
Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol. 16(3) 2024,  pp  Comp. 84–95 
 
 
 
 
 
 
 
 
 
 
 
 

 

∗Corresponding author Safa Jaber Abbas 

Email addresses: safa.abo.tabikh@qu.edu.iq 

Communicated by ‘sub etitor’ 

A Novel Hybrid Intrusion Detection Framework Leveraging 

Machine Learning and Flower Pollination Optimization 

Shahad Ali Sameera,  Hadeel Qassim Albaaja, Safa Jaber Abbasa,*, Maryam Najeh Khalilla, 

and Areej Qassima 

College of Computer Science and Information Technology . Al-Qadisah University , Diwaniyah-Iraq .Email: Shahadalisameer@gmail.com, 
hadelqassim95@gmail.com, safa.abo.tabikh@qu.edu.iq, maryamnajeh93@gmail.com, Enggoga6@gmail.com 

 

A R T I C L E I N F O 

Article history: 

Received: 18 /07/2024 

Rrevised form: 31 /07/2024 

Accepted : 26 /08/2024 

Available online: 30 /09/2024 
 

Keywords:  Intrusion detection 
system, Machine learning, Feature 
selection, Flower Pollination 
Optimization (FPO) . 

 

A B S T R A C T 

The exponential growth in technologies such as cloud computing, smart devices, 
virtualization, and the Internet of Things (IoT) has generated over four hundred zettabytes of 
network traffic data annually. This surge necessitates robust cybersecurity strategies to 
protect information from intrusions, which can result in significant financial losses. Reducing 
security risks requires the use of data analytics and machine learning to derive insights and 
make informed decisions based on network data. This study introduces the Flower 
Pollination Optimization (FPO) algorithm for feature selection to enhance the performance of 
several classifiers on the UNSW-NB15 dataset. We evaluated four classifiers: Linear 
Discriminant Analysis (LDA), Multi-Layer Perceptron (MLP), Quadratic Discriminant Analysis 
(QDA), and K-Nearest Neighbors (KNN) in two scenarios: without feature selection and with 
FPO-based feature selection. The results demonstrate significant improvements in classifier 
performance with FPO, with QDA achieving the highest accuracy of 99.16%. Comparative 
analysis with recent studies highlights the superior performance of our approach, setting a 
new benchmark in intrusion detection. This research underscores the essential role of 
effective feature selection in improving the accuracy and reliability of Intrusion Detection 
Systems (IDS), particularly in IoT environments. 

 

MSC. 

https://doi.org/10.29304/jqcsm.2024.16.31645 

1.Introduction 

This exponential increase in cyber traffic and unprecedented growth in very sophisticated intrusion attacks require 
adaptive and timely intrusion detection. Cyber-attacks can manifest themselves by way of unauthorized, phishing, 
and malware infection-sensitive data access, amongst others, which are all capable of such devastating effects on the 
organization that would translate into reputational damage, financial loss, or the exposure of sensitive information 
[1] [2]. Vigilance and proactive steps to protect industries, businesses, and individuals from such cyber threats are 
of foremost necessity. The adaptive real-time intrusion detection system shall continuously monitor and detect 
emergent threats in a bid to enable organizations to proactively defend against cyberattacks, thereby minimizing the 
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impact of breaches [3] [4]. These current methods of intrusion detection cannot support modern cyber threats 
because of their dynamic and complex nature, with a view to improving accuracy and reducing false positives. 
Machine learning allows algorithms to be trained on datasets to identify network traffic anomalies [5].  

During the Internet of Things (IoT), network traffic has increased, making this beneficial. Data analytics has 
solidified its place in cybersecurity research, paving the path for the collection, storage, and processing of 
cybersecurity information other than log and alert analysis from firewalls and intrusion detection systems (IDS). 
This includes communication data with voice, email and social networking activity, along with files and 
configuration information of assets integrated for advanced analytics aiding user identification behavior; business 
process data could also be integrated with the configuration information of assets for risk assessments [6, 7]. Due to 
significant correlations between data and an imbalanced dataset, these systems produce a lot of false positives, with 
abnormal data cases outweighing normal ones. The following are the research's primary contributions: 

• The Flower Pollination Optimization (FPO) algorithm was introduced for feature selection in the UNSW-
NB15 dataset, demonstrating significant improvements in the accuracy and reliability of various classifiers. 
This approach effectively reduces the dimensionality of the data while maintaining relevant features, 
leading to better performance in intrusion detection. 

• A thorough evaluation of multiple classifiers, including Linear Discriminant Analysis (LDA), Multi-Layer 
Perceptron (MLP), Quadratic Discriminant Analysis (QDA), and K-Nearest Neighbors (KNN), was conducted 
under two scenarios: with and without feature selection. The results highlight the superiority of using FPO 
for feature selection, particularly in enhancing the performance of LDA and QDA classifiers. Notably, QDA 
achieved the highest accuracy of 99.16%, and LDA achieved an accuracy of 99.02%. 

• This work provides a detailed comparison with recent studies on the UNSW-NB15 dataset, showcasing the 
effectiveness of the proposed method. The comparative analysis underscores that this approach sets a new 
benchmark in the field, achieving higher accuracy and reliability in detecting anomalies and intrusions in 
IoT environments. 

2. Related Works 

Conventional defense systems, such as IDSs and firewalls, need updates on a continuous basis for threat detection, 
according to [8]. The author advocates that IDS must be equipped with the best machine learning models so that 
reliability and detection rates go up, making the number of false alarms lower. The paper has handled the problem 
of imbalanced classes in it through the Synthetic Minority Oversampling Technique to generate an accuracy as high 
as 99%. In [9], a comparative analysis of classification algorithms for the UNSWNB15 dataset has been conducted. 
This paper concludes that among all of the classification models, random forest classification seems to be more 
reliable, with an accuracy as high as 97.49%. In [10], different machine learning models were developed under 
Apache Spark, running the UNSW NB15 dataset for comparison. The outcome of this research states that the 
random forest model performs most accurately as compared to the NB and DT models. 

In [11], a filter-based feature reduction method has been presented with analysis on the UNSW-NB15 intrusion 
detection dataset using the XGBoost algorithm. In the present study, various machine learning techniques have 
been applied to the reduced feature set, namely: decision trees, logistic regression, support vector machines knn, 
and neural networks. Using XGBoost-based feature selection, the DT-based binary classification scheme's test 
accuracy increases from 88.13% to 90.85%. According to the authors of [12], network intrusion detection systems 
are essential for solving internet security problems in an IoT environment. Their study claimed that UNSW-NB15 is 
a very apt dataset for evaluating the performance of different NIDS. The experimental results show that the SVM 
method has the best performance, while it achieves an accuracy of 75.77% in multi-classification and 85.99% in 
binary classification. In the paper [13], some authors present the issue of network intrusion classification, stating 
that traditional machine learning algorithms become ineffective due to the large volume of feature space. This 
work promotes deep learning as a better approach for solving this problem because of its ability to handle high 
dimensions and complex features. In this paper, a feed-forward neural network is proposed that provides 99% 
accuracy with a reduced false alert rate. 

In this type of experiment about network intrusion detection, described in [14], potential cyber threats are being 
identified. The work analyzes classical, hybrid, and ensemble approaches and establishes a model that stacks 
machine learning algorithms together with extra tree classifier and mutual information gain feature selection 
techniques. The model has 96.24% UNSW-NB15 dataset accuracy. [15] proposes a hybrid model by combining the 
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Random Forest as a feature selection model with a Classification and Regression Trees (CART) classification model. 
With this model, the important features were identified with an accuracy of 95.37% for classifying different types 
of attacks. Finally, [16] compares UNSW-NB15 and CICIDS2017. The study found that the Naïve Bayes (NB) feature 
embedding SVM model achieves accuracy of 98.92% on the UNSW-NB15 dataset. 

More concretely, [17] states that legacy defense mechanisms, such as firewalls and IDSs, are assured of updated 
protection to recognize threats continually. The same work recommends that for IDSs to adopt machine learning 
models, the accuracy results are to achieve reliability and increase the detection ability by reducing the false alarm. 
This paper tries to take care of the imbalanced class issue, and the accuracy reached is 99% upon processing the 
data with the synthetic minority oversampling technique. Spatial and hierarchical features in a dataset are 
analyzed using convolutional neural networks (CNNs). The long-term temporal features of the data are explored 
using Bi-LSTM layers. Combining these two methods makes it feasible to anticipate prospective assaults. Stratified 
k-fold cross validation is used to assess the binary classification outcomes of the suggested model for the UNSW-
NB15 dataset. K values may range from 2 to 10. These results include classifying the accuracy at 93.84%, the 
average detection rate at 94.70%, and the false positive rate at 7.70%, according to the research by Sinha et al. [18]. 
This means that the proposed approach of deep learning can enhance IDS performance. However, it is delineated 
that researchers with increased accuracy and robustness, like Jose and Jose [19], have tested LSTM-based IDSs on 
various datasets. The accuracy of IDS in UNSWNB15 was at most 98.92%. Further improvement in reducing false 
detection probability is required, since it reduces the accuracy of the total system. Table 1 summarizes recent 
studies in IDS detection. 

Table 1 – Summary of recent research in IDS Detection. 

Ref Year Preprocessing Dataset classification method Criteria 

[8] 2024 
Data cleaning, 

data scaling, and 
feature selection 

UNSW-
NB15 

CNN + LSTM Accuracy=99% 

[9] 2022 
Apache Spark 

and feature 
selection 

UNSW-
NB15 

RF Accuracy=97.49% 

[10] 2018 N/A 
 

UNSW-
NB15 

 

RF 

Accuracy=97.49% 

Sensitivity=93.53% 

[11] 2020 
Data cleaning, 

data scaling, and 
feature selection 

UNSW-
NB15 

DT Accuracy=90.85% 

[12] 2019 
Normalization 

data 
UNSW-
NB15 

SVM Accuracy=85.99% 

 

[13] 2019 Data cleaning UNSW-
NB15 

Feed-Forward 
Neural Network 

Accuracy=99.5% 

[14] 2022 Data cleaning 
and data scaling 

UNSW-
NB15 

Extra Tree Accuracy=96.24% 

[15] 2020 Feature selection 
 

UNSW-
NB15 

 

CART 

Accuracy=95.37% 

False acceptance 
rate= 11.86% 

[16] 2021 Normalization 
data 

UNSW-
NB15 and 

CICIDS2017 

 

NB+SVM 

Accuracy=93.75 % 
for UNSW-NB15 
and 98.92% for 
CICIDS2017 

[17] 2021 

Data cleaning, 

normalization, 
and feature 
selection 

 

UNSW-
NB15 

 

Extreme Learning 
Machines 

 

Accuracy=99% 

[18] 2020 
Normalization 
and One Hot 

Encoding 

UNSW-
NB15 and 
NSL-KDD 

 

CNN-BiLSTM 

Accuracy=82.08% 
for UNSW-NB15 
and 99.22% for 

NSL-KDD 
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[19] 2023 Normalization UNSWNB15 LSTM Accuracy=99% 

3. Methodology 

The proposed framework methodology involves several key steps to ensure effective evaluation and optimization of 
classifiers. Initially, the UNSW-NB15 dataset undergoes cleaning to remove null values, followed by Z-score 
normalization to standardize the data. Feature selection is then performed using the Flower Pollination 
Optimization (FPO) to identify the best subset of features. The dataset is split into training (70%) and test (30%) 
sets, and various classifiers (MLP, LDA, QDA, KNN) are trained on the training set, as shown in Fig.1. Finally, the 

trained models are assessed using five metrics: confusion matrix, precision, F1-score, recall, and accuracy.  

Fig. 1- Proposed framework methodology. 

3.1. Dataset   

In this paper, the suggested approach is evaluated and trained using the UNSWNB15 dataset. In this dataset, 
captured abnormal and normal IoT device traffic are included. The abnormal traffic helps identifying the potential 
attacks on IoT devices and the corresponding networks [20]. It has Bro, Argus, pcap, and CSV files of various data 
formats. The pcap file is the raw material or primary data source for network characteristic analysis. It is then 
developed into CSV files through Argus and Zeek IDS. Every record is labeled as either normal or an attack, all 
adding up to 45 attributes. The attacks are classified as follows: nine classes that weave in with each other, having 
something to do with security in IoT devices and network-based attacks, including Worms, Reconnaissance, 
Exploits, Backdoors, Fuzzers, Shellcode, Generic, DoS, and Analysis. This dataset is the most used one in packet 
analysis in IDS systems. The data set contains 257,673 rows, and how many rows are occupied by each category is 
captured in Table 2. The UNSWNB15 logs network traffic data in a controlled laboratory setup, viewing anomalies 
and patterns that may be pertinent in the context of IoT scenarios. Consequently, this would be very useful in the 
case of network-based attack analysis against IoT devices. Moreover, it is also suitable for evaluation and training 
of anomaly detection and IDS, which constitute a very important part of IoT security. 

Table 2 - Description of UNSW-NB15 dataset. 

Class Testing Set Training Set 

Worms 44 130 

Reconnaissance 3496 10,491 

Exploits 11,132 33,393 

Backdoors 583 1746 

Fuzzers 6062 18,184 

Shellcode 378 1133 
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Generic 18,872 40,000 

DoS 4089 12,264 

Analysis 677 2000 

Normal 37,000 56,000 

3.2. Preprocessing Dataset    

It is the most important part of the analysis of data, more so in machine learning tasks, since it ensures a dataset 
that is clean, consistent, and appropriate to be used in training the model. Proper preprocessing will raise the 
efficiency of machine learning models to very great degrees by decreasing noise, handling missing values, and 
normalizing data this latter point makes sure that all features are on the same scale and have equal contributions to 
the model. First, this preprocessing step applied to the UNSW-NB15 dataset cleans up the dataset. There are no null 
or empty values; this will ensure that these null values often lower the accuracy obtained in a Machine Learning 
model and may alter an analysis. By treating those missing values, we can hold that our dataset is complete and the 
models trained on it can fully be trusted [21]. 

Normalization is an important step in preprocessing. This is more of a requirement of many machine-learning 
algorithms, particularly neural networks and k-nearest neighbors, which are sensitive to the scale of data. This can 
guarantee that every feature is contributing equally to the model and not by letting features with larger ranges 
dominate the features with a small range [22]. We implement here the Z-score normalization method. It rescales 
data onto a common scale with a mean of 0 and a standard deviation of 1. This method becomes very strong, 
especially when the data is normally distributed. The Z-score normalization of the feature X may be calculated 
using the following equation: 

𝒁 =
𝑥 − 𝑢

𝜎
                                                                                                                                        (1) 

Where z is the Z-score normalized value, x is the original value, u is the mean of the feature, 𝜎 is the standard 
deviation of the feature. This will standardize the dataset after applying the Z-score normalization, which can be 
more appropriate for algorithms of machine learning. It will make all features in the same scale, hence improving 
the model's performance and convergence. 

3.3. Feature Selection based on FPO  

Feature selection remains one of the most important stages in the pipeline of data preprocessing, since it 
fundamentally affects both the performance and the efficiency of machine learning models [23]. Key objectives for 
feature selection are to select or identify only those features in a given dataset relevant toward the variable of 
prediction or output. This will help reduce dimensions, eliminate redundant and irrelevant features, and increase 
the accuracy in the model with reduced overfitting. By ensuring that the model picks only relevant features, 
performance and predictive accuracy can be driven into focusing on the most critical elements of the data. It also 
reduces the model complexities—avoiding irrelevant and redundant features puts the breaks on overfitting. This 
also reduces training time. In the end, feature selection also helps get simpler models that are easy to interpret and 
maintain. 

FPO stands for Flower Pollination Optimization, a new optimization process mimicking the pollination process of 
flowering plants [24]. The FPO technique has been successfully applied for feature selection in several datasets, 
such as UNSW-NB15, to determine the best subset of features that give maximum performance to models. FPO 
mimics the pollination process, wherein the pollen carriers pollinators, such as bees and birds have a certain 
possibility of moving to another flower after carrying pollen and depositing it, thus cross-pollinating for 
reproduction with variations. This optimization technique has two phases: global pollination (exploration phase) 
and local pollination (exploitation phase). The reason for choosing FPO over other optimization techniques is its 
unique adaptability and efficiency. FPO's ability to balance global exploration and local exploitation allows it to 
effectively navigate complex search spaces, identifying the most relevant features that enhance model performance 
and accuracy. These attributes make FPO a compelling choice for feature selection, ensuring that the most critical 
elements of the data are utilized for optimal machine learning model performance. The algorithm iteratively 
updates the position of pollen to converge to a better solution. Equations 1 and 2 mathematically model FPO. 
Equation 2 corresponds to global pollination, and Equation 3 corresponds to local pollination. 
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𝑿(𝒕 + 𝟏) = 𝑋(𝑡) + 𝐿 × (𝑋∗(𝑡) − 𝑋(𝑡))                                                                                                      (2) 

𝑿(𝒕 + 𝟏) = 𝑋(𝑡)+ ∈ × (𝑋𝑗(𝑡) − 𝑋𝑘(𝑡))                                                                                                       (3) 

Where 𝑋(𝑡) is the current position vector, 𝑋∗(𝑡) is the position vector of the best solution obtained so far, 𝐿 is a 
step size drawn from a Lévy distribution, ∈ is a random number in [0, 1], 𝑋𝑗(𝑡) 𝑎𝑛𝑑 𝑋𝑘(𝑡)are different position 
vectors chosen randomly from the population, and 𝑡 is the current iteration. In this paper, a focus is placed on the 
use of FPO for improving feature selection in anomaly and intrusion detection systems for IoT devices. 

3.4. Evolution Metrics    

Metrics are used to assess a machine learning model's performance, which is crucial to its efficacy and reliability. We 
will focus on five major measures in model evaluation: accuracy, recall, precision, F1 score, and confusion matrix. 

• Accuracy: Perhaps the most straightforward of the evaluation metrics is simply accuracy, which is defined 

as the number of correctly classified examples within total instances in the dataset [25]. This will perhaps 

provide a general feel for the performance of the model and can be inadequate only by itself in scenarios 

like highly imbalanced datasets. 

 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝐹 + 𝐹𝑁 + 𝑇𝑁
                                                                                                         (4) 

 

• Recall: Recall denotes how well the model is at getting positive instances right, otherwise also called 

sensitivity or true positive rate. This becomes of great importance in situations when missing positives has 

high costs. 

 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                                                                   (5) 

 

• Precision: Precision, also referred to as positive predictive value, measures how accurate the positive 

predictions are provided by this model. It represents the proportion of true positive cases among all the 

cases that the model has classified as positive. 

 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                                                                        (6) 

 

• F1-Score: The F1-score is the harmonic mean of recall and precision, which gives a single metric that can 

balance these two metrics.  

 

𝑭𝟏 − 𝑺𝒄𝒐𝒓𝒆 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                                                          (7) 

 

• Confusion Matrix: The confusion matrix provides a concrete scenario of how well the model works by 

presenting the actual versus predicted classifications. It is a table with the following four entries: false 

negatives, true negatives, true positives, and false positives. A confusion matrix provides clarity on the type 

of mistakes your model is making and is quite a useful tool to evaluate classification performance. The four 

elements of the confusion matrix are shown in Fig. 2. 
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Fig. 2- Confusion matrix [26]. 

 

Each of these metrics contributes differently toward the model's performance. All these metrics looked at together 
may go a long way in bringing out a nuanced picture comprehensively of our anomaly and intrusion detection 
systems. This would enable fine-tuning and improving our models for better security in IoT environments. 

4. Results and Discussion 

In this section, the performances of the four classifiers (MLP, LDA, QDA, and KNN) are evaluated. The respective 
performances of the mentioned classifiers are assessed for five evaluation metrics: confusion matrix, recall, F1-
score, precision, and accuracy. The above-mentioned evaluation is performed for two scenarios: first, when there is 
no feature selection, and second, when there is feature selection using the FPO. This comparison helps bring out 
the effect of feature selection on the classifier's performance. 

4.1. Classification performance without feature selection 

In this section, we evaluate the classifiers based on the five metrics without any feature selection as shown in Table 
3. 

Table 3 - Classifiers performance without FPO feature selection. 

Classifier Precision F1_Score Recall Accuracy 

MLP 86.55 86.29 86.04 90.06 

LDA 87.68 91.07 94.74 93.79 

QDA 90.14 91.35 92.6 93.83 

KNN 87.7 86.23 84.8 89.92 

 

It had a precision of 86.55, an F1-score of 86.29, a recall of 86.04, and an accuracy of 90.06. These metrics, obtained 
with this model, prove that although the MLP performs reasonably well, it fails to hit the highest level of 
performance among the classifiers tested. Its balanced precision and recall show that MLP is relatively good at 
correctly identifying both positive and negative instances, but there is room for improvement. LDA went very well 
with a precision of 87.68, an F1-score of 91.07, a recall of 94.74, and accuracy of 93.79. LDA was outstanding; it had 
the highest recall, thus proving that it is really great at correctly classifying positive instances. The high F1-scores 
and accuracy also show that without feature selection, it is good at sorting out this data, thus proving this as one of 
the best classifiers on this model. 

In most of these main metrics, the QDA outperformed other classifiers. The QDA has shown high classification 
performance at 90.14 precision, with an F1-score of 91.35, the recall is 92.6, and 93.83 in accuracy. The high value of 
precision and the F1-score actually mean that QDA is good not only at classifying positive examples in the data set 
but also at having the smallest proportion of falsely marked negative instances. This renders QDA the most 
efficacious classifier without feature selection for the dataset. The KNN classifier resulted in the precision of 87.7, F1 
of 86.23, recall of 84.8, and accuracy of 89.92. KNN functions acceptably but has the lowest recall and F1 score of the 
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classifiers; this is indicative that KNN will perform more poorly due to false negatives when testing out on these 
methods. It is also less on the accuracy end, indicating that KNN may not be effective in dealing with the entire 
feature set. Fig. 3 shows the confusion matrices for the classifiers without FPO feature selection. These matrices 
provide a detailed view of the performance of each classifier by displaying the true positive, true negative, false 
positive, and false negative counts. The matrices further illustrate the strengths and weaknesses of each classifier, 
complementing the summary statistics provided above. 

 

Fig 3- Confusion matrix of the classifiers without feature selection. 

4.2. Classification performance with FPO feature selection  

In this section, we evaluate the classifiers based on the five metrics with feature selection using the FPO algorithm 
as shown in Table 4. 

Table 4 - Classifiers performance with FPO feature selection. 

Classifier Precision F1_Score Recall Accuracy 

MLP 96.03 96.35 96.67 97.37 

LDA 98.54 98.64 98.74 99.02 

QDA 98.1 98.83 99.59 99.16 

KNN 95.1 95.17 95.25 96.45 

 

With FPO feature selection, the MLP classifier significantly improves its performance. It achieved a precision of 
96.03, a recall of 96.67, an F1-score of 96.35, and an accuracy of 97.37. These metrics spell out an enormous 
improvement in the capability of the right classifier to identify the positive and negative cases correctly. This meter 
is a clear demonstration of FPO's effectiveness in performance improvement for MLP. LDA also performed very 
great with the feature selection of FPO. An achieved precision of 98.54, an F1-score of 98.64, a recall of 98.74, and 
accuracy of 99.02%. These near-perfect metrics indicate the improved ability of LDA to correctly classify the 
instances—almost with no mistakes at all—proving the highly positive effect of feature selection on its performance. 
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QDA did very well with FPO feature selection. In this regard, an F1-score of 98.83, a precision of 98.1, with a recall of 
99.59 and an accuracy of 99.16, were recorded for the QDA. The high recall and accuracy of the QDA indicate very 
good performance in identifying true positive instances with low false positives, hence the best classifying algorithm 
in this case. The KNN classifier also gained with FPO feature selection to an F1-score of 95.17, a precision of 95.1, a 
recall of 95.25, and an accuracy of 96.45. Although this is a huge gain in performance for KNN, its performance 
remained only marginally inferior to the other classifiers after FPO selection, indicating that FPO is particularly 
effective for this classifier but that KNN is not as truly effective as the discriminative analysis methods on this 
dataset. 

Fig. 4. shows the confusion matrix of the classifiers after used FPO feature selection. The confusion matrix for the 
MLP classifier shows a significant improvement in performance after feature selection. The true positives (48,436) 
and true negatives (26,831) are high, while the false positives (1,110) and false negatives (925) are considerably 
reduced. This indicates that FPO has enhanced MLP's ability to correctly classify instances, substantially reducing 
errors compared to the scenario without feature selection. The confusion matrix for LDA reveals near-perfect 
classification results. LDA achieved 48,998 true positives and 27,539 true negatives, with only 402 false positives 
and 352 false negatives. These results demonstrate LDA's exceptional performance, with the lowest number of 
classification errors among all classifiers. More importantly, high true positives and true negatives directly give the 
high increase in accuracy and reliability due to FPO feature selection. 

The QDA classifier's confusion matrix shows outstanding results, with 27,408 true negatives, and 49,247 true 
positives. The false positives (533) and false negatives (114) are minimal, highlighting QDA's superior ability to 
correctly classify instances. QDA the best-performing classifier with feature selection, demonstrating its enhanced 
effectiveness in reducing both types of classification errors. The KNN classifier also shows notable improvements 
in its confusion matrix. KNN achieved 47,998 true positives and 27,331 true negatives, with a reduction in false 
positives (1,410) and false negatives (1,363). Although its performance is slightly lower than that of QDA and LDA, 
KNN still shows substantial improvements, indicating the positive impact of FPO feature selection in enhancing its 
classification performance. The analysis of the confusion matrices after performing FPO feature selection highlights 
substantial performance improvements across all classifiers. QDA and LDA emerge as the top-performing 
classifiers, with QDA achieving the highest number of true positives and the lowest number of false negatives. LDA 
also demonstrates near-perfect classification results with the lowest number of false positives and false negatives. 
MLP and KNN show significant improvements in reducing classification errors, further illustrating the effectiveness 
of FPO in enhancing classifier performance. 
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Fig 4- Confusion matrix of the classifiers with FPO feature selection. 

4.3. Comparison with recent studies 

In this section, we compare the performance of our proposed method with recent studies that have used the 
UNSW-NB15 dataset. The comparison focuses on the accuracy achieved by different classifiers and feature 
selection techniques as shown in Table 5. 

Table 5 - Comparison with recent studies on the UNSW-NB15 dataset. 

Ref Year Feature Selection Classifier Accuracy (%) 

 [11] 2020 XGBoost DT  90.85 

 [9] 2022 PSO RF 97.49 

[14] 
2022 Mutual Information Gain feature 

selection 
Stacking machine 
learning models 

96.24 

[27] 

 

2024 
Random sampling and correlation 

analysis 
RF 98.63 

Our Proposed FPO QDA 99.16 

 

As shown in Table 5, various feature selection methods have been employed in recent research, including XGBoost, 
PSO, Mutual Information Gain, and correlation analysis. XGBoost has been frequently applied across different 
models. Classification techniques have involved both machine learning models like Random Forests and Decision 
Trees, as well as advanced ensemble methods. Although Random Forests achieved high accuracy, the highest 
reported accuracy in previous studies was 98.63%, using random sampling and correlation analysis with Random 
Forests. In comparison, our proposed method using the FPO algorithm for feature selection has demonstrated 
superior performance. In particular, our approach appreciated accuracies up to 99.16% with the QDA classifier and 
99.02% with the LDA classifier. Furthermore, the MLP and KNN classifiers also produced better results, such as 
97.37% accuracy and 96.45%, respectively. The results indicate that our suggested approach outperformed all the 
previously reported approaches concerning accuracy and thus set a new benchmark on anomaly detection and 
intrusion detection systems within IoT environments.  

5. Conclusion 

This paper presents an investigation into the Flower Pollination Optimization (FPO) algorithm for feature selection 
to enhance the performance of various classifier models trained on the UNSW-NB15 dataset. The preprocessing 
included cleaning the dataset and normalization using Z-score. Four classifiers were evaluated: Multi-Layer 
Perceptron (MLP), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), and K-Nearest 
Neighbors (KNN), under two scenarios: without feature selection and with FPO-based feature selection. The results 
indicate that feature selection using FPO significantly improved the performance of all classifiers. Specifically, QDA 
and LDA achieved accuracies of 99.16% and 99.02%, respectively, while MLP and KNN showed major 
improvements, with accuracies reaching 97.37% and 96.45%, respectively. Comparisons with recent studies 
demonstrated that the proposed method outperformed existing approaches, setting a new benchmark in accuracy 
for anomaly detection and intrusion detection systems in IoT environments. The superior performance of the 
method highlights the importance of effective feature selection for improving the accuracy and reliability of 
machine learning models. The FPO-based feature selection methodology proved highly effective in enhancing the 
performance of classifiers on the UNSW-NB15 dataset. This approach can be highly useful for implementing 
various applications related to anomaly detection, providing better robustness and efficiency in IoT cybersecurity 
applications. Future work should test this feature selection technique on more real-life datasets and classifiers, and 
integrate it into real-time detection systems. 
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