unlabeled input data into distinct clusters. Every new data 
point is assigned to a cluster by the K-means algorithm based on its distance from the closest related 
centroid. The process is continued until neither the data points nor the centroids are changed. The 
centroids are updated in accordance with the allocated data point. K, which stands for the intended 
number of clusters, has a significant effect on the algorithm's performance (Azimi et al. 2022) 

• Self-organizing map (SOM): SOM is frequently applied to data grouping and dimensionality reduction. 
SOM is composed of two layers: an input layer and a map layer. Numerous neurons are present in each 
layer, and each neuron has a unique weight vector. Using an unsupervised competitive learning 
methodology, SOM constructs and rearranges the map throughout the training phase. Any new input 
vector is grouped in a cluster by the neuron that emerged victorious (van Engelen and Hoos 2020). 
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• Hidden Markov model (HMM): This method models a system by using a Markov process with unknown 
parameters. The goal of HMM is to extract unknown parameters from known ones. Markov models are 
helpful in situations where memory is lacking since the future state estimation sequence in them rely only 
on the current state. The system can gradually alter each state's probability distribution in an HMM 
(Zhang and Zhu 2020) 

• Autoencoders: These are learning circuits that replicate inputs into outputs with the goal of producing 
the least amount of variance. To fine-tune the architecture, autoencoders are stacked and taught 
unsupervised bottom-up, with the top layer being trained by supervised learning. These designs have the 
potential to produce precise and useful outcomes for situations involving both regression and 
classification (Baldi 2012). 

 

2.2. Algorithms Based on Evolution: 
evolutionary algorithms known as a significant class of machine learning methods that use statistical 
evolutions to learn random strategies from system feedback. An illustration of how they are used the 
allocation of network resources within per slice is provided by (D. Wu et al. 2019), in which  various 
people connected to various network slices ,Where had continually evolving network connection with 
constantly updating. Clients are categorized into separated group ,In order to ensure every user within 
group have the same requirements of service. hence, with a deconstructing of the complex model of 
management resources in sliced network, this approach facilitates the improvement the utilization of 
resources strategy. However, in the setting of slice admission control, as demonstrated in our earlier 
study (Haque and Abu-Ghazaleh 2016)  The efficiency with which genetic algorithms (GAs) work. with 
the implementation of the admission decision into binary sequences that represent a chromosome, GA 
could produce a modified policy that recursively produce  optimal value. Furthermore, the outperform of 
this technique in a first generation over the benchmark due to the manual integration of (randomly) 
benchmark policies. Additionally, it demonstrates strong resistance to changing surroundings. 

3.  End-to-End communication networks. 
As seen in Fig. 4, network slicing is defined as a logical end-to-end network that may dynamically supply 
one or more network services according to the slice requirements. Every network slice has certain 
processes in place to ensure that users' performance requirements are met (Azimi et al. 2022). 

(Hassine 2017) defined the sliced network model which involves the slicing of the Radio Access Network 
(RAN) with the Core Network (CN) as End-to-End slicing, which was proposed by Next Generation Mobile 
Network (NGMN). It is the process of running and managing several logically separate virtual 
communication networks atop a common physical infrastructure with the goal of improving future 
network services such as the various requirements, flexibility, adaptively scaling, and security. This 
necessitates highly countable, divisible, and isolatable network resources and functions, which are 
achievable with today's network function virtualization technology.   
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Figure 4: Using slicing enablers in network slicing(Azimi et al. 2022). 

(Khamse-Ashari et al. 2022) suggested a novel approach to provide End-to-End resources that avoids the 
difficulties of resolving the MILP problem and maximizes tenant satisfaction and InP operational 
expenses. With the goal avoid the necessity for access points or centralized data for sharing the capacity 
of their resources, the authors developed a distributed privacy-saving approach, however, this increased 
the burden of Signaling. Because of the multiple slice managers that were used, a less-than-ideal global 
solution might have been produced. 

(Wen et al. 2019) developed a heuristic strategy using variable locality searching to examine forceful 
technologies of network slicing to mitigate disquiet about vulnerabilities in VNFs and fluctuations of the 
traffic requirement. however, this approach resulted in a large signal overhead. In reality, only the user's 
requirements are known; the authors assumed that each slice would have a constant number of VNFs. As 
a result, testing the virtual network embedding procedure repeatedly continues until the right number of 
VNFs is found. In related studies,  (Luu et al. 2020; Luu, Kerboeuf, and Kieffer 2021) without any prior 
information on virtual network topology or resources, they examined NS determination and embedding 
and Proposed a heuristic approach using user distribution and demands. However, the authors neglected 
to take into account the reconfiguration and reallocation of resources in a dynamic setting and optimize 
the sharing of physical resources to meet the Service Level Agreement for different slices' needs,  On the 
other hand, While evaluating the suggested solutions, We must employ the 5G service-oriented 
architecture and network Key Performance Indicators. (Kazemifard and Shah-Mansouri 2021) created a 
heuristic technique for resource dimensioning to figure out how much virtual and computational power 
is To optimize time to reaction for specific needs, the Network Slicing Orchestration System (NSOS) can 
be used. To keep response times within the delay requirement, the suggested method only permits the 
NSOS to adjust its resources in response to future workloads. The system blocks excessive Slice 
Orchestration Requests (SORs) as service demand rises, and it reserves certain resources for idle time 
when demand falls. The delay that SOR encountered due to various NSO entities was the only one that the 
authors assessed. Nevertheless, iterative techniques for resource estimates for every slice require a lot of 
computing power, as mentioned in (Kazemifard and Shah-Mansouri 2021). Furthermore, resource 
distribution inside a slice isn't always fair to all users. (Alfoudi et al. 2019) suggested a technique for 
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Resource Management in network slices that could be used to allocate resources in a mobile LTE network 
slicing. This method guarantees isolation between users and fairly allocated bandwidth. Nevertheless, an 
exponential smoothed method was proposed, that had only two possible effects: a consistent allocation of 
resources and a set interval redistribution of physical resources. Due to the unpredictability of demands, 
the fixed interval redistribution method may result in either excessive or insufficient allocation of 
resources. This is because the model does not include any additional resources available in each period.  

3.1. Resource allocation at Radio access network 
 The literature has recently given dynamic RAN radio resource allocation algorithms more attention. The 
following is a summary of some of the pertinent research studies: (Kamel, Le, and Girard 2014) 
researched the resource sharing for an effective LTE network slicing into numerous virtual networks 
(VNs) to provide services to various service providers. 

(Gharehgoli et al. 2023) tackles the problem of unknown information in network slicing for 5G+ 
communication. It focuses on the unpredictability of channel status information (CSI) and demand (user 
requests, bandwidth, and workloads associated with virtual network functions). an objective is to use the 
algorithms of deep reinforcement learning (DRL) for distributed of resources in an end-to-end NS, In 
order to maximize the utility of the infrastructure provider. The researchers present a recurrent 
deterministic policy gradient (RDPG) algorithm that outperforms other algorithms. To solve the problem 
of resource allocation as a non-convex mixed-integer non-linear programming problem. According to the 
simulation results, the RDPG method beats the SAC approach by an average of 70%, the RDPG algorithm's 
action selection computational complexity is O(𝐻2), making it practical to use. In (L. Zhou et al. 2020), a 
method for allocating radio resources to maximize service adoption is suggested to optimize the service 
level agreement (SLA) also maintaining isolation among slices. In fact, such problem is evaluated utilizing 
the dual Lagrangian algorithm technique. In (Tang, Shim, and Quek 2019), the researchers presented the 
cloud RAN (C-RAN) maximizes the benefits of the operator by accurately tolerating the cut solicitations. 
Two kinds of long-haul and momentary interests are thought of. The drawn-out credit is determined by 
the qualities in the network cut demand and the momentary interest is accomplished by memory 
structure energy destruction in every frame. The streamlining issue is figured out as mixed-integer 
nonlinear processing (MINP), then to tackle the issue, the researchers utilize a progressively raised 
estimation (SCA) technique. In (D’Oro et al. 2018), a near-optimal less complexity distribution is 
recommended the RAN segmenting obstacle as a crowd resolute. The complication desires to reduce cost. 
The researchers formulate resource allocation the complication is based on utility desolation, delay, and 
minimization scale restrictions. To sustain the authenticity impulsion, they employ adaptive modulation 
with encoding. In (Sun et al. 2020), they suggested the smart delivery mechanism through the 
implementation of multi-agent Q-Learning in order to reduce delivery expense whereas ensuring diverse 
service quality demands. To compute the cost, the research identify four kinds of delivery cost: 1) Cost of 
switching kids of service whenever the user equipment (UE) stands inside coverage along the similar 
base station (BS).  2) Delivery cost at UE stages base station coverage with the similar kind of service. 3) 
Cost associated against cliet movement and service change species. 4) The cost of implementing a modern 
network segment for maintaining quality of service delivery to the client. In (X. Wang and Zhang 2019), 
the researchers explained NwS resource allocation obstacle in 5G C-RAN for optimization Benefit drivers. 
Includes problem framework the upward stage that handles the planning of the potential agreement 
bundle task; A lower layer controls the radio unit remotely linkage, authority and sub-channel 
assignment. To alleviate complexity of the Q-value table, the authors used multiple proxy Q-learning 
technology. In(Lee et al. 2018), the researchers investigated an effective NS network for heterogeneous 
multi-tenant downlink cloud RAN (H-CRAN) by regarding each of the little cells also total cell layers. The 
suggested structure contains: dual stages, a higher stage of admittance regulation management, baseband 
resource allocation, client association, with less a level to handle the allocation of radio resources among 
clients. The objective is to optimize the rate of tenants throughput  with consideration of quality of 
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service limitation, forward connectivity using delivery capabilities, tenant priorities, baseband resources, 
with intervention.  

3.2.  Resource allocation at the Core network 

(Ko, Lee, and Pack 2022) propose a priority-based dynamic resource allocation scheme (PDRAS) in 5G NS 
environments to optimize quality of service (QoS) and distribution efficiency. by considering different 
priorities of slices and dynamically adjusts allocated resources based on slicing information and 
formulates a constrained Markov decision process problem to obtain the optimal allocation policy using 
linear programming. Extensive evaluation results demonstrate that PDRAS with the optimal policy 
outperforms other schemes in terms of QoS and resource usage efficiency .it addresses the challenge of 
resource allocation in 5G network slicing environments, ensuring that sufficient resources are allocated 
to resource-intensive service slices to prevent degradation of QoS . (Chen et al. 2021), the essential 
objective of this research is to minimize the overall power consumption of the cloud hub, that includes of 
fixed power consumption as well as Load-dependent dynamic power consumption. The researchers 
regard resource budgeting, career creation, with flood routing, ensuring E2E latency for every service, 
whereas the E2E delay includes of the overall NFV delay on the cloud hubs with total communication 
delay on links., (Ebrahimi et al. 2020), the researchers introduced a modern model for the slice admission 
and distribution of  resources technique in multi-tenant scenario to reduce the expenses of bandwidth 
and power consumption of each running cloud hubs. In(Reddy, Baumgartner, and Bauschert 2017), to 
deal with unpredictability in the traffic demand, a new method of optimization is proposed, which 
depending on the 𝛤-𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 notion is developed. A MILP formulation for the Γ-robust optimization is 
used. To improve the scalability of the model, a modified MIP-based variable neighborhood search (VNS) 
heuristic is offered. The authors in (Baumgartner et al. 2017) reveal a new model that uses the idea of 
light robustness to solve the ambiguity of traffic in NS scalability problems and to gain a better 
understanding of the balancing that exists between the expense of ensuring adaptability and the level of 
adaptability achieved. 

Table 1: Summary of related works  

Ref Objective Method The scope 
of slicing 

Evaluation method 

(Chien et al. 
2020) 

Improves utilization of 
resources per slice to meet 
delay requirements without 
wasteful allocation. 

Heuristic algorithm E2E Emulation 

(Ko, Lee, and 
Pack 2022) 

Enhance the Quality of 
Service (QoS) for slices 
simultaneously ensuring 
that the total resources 
assigned remain below a 
specific limit. 

CMDP and Convex 
Optimization (LP) 

Core Numerical analysis 

(Li, Zhu, and 
Liu 2020) 

Increase the total rate of 
access accumulation across 
all slices 

Deep-RL E2E Simulation 
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(Messaoud et 
al. 2021) 

An Improvement of QoS for 
slices 

Deep federated Q-
Learning 

RAN Simulation 

(Halabian 
2019) 

Improvement of the whole 
system utility (focusing on 
the fairness)  

Convex 
Optimization and 
Game Theory 

C-RAN Numerical analysis 

(Sciancalepore 
et al. 2017) 

Ensure the achievements of 
a Service Level Agreements 

Deep-RL E2E simulation 

(Van Huynh et 
al. 2019) 

Optimizes the overall 
average revenue of the 
operator of the network 

Deep-RL E2E Numerical analysis 

(L. Zhou et al. 
2020) 

SLA contract rate 
maximization 

Lagrangian dual RAN Numerical analysis 

(Tang, Shim, 
and Quek 
2019) 

Revenue maximization SCA C-RAN Numerical analysis 

(D’Oro et al. 
2018) 

Cost minimization Game theory RAN Numerical analysis 

(Sun et al. 
2020) 

Handover cost minimization Multi-agent Q-
learning 

RAN Numerical analysis 

(X. Wang and 
Zhang 2019) 

Utility maximization Multi-agent Q-
learning 

C-RAN Numerical analysis 

(Lee et al. 
2018) 

Throughput maximization Greedy & 
Lagrangian dual 

H-CRAN Numerical analysis 

(Ebrahimi et 
al. 2020) 

Cost minimization Heuristic Core Numerical analysis 

(Reddy, 
Baumgartner, 
and Bauschert 
2017) 

Reduction of Cost  Heuristic-based on 
Γ-robustness 

Core Numerical analysis 

(Baumgartner 
et al. 2017) 

Reduction of Cost  Light robustness-
based on Γ-
robustness 

Core Numerical analysis 

 

Conclusion 

The increasing of network communications with various needs, has made the allocation of resources 
more complex problem. NFV and SDN are the primary technologies that enabled network softwarization  
into different slices. These slices have represented as emerged technique for efficient management of 
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resources. Further enhancements on the process of resource managements are produced by Machine 
learning approaches.  Some of the benefits of these approaches is improvements of performance network 
by reducing delay, increase allocated bandwidth and capacity and reducing the operational costs  by 
optimized allocation of resources. Additional advantage of  incorporating of deep reinforcement learning 
in 5G+ network to get optimal and adaptive allocation policy without needs to prior knowledge. These 
enhancements of Machine Learning approaches reflect great contributions to the overall network by 
ensure its efficiency and stability. So, with increasing growth of 5G communications with these 
advancements of machine learning techniques will play an effective role in satisfying the diverse 
requirements for different services of communications.           
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