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Abstract: In this paper, a tri-trophic food web model with mixed selection of functional
responses is proposed and analyzed. It is assumed that, the food web system consisting of
one prey and two predators, in which there is an explicit inter-specific competition
between the two predators. Dynamical behavior of all possible equilibrium points has
been investigated locally as well as globally. Sufficient conditions for the system to be
uniformly persistent and / or extinction have been derived.

1. Introduction

An important and ubiquitous problem in predator-prey theory and related topics in
mathematical ecology concerns the concepts persistence and extinction of species. The
persistence and extinction of interacting species in a food chain and food web models
have been studied extensively in the literatures see [2, 3, 7, 8, 9, 12]. Most of these
studies have been focused on the permanent and global stability of a model of living
resources supporting two competing predators. It may be pointed out that all the above
studies are based on the traditional prey dependent models.

Recently, Cantrell et al 2004 [1] proposed and analyzed a mathematical model of
two consumer one resource with one of the consumer species exhibits intra-specific
feeding interference but there is no inter-specific competition between the two consumer
species. It is assumed that one consumer species exhibits Holling type-II functional
response while the other consumer species exhibits Beddington-DeAngelis functional
response. They shown that the two consumer species can coexist upon the single limiting
resource in the sense of uniform persistence and the system has a globally stable positive
equilibrium. Maiti et al 2006 [11], proposed and analyzed a tri-trophic food chain model
composed of logistic prey, a classical Lotka-Volterra functional response for prey and
predator, and a Holling type-II functional response for predator and top predator.

Keeping the above in view in this paper, the model of Cantrell et al [1], is modified
so that, it contains inter-specific competition between the two predators. The stability
analysis of the proposed model is investigated analytically. The uniform persistence and
the extinction conditions are obtained.

2. A tri-trophic food web model

Consider a tri-trophic food web model consisting of two predators competing for a single
prey in which the prey species grows logistically in the absence of predator species.
Furthermore, the functional and numerical responses of the first predator are taken to be
of Holling type-II form while those associated with the other predator species are taken of
Beddington-DeAngils form. Let u (T) represent the density of prey species at time 7" and



v(T), w(T') be the density of predator species that compete with each other for the prey.

Therefore, the dynamics of such tri-trophic food web may be governed by the following
system of autonomous differential equations.
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Here all the parameters of the system (1), which denoted by
r.k,a;,b;,c d;, e, a p (i=1,2), are assumed to be positive constants. Now, to reduce

the number of parameters, we are nondimensionalize system (1) with the following
nondimensional variables and parameters.
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Then, the nondimensionalized form of system (1) can be written as follows:
d
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Observe that, the interaction functions F, F, and F; of the system (3) are continuous on
Ri, where Ri = {(x, v,2):x20,y20,z2 0} and have a continuous partial derivations,

therefore these functions are Lipschitzian on Ri. Hence, solution of system (3) with

nonnegative initial condition exists and is unique. Further, it is easy to prove the
following theorem, which establishes the uniform boundedness of the system (3).

Theorem 1. All the solutions of the system (3), which start in the interior of Ri (i.e.

Int.Rf_ ), are uniformly bounded.

It is well known that, the ecological system is said to be dissipative if the solution of the

system, which initiate in the Rf is uniformly bounded as ¢ — oo [5]. Therefore, system
(3) is dissipative.



3. A tri-trophic food web analysis with persistence
The tri-trophic food web system (3) have at most four non negative boundary
equilibrium points, say E, =(0,0,0), E; =(1,0,0), E, =(X,y,0), E5=(x,0,Z) and one
positive equilibrium point E fo(x, y*, Z) belongs to Int. Ri.
® The equilibrium points E; and E; are always exist.
¢ The equilibrium point E, =(x,y,0) where
F=—t e y= (=B +mF) O
We — WiWy

is a planer equilibrium point, which exists in the interior of positive quadrant of
x —y plane under the following condition.
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Is a planer equilibrium point, which exists in the interior of positive quadrant of
x — z plane under the following condition.
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e The positive equilibrium point E =, y*, z'),exists in the Int. R} if and only if
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Now the local dynamical behavior of system (3) near the above equilibrium points is
investigated, and then the following results are obtained.

The Jacobean matrix at the equilibrium points E,, E;, E,, E3, and E “can be written,
respectively, as the following
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Here B, and B, are given by (9b).

Obviously, the eigenvalues of J(E;) are given by A, =1>0,4p, =—w, <0, and
Ay3 =—w; <0. Hence, E; =(0,0,0) is unstable saddle point with locally stable manifold
in the y — z plane and with locally unstable manifold in the x -direction.

The eigenvalues of J(E;) are A, =—-1<0,4;, =—-wy +lf—fvl, Az =—wy + 13 . This
2

implies that E; =(1,0,0) is locally asymptotically stable in the Rf if and only if



We Wo . ey . .
Wi > T and w, > T, > O equivalently the planer equilibrium points E, and E; do

not exist. However, E; is unstable saddle point with non-empty stable and unstable

manifolds if and only if wy <1& and / or w; <—2 (ie. at least one of planer
+W1 1+W2

equilibrium points exist). Further, the dynamical behavior near the planer equilibrium
points E, and Ej is given in the following two theorems respectively.

Theorem 2. Suppose that the planer equilibrium point E, =(x,y,0) of system (3) exists,
and let

) (10)
wy(wy +1)

Then
1. E, islocally asymptotically stable in the Ri if and only if 4,5 <0.

2. E, is unstable saddle point in the R}, with locally stable manifolds in the x—y
plane and with unstable manifold in the z —direction, if and only if 4,5 > 0.

Proof: According to the J(E,), it is easy to verify that, the eigenvalues satisfy the
following relations:

A+ Ay =)?[—1+M} (11a)

I1+wXx
PR I A{CahI B (11b)
I+wx
Aoy = =Wy — Wy +— 2 (11c)
I+ wyx

Where A, j (j=12,3) represents the eigenvalue in the x—,y— and z-—direction

respectively. Now, substituting the value of X in equation (11a) and then simplify the
result yields

b+ Ay =
we (W —wiwy)

Clearly, under the given condition (10) we get 4,; +4,, <0. So according to (11b) the

eigenvalues A,; and A,, have negative sign, and hence E, is locally asymptotically
stable in the interior of positive quadrant of x —y plane.

M [we (W, = 1) = wywy (wy +1)] (11d)

Now, since the eigenvalue 4,5 describes the dynamics in the z —direction orthogonal on

the x—y plane. Hence, if 4,3 <0 holds, then E, is locally asymptotically stable in Rf
and the proof of (1) follows. Further, if 4,3 >0 holds, then E, is unstable saddle point in

the Ri with locally stable manifolds in the x—y plane (due to the negativity of 4,; and
Ay, ) and with unstable manifold in the z —direction. [



Theorem 3. Suppose that the planer equilibrium point E; =(X,0,Z) of the system (3)
exists and let one of the following conditions holds.

%) < W3W9 (12a)
WyWg< Wy and 87 —48, <0 (12b)
W3Wo < Ws, 02 —48, >0 with 0< ¥ <r or r, <X <1 (12¢)

Then
(1) Ej is locally asymptotically stable in the Ri if and only if 43, <O0.
(2) E; is unstable saddle point in the Ri, with locally stable manifolds in the x—z
plane and with unstable manifold in the y —direction, if and only if A3, > 0.

Proof:- From J(Ej3) the eigenvalues satisfy the following relations:

~ X7
A+ As3 =—x+?(W2—W3W9) (13a)
Y (13b)
y a
Ay = —wy — wsZ + 0 (13¢)
I+wx

Now, clearly if the given condition (12a) holds then A3, +4;3 <0 and hence both the
eigenvalues A;; and /35 are negative.

While, if the condition (12b) holds, then by substituting the values of X and 7 in
equation (13a) and simplifying the resulting term we obtain

2 2
A dy = 22| L2 asmes, |- 2| L) (13d)
4 W1 ) ¥
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Where J; = w, (1 - XI - va—zw)< 0;and o, :% (ﬂ - 1)> 0. Obviously, the sign of

w3W w3Wgy

A3y + As3 is depends on the sign of quadratic function p(X). Since &f — 40, <0 [due to
condition (12b)], then p(¥)>0 for all values of X and hence A3, + 433 <0. Therefore,
both the eigenvalues 4;; and /35 are negative.

Finally, if the condition (12c) holds, then the quadratic function p(x) has two positive
roots, say 7 :%l— 5, — (6} —452)1/2J; and 7, :%l— 5, +(OF —452)1/21 with 7 <r,.
Accordingly, p(X) can be written as p(¥)=(¥ - )(X —r,), and hence p(¥)>0 under
condition (12c). Therefore, A3;+433 <0 or both the eigenvalues A;; and A;; are
negative. Consequently, if the condition (12a) or (12b) or (12c) holds, then Ej5 is locally
asymptotically stable in the interior of positive quadrant of the x — z plane.

Now since the eigenvalue 4;, describes the dynamics in the y —direction orthogonal on
the x —z plane. Hence, for A3, <0 we get E5 is locally asymptotically stable in the Ri
and the proof of (1) is done. However, for 43, >0 we obtain E; is unstable saddle point



in Ri with locally stable manifold in the x —z plane and with unstable manifold in the
y — direction. Therefore, the proof of theorem is complete. ]

Now, according to the above two theorems the following results can be easily proved.

Corollary 4. (1) Assume that the planer equilibrium point E, =(X,y,0) of the system (3)
is a locally asymptotically stable in the interior of positive quadrant of x—y plane, then
it is a globally asymptotically stable in the interior of positive quadrant of x —y plane.

(2) Assume that the planer equilibrium point E; =(x,0,Z) of the system (3) is a locally
asymptotically stable in the interior of positive quadrant of x — z plane with w, <wywy,
then it is a globally asymptotically stable in the interior of positive quadrant of x—z

plane.
Proof: - Follow directly from the above theorems with the Bendixson-Dulac criterion and
Poincare-Bendixson theorem. [

In the following we show that the tri-trophic food web system (3) is uniform
persistent. Biologically, persistence of a system means the survival of all populations of
the system in future time. However, from mathematical point of view, persistence of a
system means that strictly positive solutions do not have omega limit points on the
boundary of the non-negative cone.

Theorem 5. Suppose that the planer equilibrium points E, and E; are globally
asymptotically stable in the interior of positive boundary planes x—y and x—z
respectively. In addition, if the following set of conditions hold.

A3 >0 and 43, >0 (14)
Then system (3) is uniformly persistent.

Proof: - Consider the following function o(x, y,z) = x* y*2z"3, where s,;i=1,2,3 is an
undetermined positive constant. Obviously, o(x,y,z) is C ! positive function defined in

Ri,and o(x,y,2) >0 if x>0 o0or y—0 or z— 0. Now, since

a/ , , xl ’
l,y(x,y,z)=(x—yz):sl—+s21+s3i
o(x,y,2) X y Z
Therefore,
y Z
xy,20)=851-x- -
yixy.2) { I+ wx 1+w2x+w3zj

WoX
+83| =Wy —wgy+———
I+ wyx+wsz



Recall that, according to the given hypotheses, we have E, and E; are globally

asymptotically stable in the interior of positive boundary planes x—y and x—z
respectively. Therefore, there are no periodic orbits in these boundary planes.

So, to prove that o is a persistence function and hence system (3) is uniform persistence
[10], it is enough to show that the following conditions should be satisfied [4, 6, 13].

l//(Eo):SI_W4S2_W7S3 >0 (15a)
W, W
w(El):(—w4+l+iV ]s2+(—w7+1+3v js3 >0 (15b)
1 2
_ Wo X
W(E2)=S3[—W7 _W8y+1+19,v )_CJ=S3223 >0 (15C)
2
- WX
w(E;3) :Sz(—w —WsZ + 1+iv ijzszﬂez >0 (15d)
1

Note that by choosing s; >0 sufficiently large value and keeping s, and s; fixed
at small positive values then condition (17a) holds. Also, due to the existence of E, and
E5, the inequality (15b) holds for any positive values of s, and s;. Further, the

inequalities (15¢) and (15d) are satisfied under the given condition (14) for any positive
values of s, and s5. Hence o represents persistence function and system (3) is uniform

persistent. ]

In the next corollary, sufficient conditions at which the predators species of system
(3) facing extinction, and hence system (3) is not persistent (or equivalently the system
faces extinction), are obtained.

Corollary 6. (1) If the conditions w, > lf—fvl and w; > lf—f’vz hold then system (3) is not

persistence and both the predators will go to extinction.
(2) Assume that E, and E; are globally asymptotically stable in the interior of positive

quadrant of x—y and x— z respectively with 4,3 <0 and A3, <0. Then system (3)
is not persistence and one of the predators y or z will goes to extinction.
Proof: - Follows directly from theorem (5). [ |

Now, in order to investigate the local dynamical behavior of the positive
equilibrium point E = (x*, y*,z*), the characteristic equation of the Jacobean matrix
J(E *) is determined.

P =L+ AL +A,A+A,=0
where
Ay =—(ay; +az3)
Ay = ayyaz3 — ay3a3) — ayaz) —dppdyy
A3 = ayayaz; + ay3appay) — A1pdy3as) — a3y ds)



and
A=AlA; — Ay =(ay; +azs)(a;3a3; —ap1ass)
+apy(ayay; +axas) +az(axass +ajzay;)

Therefore, the local asymptotic stability conditions of E " are established in the following
theorem.

Theorem 7. Assume that the positive equilibrium point E" exists and let the following
set of conditions holds

M2 < (16a)
By B;
0< w5w8822(812 - wly*) +wswoBy + wewg < H{H, (16b)
H;>0 (16¢)
Where

B,

| x* WoWgX Yy -
Hy=|——ap——Faz || =5~ WiWsWgy Z |.
B, B, B,

* WeX
Hl :(W2W8B1 _W3W9), H2 Z(WSBIZ ——6 },

With B and B, are given by equation (9b) and q;; are the elements of J(E *). Then E*

is locally asymptotically stable.
Proof: - According to the Routh-Hurwitz criterion, the necessary and sufficient

conditions for E~ to be locally asymptotically stable are A; >0, A; >0 and A>0. Now,
substituting the values of a;; and then simplify the results we get

% sk *k
w WhHZ WaWo 2
A1=—x*|:—1+ 1)2; +—2 32 }
B; B; B;

Ay = T{[WswsBz (wy —Bj) —wswoBy — W6W8]+ Hle}-
Bi'B)
Also, we obtain
* ok * x.Q ¥ * %
WoX Z w wawg (X )7z WeX y a
A=— Kl 3 (a11+a33)— 1- 1)2] 379 2 (a11+a33)+—6 ); 12
B; B B; Bj
WsWo) < WeX Y
+Hj S R S P
B; B[ B;
Thus, according to forms of A;, A5, A and the sign of a, the Routh-Hurwitz criterion is
satisfied under the conditions (16a)—(16c). [ |

Let Q be the region in the Int. Rf, where:
Q:{(x,y,z):x<lwith yi<y, z <zor y<y®, z<z*}



Then the following theorem shows that the positive equilibrium point E'isa global
asymptotically stable in the region Q, and hence Q represents the basin of attraction for

E" in the Int.Rf.

Theorem 8. Assume that E~ is locally asymptotically stable with
le* " WZZ*

A+wx)  (+wyx" +wyz)

<1 A7)

Then the positive equilibrium point E “isa globally asymptotically stable in Q.
Proof: - Consider the following positive definite function
X *
_ (X—-x)
O

*

Yy * Z
Y-y) Z—-z
dX +c, | —22dy +c¢ dz
2[ - =
y

*

X Z
Where ¢, ¢, and c5 are positive constants to be determined. Now, along any trajectory
of system (3), we have
dv x=x) , -y, 2=z
_:Cl( )X+C2(y y)y +C3
dt X

I+wix  1+wyx+wsz

:cl(x—x*){(l—x)— y £ }

1+ wlx}

B Wg X
+ce3(z—2 ) —wy —wgy+——"——
I+wyx+wsz
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Straightforward computations give that

CAZP DL D AL LA AN
dt 1 5

- CIWIX* W6C2 * *
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|:M1 M, M, :l( o=y

*
—C CiWHr X Ca W, CaxWoWa Z
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M, M, M, M,

}(x—x*)(z— z)
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Here M| =0+wx)(1+ wlx*); M, =0+wyx+wzz)(1+ wzx* + w3z*) . By choosing the

* *

. 1+wix 1+wyx .

positive constants as ¢; =1; ¢, =——; ¢3 =——=——. Therefore, we obtain
We wo (I+w3z )



*®

AV _ WY W |y

dt M, M,

C3W3Wo X (Z—Z*)Z
M,

Clearly, under the condition (17), we have dV/dt is negative definite in the region Q.

+(=cows —eswe)(y—y Nz =2 )=

Thus V' is a Lyapunov function with respect to all solutions in ., and hence E'isa
globally asymptotically stable in Q. [ |
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