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AbstractAbstractAbstractAbstract Let ( )ILf

p
∈  change its convexity finitely many times in the interval I , say s  times 

at
s

Υ , We estimate the degree of approximation of f by polynomials which change convexity 

exactly at the points where f does.  
 

 

 

1111.   .   .   .   Introduction and Main ResultsIntroduction and Main ResultsIntroduction and Main ResultsIntroduction and Main Results    
We consider the space ( )IL p , consisting of all measurable functions f  on I , for 

which 

∫ ∞<=
I

pp

p
dx)x(f:f . 

Recall that
1

1
p

1

p
f2f

−

≤ , that is p1 LL ⊂ . the pL  norm is not 

actually a norm for 1p < . Nevertheless, it is not hard to see that ( )IL p
 is a complete 

metric space. 
   Now, we will settle the question of which pL , 1p <  embed into 

q
L  for 1q ≥ . Or 

which subspaces of ( )IL p   on which all of the various ( )IL p  quasi-norms for qp0 <<  

are equivalent. The key in this article is due to Kadec and Pelzynyski from [10]: 
           For 10 << ε and ∞<< p0 , consider the following subset of ( )IL p  

}}f)x(f:x{:)I(Lf{:),p(M
pp meas εεε ≥≥∈= , 

where by “meas” , we mean the measure of a set. 
Notice that if 21 εε < , then ),p(M),p(M 12 εε ⊂ . Also U

0

)I(L),p(M
p

>

=
ε

ε , since for any 

nonzero )I(Lf p∈ we have →≥ }f{meas ε  }0f{ ≠ as 0→ε . In fact, any finite subset of 
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( )IL p is contained in an ),p(M ε for same 0>ε . Finally note that 1}ff{
p

meas ≥≥  

implies 
p

ff =  almost every where.  

The following theorem puts this observation to good use  
Theorem Theorem Theorem Theorem 1.11.11.11.1. [3] For a subset S of )I(L

p
, the following are equivalent  

  (i) ),p(MS ε⊂  for some 0>ε .    (ii) For each qp0 << , there exists a constant ∞<)q(c  

such that  
qpq

f)q(cff ≤≤  for all Sf ∈ .  (iii) For some qp0 << , there exists a 

constant ∞<)q(c  such that   
qpq

f)q(cff ≤≤ , for all Sf ∈ . 

Theorem Theorem Theorem Theorem 1.21.21.21.2 . . . . [5] If  U is any neighborhood of zero in ( )IL p , then  

( ) ( )UconvIL
p

=  

 In particular  
{ }1f:f)I(L

p

pp conv <= , 

where ( )Uconv  is a smallest  convex neighborhood of zero contains U . 

In our work we will use moduli of smoothness which are connected with difference of 
higher orders.  
 The rth symmetric difference of f is given by: 

( ) ( )
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
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=∆∆
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The forward rth differences of f are defined respectively by: 

( ) ( )
( ) ( )
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



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∈+−+


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
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==
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=∆∆
w.o0
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Then the rth usual (ordinary) modulus of smoothness    defined by: 
( ) ( )

( )JL

r

h
th0

r
p

,.f:J,t,f Supp ∆
≤<

=ω , 0t ≥ . 

For the forward differences, r

h
∆ , the ordinary modulus of smoothness is defined 

by: 

( ) ( )
( )JL

r

h
th0

r
p

,.f:J,t,f Supp ∆
≤<

=ω , 0t ≥ . 

A new way of measuring smoothness was moduli of smoothness with weighted, 
a modification of the moduli of smoothness based on differences r

u∆ in which the step 

is of the form (x)h:u ϕ= and is therefore allowed to depend up on the position of x  

in the interval ]b,a[:J = . The motivation for this lies in the properties of algebraic 

polynomial approximation. The requirements on the smoothness of f  can be relaxed 

if x  is close to a  and  b , without impairing the error of approximation. Several 

authors, among them Ivanov [9], have introduced moduli of this type, but the most 
useful proved to be the last version, which is introduced by Ditzian and Totik [8]. 
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Thus the need for this new concept arises to solve some basic problems, such as 
characterizing the behavior of best polynomial approximation in ( )JL

p
. 

 The Ditzian – Totik modulus of smoothness which is defined for ∈f ( )JL
p

as 

follows:   

( ) ( )
( )JL

r

(.)h
th0

r
p

,.f:J,t,f Supp ϕ

ϕω ∆
≤<

=  , 0t ≥ and ( ) 




= −

2
x1x :ϕ . 

If the interval ]1,1[:I −=  is used in any of the above notations, it will be omitted 

for the sake of simplicity, for example 
( ) ( )pp I,t,f:t,f

rr
ωω =  and ( ) ( )pp I,t,f:t,f

rr

ϕϕ ωω = . 

We always have that ( )
prp ),(, Jt,fJt,f

r
ωωϕ ≤ , ∞≤< p0 . But the converse is not 

true in general. However in [2] E. Bhaya, there has been proved that the moduli 
ϕω
r
and 

r
ω  for a function f  defined on Ib][a,:J ⊆= are equivalent, if   

( )aJ
n

∆≈ , where ( ) ( )
2

2

n
n

1
a1

n

1
:a +−=∆ , namely 

( )
ppn

)J,nf(Jaf
1-

rr
,~),,( ϕωω ∆ . 

 The conservation of certain geometric properties of the data by the designed 
mathematical might be the main point of view in many applications. These 
properties include positivity, monotonicity, convexity and in general, k-convexity. 
This is the topic that so called shape preserving approximation or constrained 
approximation is concerned with. Whenever constraints emerge, the situation 
becomes more difficult to get direct estimates, but the researches concentrating on 
such point have been widely acquired attention in recent times for the theory of non-
constrained problems is still useful. We intend to refer to those modifications which 
are essential in making a break-through approach. We do this for coconvex 
approximation by algebraic polynomials. The main objective of this thesis is to 
provide the answer of the question that whether the constraint cost anything or can 
we achieve the same degree of approximation as in the non-constrained case? 
In coconvex polynomial approximation, we are given a function f  changes its 

convexity finitely many times in the interval I . We are interested in estimating the 

degree of approximation of f  by polynomials which are coconvex with it, namely, 

polynomials that change their convexity exactly at the points where f  does. Question 

of this nature first appeared in the work of D. J. Newman and et al (see [18], [19] and 
[20]).  
To be specific, Let { }0N:Ns

0
U=∈  and let { }s

1iis y
=

=Υ  be the set of points such 

that 1:yy...yyy:1 1ss210 =<<<<<=− + , where 0s = , φ=Υ :0 . For sΥ   we set 

( ) ( ) ( ) ( ) ( )( )xsgn:xyx:,x:x and
s

1i
is

πππ δ =−=Υ= ∏
=

, 

where the empty product is equal to 1. 



 4

 Let ( )s

2 Υ∆ , be the set of all functions f  that change convexity at the 

points siy Υ∈ , and are convex near 1. In particular, if 0s = , then f  is convex on I , 

and write 2f ∆∈ , that is ( the    divided differences ]f;x,x,x[
210

are nonnegative for all 

choices of three distinct points 
10

x,x  and 
2

x ), where the divided difference of a 

function f  at the points 
n10

x,...,x,x are defined by(see [2]) 

( )

( )
∑

∏=

≠
=

−

=
n

0j
n

ji
0i

ij

i

n10

xx

xf
:]f;x,...,x,x[ . 

Moreover, if f  is twice differentiable function on I  (i.e., ( )ICf 2∈ ), then 

( )s

2f Υ∈ ∆ , if and only if ( ) ( ) Ix,0xxf ∈∀≥′′ π , 

(or equivalently, if and only if ( ) ( ) Ix,0xxf ∈∀≥′′ δ ). 

In our work, the approximation will be carried out by polynomials
nn Π∈Ρ . Now, 

for ( ) ( )sp

2ILf Υ∈ ∆I , we denote by 
( ) ( )

( ) pnps

2

n f:,fE
s

2
nn

inf Ρ−=Υ
ΥΠ∈Ρ ∆I

, 

the degree of coconvex polynomial approximation.   
First of all in 1981, Beatson and Leviatan gave a remark in [1] it might be 

possible to obtain a Jackson – type estimate of coconvex approximation of a function 
with only one regular convexity – turning point, and Yu [24] obtained a Jackson – 
type estimate of coconvex approximation of functions with one regular convexity – 
turning point also quoted her result of functions ( )ICf

k
∈  and 3k ≥  ( the space of all 

function such that ( )1k
f

− are absolutely continuous in I  and ( ) ( )ICf
k

∈ ), with some 

extra conditions on convexity turning points.  
In 1993, Wu  and Zhou [23] and Zhou [25], they proved that for ∞≤< p0 , it is 

impossible to get a Jackson – type estimate of coconvex approximation involving 
( )p1,f

4
ω  with constants independent of n  and f . 

Afterwards, in 1995 Kopotun [11] obtained the following result for twice 
differentiable functions. 
Theorem Theorem Theorem Theorem 1.31.31.31.3    [11]     For a function ( ) ( )

s

2 2
ICf Υ∈ ∆I  with ∞<≤ s1 , there is a 

polynomial ( )
snn

2
ΥΠ∈Ρ ∆I  such that 

                
( )

( ) ,
n

1
,f

n

1
sCf

,
n

1
,f

n

1
sCf

n

2n









′′≤Ρ′−′









′′≤Ρ−

ϕ

ϕ

ω

ω
 

and 

                  ( ) ,
n

1
,fsCf

n








′′≤Ρ ′′−′′ ϕω    

for all ( )
s

:n ΥΝ=Ν≥  is a constant depending on the location of 
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points of
s

Υ  in I , and ( )sC  is a constant depend only on s - the number of convexity 

change. 
Then in 2003 E. Bhaya [2] improved Kopotun’s result for 

functions ( ) ( ){ }ILf,f;f:ILf
p

1

p
∈′=∈  with ∞<≤ p1 . Also, in 1999 Kopotun, Leviatan 

and Shevchuk [13] improved Kopotun’s result for the uniform norm   space,   but   
not   simultaneously.   Namely,   they proved 
Theorem Theorem Theorem Theorem 1111....4444.... If ( ) ( )s

2ICf Υ∈ ∆I  with ∞<≤ s1 , then there is a 

polynomial ( )
snn

2
ΥΠ∈Ρ ∆I  such that 

              ( ) 







≤−

n

1
,fp,sCPf

3n

ϕω                                                  (1.5)          

for all ( )
s

:n ΥΝ=Ν≥  . 

Thereafter, several other results have been achieved for coconvex polynomial 
approximation throughout a number of  
researches by Leviatan and Shevchuk [16], [17] and by Kopotun, Leviatan and 
Shevchuk [14] [15]. 

Our achievement in this area is to emphasize that the estimate (1.5) is exact in 
the quasi-norm spaces

p
L  with ∞<< p0 .  Namely, we prove 

Theorem Theorem Theorem Theorem 1111....6666.... Let ( )ILf
p

∈ with ∞<< p0 have s  changes of convexity at { }s

1iis
y:

=
=Υ , 

and denote ( ) {
121s

yy,y1: mind −+=Υ   

}
s1ss

y1,yy,..., −−
−

.  Then  there  exists  a constant ( )sA  such  

 that for ( ) ( )
( )

s

s d

sA
::n

Υ
=ΥΝ=Ν> , there is a polynomial ( )

s

2

nn
P ΥΠ∈ ∆I , such that 

              ( )
p

pn n

1
,fp,sCPf

3








≤−

ϕω ,                                             (1.7)  

hence  

               ( )
p

pn n

1
,fp,sCPf

3








≤− ω .                                             (1.8) 

The estimate (1.5) is best possible in that one can not replace ( )
p

n1,f
3

ϕω  by any 

higher modulus of smoothness, even not with the larger ordinary modulus of 
smoothness. This is due to the work of Shvedov [22] in case 0s = , and to Wu and 

Zhou [23], Zhou [25] in case 0s >  , (as we mentioned above). 

As an immediate consequence of (1.6), we have the following corollary 
Corollary Corollary Corollary Corollary 1111....9999.... Let ( )IWf

r

p
∈  with 3,2,1r =  have s  changes of convexity at { }s

1iis
y:

=
=Υ , 

and denote ( ) {
121s

yy,y1: mind −+=Υ   

}
s1ss

y1,yy,..., −−
−

.  Then there exists a constant ( )sA  such  

 that for ( ) ( )
( )

s

s d

sA
::n

Υ
=ΥΝ=Ν> , there is a polynomial ( )

s

2

nn
P ΥΠ∈ ∆I , such that 
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            ( ) ( )

p

rr

pn
fnp,sCPf

−
≤−  .      

  This corollary is obtained directly from (1.7). However, we can not obtain it 

from (1.8), in the case 1p < , since the inequality ( ) p

(k)

p )()( t,ftpctf, r
k

kr
ωω ≤+ is not 

satisfied in that case. 

2222.  .  .  .  Proof of Theorem Proof of Theorem Proof of Theorem Proof of Theorem 1111....6666::::    
Throughout this paper we use the following notations, given Nn ∈ , we 

set 1x
1

=
−

, 1x
n

−=  and  









==

n

j
:x:x cos

n,jj

π
, the Chebyshev partition of interval I ,  

we denote ]x,x[:I:I
1jjn,jj −

== , 
j1jjj

xx:I:h −==
−

, 

and
jj

j

n,jj
hxx

h
::

+−
== ψψ , n,...,1,0j = . 

 Also we need the following theorem 
TheoremTheoremTheoremTheorem    2222....1111.... [21] 

 Suppose that ℜ→I:f is convex function, then f satisfies Lipshchitz condition 

on any closed subinterval ]b,a[ of o
I (interior of I ), f is absolutely continuous 

on ]b,a[ and in particular it’s continuous on o
I , f has left and right nondecreasing 

derivatives, ( ) ( )xfxf and
+−
′′ on I . Furthermore, the set E where f ′ fail to exist is 

countable, and f ′ is continuous on E\I . 

 We use the mathematical induction on s - the number of convexity changes 

of f and the idea of flipping technique of f , which originally introduced by Beatson 

and Leviatan in [1]. 
For 0s = (i.e., f is convex in I ), then the theorem is valid and it was proved by 

DeVore, Leviatan and Hu [6]. Thus we will assume that 1s ≥ , and it is clear that f  is 

either concave or convex in the interval ]y,1[
1

− , and each case where will need a 

separate through similar construction. We will detail the construction for the case 
where f  is concave in ]y,1[

1
− . For the sake of simplicity in written we write

1
y=α  .  

Now, we may assume that )
1jj

00

x,x[
−

∈α . Then, if












+−
=Ν>

ααα 1

50
,

y

50
max:n

2

, we 

are assured that 1x
3j

0

−≥
+

 and that
24j

yx
0

≤
−

. Set ( )
0

jn
h

6

1
c:h <∆= α , where c  is chosen 

sufficiently small to guarantee the right inequality. We observing that this implies  

2j1j
00

xh2h2x
−+

<−<+< αα . 
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We are going to replace f  on the interval ]h,h[ +− αα  in a way that will keep us 

near the original function (see g  below) will be smoother at α . As we said above, the 

case 0s = is known and serves as the beginning of the induction process; it has been 

proved by DeVore, Leviatan and Hu [6], and in this case (1.7) holds, for all 2n ≥ . 

Thus, we proceed by induction.  
To this end, we observe that either ( ) 0,f

2

h
≥∆ α   or ( ) 0,f

2

h
<∆ α . 

In the first case, let ( )x
1

l  be denote the linear function 

interpolating f  at h−α  and α . Then the function 1f:f l−= satisfies 

( ) ( ) 0fhf ==− αα , ( ) 0hf ≥+α , and ( ) 0xf ≤ , hx1 −<≤− α . 

Hence, for ]x,x[:J
2j1j

00
−+

= , we have, 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ).,f

h2fhf3f3hf

h2fhfhf0

3
h α

αααα

ααα

∆=

−−++−+=

−−+≤+≤

r
 

Now, since f  is concave in ],1[ α−  and it’s convex in ]y,[
2

α , then from Theorem 2.1, we 

have f  is continuous on ( )α,1−  and ( )
2

y,α , and  since ( ) 0f =α  which is finite, so f  is 

bounded on ( )
2

y,1− , then ( )α,f3

h
∆  is finite on J . On the other hand, we have from the 

definition of ordinary modulus of smoothness that 

( )
( )

( ) ( ) ( ) ( )ppp
JL

J,h,fpCJ,h,fJ,h,f,f 333
3
h

p

ωωωα ≤≤≤∆
rrr

, 

then  

( ) ( )p
p

1

J,h,fJ,f 3
3
h ωα

−
≤∆ . 

 Thus  

( ) ( ) ( )p
p

1

J,h,fJ,fhf0 3
3
h ωαα

−
≤≤+≤ ∆ . 

Similarly, in the latter case, let ( )x
1

l  be denote the linear function interpolating f  

at α  and h+α . Then the function 1f:f l−=  satisfies 

( ) ( ) 0hff =+= αα , ( ) 0hf <−α , and ( ) 0xf ≥ , hx1 −<≤− α . 

Hence, for ]x,x[:J
2j1j

00
−+

= , we have, 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )ααααα

ααα

,fhff3hf3h2f

hfh2fhf0

3
h

∆=−−++−+=

−++≤−−≤
s  

Also 

( ) ( ) ( )p
p

1

J,h,fJ,fhf0 3
3
h

ωαα
−

≤≤−≤ ∆
s

. 

Thus in both cases we have, 

( ) ( ) ( ){ } ( )p
p

1

J,h,fJhf,f,hf
3

max ωααα
−

≤+− , 

which in turn implies that the quadratic polynomial
2

l  
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interpolating f  at h,h and +− ααα , is bounded by the same quantity 

on ]h,h[ +− αα . This means that 

( ) ( )

( ) ( ) ],h,h[x,J,h,fh2c

J,h,fJx

p
p

1

p
p

1

2

3

3

+−∈∀≤

≤

−

−

ααω

ωl
 

so 
( )

p]h,h[L2 J,h,fc 3
p

ω
αα

≤
+−

l , 

then by applying the following lemma from [12], we obtain 
Lemma Lemma Lemma Lemma 2222....2222.  .  .  .  [12]  

Let 
1

J and
2

J be subintervals such that
21

JJ ⊂ . If
kk

q Π∈ , then for ∞≤< p0  

( )
( )

( )
1p2p

JLk

p

1
k

1

2

JLk
q

J

J
p,kcq

+














≤ . 

                  
( )

( ) ( )
pJL2 J,h,fpC 3

p

ω≤l                                        (2.3) 

At the same time applying Whitney’s theorem we conclude that 
          

( )
( ) ( )

p
JL

2 J,h,fpCf 3
p

ω≤− l .                                    (2.4) 

Hence 
          

( )
( ) ( )

p
JL

J,h,fpCf 3
p

ω≤ .                                        (2.5) 

Now, since
2l  is bounded on I , then 

          ( ) ( )
n,...,2,1j,~

JL2IL2
pjp

=∀ll .                                 (2.6) 

By the theorem 2.1  about the property of convex function we have.: 
      ( ) ( ) n,...,2,1j,I,h,f~J,h,f

pjjp 33 =∀ωω                                       (2.7) 

Then by using (2.3), (2.6) and (2.7), we conclude that for each n,...,2,1j =  

( ) ( )
( )

( ) ( ) ( ) ( )
pjjpJL2IL2 I,h,fpCJ,h,fpCpC 33

pjp

ωω ≤≤≤ ll . 

So by applying the following lemma from [6], we obtain: 
Lemma Lemma Lemma Lemma 2.82.82.82.8.... [6] 

For a function ( )ILf
p

∈  with ∞<< p0  and Nk ∈ , the following inequality holds 

                     ( ) ( ) ( )
p

1

0

p

1

n

1j

p

pjj n,fp,r,BC,h,f rr
−

=

≤







ℑ∑ ϕωω  , 

 where, for every j ,
jj

I ℑ⊆ is such that
j0j

IB≤ℑ . 

              ( ) ( )
p

1

p2 n,fpC
3

−≤ ϕωl . 

Analogously  
           ( ) ( )

p

1

p
2 n,fpCf

3

−≤− ϕωl ,  

hence 
          ( ) ( )

p

1

p
n,fpCf

3

−≤ ϕω  .                                                 (2.9) 
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Now, let 

( )
( )
( )


 ≤≤−−

=
,w.oxf

x1xf
:xf̂

α
 

and 

( ) ( )
( ){ }





+−∈

+−∉
=

].h,h[x0,xf̂

]h,h[xxf̂
:xg

max αα

αα  

by virtue of (2.9) we have  

                       ( ) ( )
p

1

p

n,fpCgf̂
3

−≤− ϕω                                        (2.10) 

Thus, by using (2.9),  the inequality ( ) ( )
ppr fp,rct,f ≤ϕω ,[7]  

and ( ) ( ) ( )
jjnjjj

hxx2xxxhxx
10

1
+−<∆+−<+−  .[7]          

we obtain 
( ) ( ) ( ) ( )( )

( )

( ) ( )
p

1

pp

p

1

p

1

p

1

n,fpC

f̂gf̂pC

n,f̂n,gf̂pCn,g

3

333

−

−−−

≤







 +−≤

+−≤

ϕ

ϕϕϕ

ω

ωωω

                                                           (2.11)  

It is readily that ( )ILg p∈ , that it is convex in ]y,1[ 2− and that it changes convexity 

at { }1s1s y\: Υ=Υ −

)
. If, on the other hand, f was convex in ],1[ α− , then g  would be 

concave in ]y,1[ 2−  and change convexity at 1s −Υ
)
 . Thus in any case g  had fewer 

convexity changes, so by induction, we may assume that for
( )
( )s

sA
n

d
> , there exists 

an n th degree polynomial
nq  which is coconvex with g , and satisfies the analogues 

of (1.5). Namely (by (2.11)) 

                          ( ) ( )
pp

pn
n

1
,fp,sC

n

1
,gp,1sCqg

33 







≤








−≤− ϕϕ ωω .                       (2.12) 

Note that, since ( ) 0g =α , we may assume that ( ) 0xq n =  . 

 We fix
( )
( ) 








Ν
−

−
>

α
,

1s

1sA
n

d
max  readily leads to the definition of ( )sA . Kopotun [4] 

has constructed, for 
n

q,α  sufficiently large 2≥µ , and for each n  like above, two 

polynomials nν  and
nW  of degree ( )nsC≤  such that the polynomial 

( ) ( ) ( )( ) ( ) ( ) ( )[ ]duuququq:x

x

nnnnnn ∫ ′+′−′=Ρ
α

αα ν W , 

is coconvex with f , and the following inequalities are satisfied Ix ∈ , 

( ) ( ) 0xsgnx
n

≥− αν , 

( ) ( ) ( ) ( )( ) ( ) 0xsgnqxqxqx
nnnn

≥−′−′′′′ ααν , 

                     ( ) ( ) ( ) µψαν
0

jn
sCxsgnx ≤−−  ,                                        (2.13) 

                     ( ) ( ) ( ) µψα
0

jn
sCxsgnx ≤−−W ,                                        (2.14) 
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and 
                  ( ) ( ) µψν

00
j

1

jn
hsCx

−
≤′ .                                                 (2.15) 

Observe that ( ) ( ) ( )xx:xP 1nn l+Ρ=  is of same degree of
n

Ρ  and it too is coconvex with f , 

so we conclude the induction step by proving (2.3) for
n

P , and to this end, we begin 

with  

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )






′−−+








≤







−′+′−







−+−+








≤














Ρ−−+








≤







 Ρ−−+−≤

Ρ−−=Ρ−=−

∫

∫∫

p

x

nnn

p

p

x

nnn

p

x

nn

npn

p

pn

p

pn
p

p
npnpn

duxuqxsgnxq
n

1
,fp,sC

duuuqduxuq

xsgnxqqg
n

1
,fpC

xsgnxg
n

1
,fpC

xsgnxggf̂pC

xsgnxf̂fPf

3

3

3

α

αα

νω

νν

ω

ω

α

α

α

α

α

α

ϕ

ϕ

ϕ

W

 

( ) ( ) ( )( )

( ) ( ) ,EEEp,sC:

duuuq

321

p

x

nnn

++=







−′+ ∫

α

να W
 

where we applied (2.12) and (2.10) in the first and last inequality respectively. 
Recalling that ( ) 0q

n
=α , integration by parts, (2.13) and  (2.15) yield 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
p

x

j

1

jnjn

p

x

nnnn

p

x

nnn2

duuhuqxqsC

duxuqxxsgnxq

duxuqxsgnxqE

000
∫

∫

∫

−
−≤

−−−≤

′−−=

′

α

µµ

α

α

ψψ

α

α

νν

ν

 

( ) ( ) ( )













+≤ ∫

−

p

x

jjnpn duuhuqqpsC
α

µψ
00

1,

( )( ) .,: 2,21,2 EEpsC +=  

To estimate
2

E , we need estimate
1,2

E  and
2,2

E  . 

By virtue of (2.9), (2.10) and (2.12), 
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( )

( ) ,
n

1
,fp,sC

f̂gf̂qgpCqE

p

pppnpn1,2

3








≤







 +−+−≤=

ϕω
                                                  (2.16) 

Now, to estimate
2,2

E , we separate the cases 1p ≥ , from the cases 1p0 << , and we 

reall Jensen’s inequality from[26], which is 

                
( ) ( )

( )

( )( ) ( )

( )∫

∫

∫

∫
≤

























b

a

b

a

b

a

b

a

dxxp

dxxpxf

dxxp

dxxpxf φ

φ ,                                        (2.17) 

where φ is convex in interval ( ) exfd ≤≤ , that ( ) exfd ≤≤  in bxa ≤≤ , the ( )xp is 

nonnegative and 0≡/ , and all the integrals in the inequality exists. First: 

For ∞<≤ p1 , since we have
p

.  is convex, and all integrals exist, so by applying the 

Jensen’s inequality (2.17) and ( ) 2,
1

1

≥≤∫
−

αψ α
jj chdxx we obtain 

( ) ( ) ( ) ( )
p

1

1

j

1

jn

p

x

j

1

jn2,2
duuhuqduuhuq:E

0000
∫∫
−

−−
≤=

µ

α

µ ψψ  

            ( ) .qCduuhq
pn

1

1

j

1

jpn
00

≤≤ ∫
−

− µψ  

Second: For the other case, fix 1p0 << , since ( )εψ µ
,pMhq

00
j

1

jn
∈

− , for some o>ε , then by 

choosing (for example 2q = ) from Theorem 1.1, it follows that  

( ) ( ) ( ) ( )
2

x

j

1

jn

p

x

j

1

jn
duuhuqcduuhuq

0000
∫∫

−−
≤

α

µ

α

µ ψψ , 

then we use the Jensen’s inequality (2.17), to obtain 

                        ( ) ( ) ( ) .qCduuhqduuhuq
2n

1

1

j

1

j2n

2

x

j

1

jn
0000

≤≤ ∫∫
−

−− µ

α

µ ψψ  

Hence by using Theorem 1.2, in new, we obtain 

                               ( ) ( ) ( ) .qpCqcduuhuq:E
pn2n

p

x

j

1

jn2,2
00

≤≤= ∫
−

α

µψ  

Thus, in each case, we have 
               ( ) ( )

1,2pn2,2
EpC:qpCE =≤ . 

So by virtue (2.16) 

             ( )
p

2
n

1
,fp,sCE

3 







≤ ϕω                                                 (218)  

Finally, it remains only to estimate
3E  , to do so, we notice that

nq is convex 

in ]y,1[ 2− , then
nq ′  is monotone increasing there. If ( ) 0q n ≥′ α , then by mean value 

theorem, for some ( )
0j

h, +∈ ααβ , 
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( ) ( )
( ) ( )

( )
00

0

0

jn

1

j

j

njn

nn hqh
h

qhq
qq0 +=

−+
=′≤′≤ − α

αα
βα . 

Then, by the inequality ( ) 2,
1

≥≤∑
=

αψ α
cx

n

j
j .                            

, (2.13), (3.3.14) and (2.15) we have 

( ) ( ) ( )( )

( ) ( ) ( )
p

1
p

1

1

1

1

jjn

1

j

p

x

nnn3

dxduusChqh

duuuqE

000 























+′≤

−′=

∫ ∫

∫

− −

− µ

α

ψα

α ν W

 

( ) ( ) ( )

( ) ( ) .n,fp,sC

qp,sCdxhqp,sC

p

1

pn

p

1

1

1

p

jn

3

0

−

−

≤

=









+′≤ ∫

ϕω

α
 

Similarly, if ( ) 0q n <′ α , then, for some ( )ααβ ,h
0j

−∈ , 

( ) ( )
( ) ( )

( )
00

0

0

jn

1

j

j

njn

nn hqh
h

qhq
qq0 −=

−−
=′−≤′−≤ − α

αα
βα , 

then 

( )
p

3
n

1
,fp,sCE

3 







≤ ϕω . 

This implies our assertion◊  
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