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A B S T R A C T 

The purpose of this paper is to consider a linear operator and define a certain class 
              of analytic and multivalent functions in the open unit disk associated with 

differential subordination. Also, we discuss some geometric properties for this class. 

https://doi.org/10.29304/jqcsm.2024.16.31663 

1. Introduction 

     Let          be  the  class  of  analytic  function in the open unit disk     {       | |   }  For      and 

   . Let  [   ]  be the subclass of   and 

 [   ]  {               
       

     }            

Let    denote the subclass of   of function   of the form: 
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         ∑     
             {       }                                     

 

     

 

 

     The Hadamard product (or convolution) (  ∗        of two functions  

         ∑      
             

 

     

 

is given by 

   ∗           ∑          
 

 

     

  

 
    For two functions   and  , which are analytic in  , the function   is said to be subordinate to  , or   is said to be 
superordinate to  , if there exists a Schwarz function   analytic in   with         and |    |          such that 
            . In such a case we write     or               . Furthermore, if   is univalent in  , then we have 
the following equivalent, 

                                      

    In the theory and widespread applications of fractional calculus (see, for example, [8,9]; see also the recent 
survey-cum-expository review article [19]), one of the most popular operators happens to be the Riemann-Liouville 
fractional integral operator of order               defined by 

         
 

    
∫                

 

 

                                     

In terms of the familiar (Euler's) Gamma function     . An interesting variant of the Riemann-Lioville operator 
   which is known as the Erdélyi-kober fractionl integral operator of order                  defined by 

(    
  )    

         

    
∫          

 

 

                                             

which corresponds essentially to (1.2) when        , since 

     
                                             

Motivated essentially by the special case of the definition (1.3) when              and        here we 
consider a linear integral operator           defined for a function      by (see [6]) 

              
       

             
∫               

 

 

 (   )   

                         
When evaluated by means of the Eulerian Beta –function integral: 

       

{
 
 

 
 ∫                                {           }     

 

 

        

      
                                                            

   

 

we readily find that  
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              {
   

       

       
∑

       

       
   

                 

 

     

                                                                                  

                           

where   
   is the set of nonpositive integers. It is easy to deduce from (1.4) that 

 (             )
 

 (
 

 
  )                

 

 
                                    

We also note that the linear operator          is a generalization of many other integral operators, which were 

considered in earlier works. For example, for     we have the following special: 

Putting p=1, we obtain the operator           studied by Raina and Sharma (see [16]). 

Putting            and     we obtain the operator   
        which was studied by Saitoh et al. [20]; 

Putting               and     we obtain the operator     
                    which was studied 

by Aouf et al.[1]; 

Putting           and     we obtain operator     
            which was studied by Liu and Owa[12]; 

Putting               and     we obtain operator   
            which was studied by Jung et al.[7]; 

Putting                and     we obtain the operator                 
   which was studied by 

Carlson and Shaffer[3]; 

Putting               and     we obtain the operator                 which was studied by Choi et 

al.[4];  

Putting             and    we obtain the operator          which was studied by Ruscheweyh [17]; 

Putting             and     we obtain the operator           { }  which was studied by Noor[14]; 

Putting               and      we obtain  the operator    which was studied  by Bernardi [2]; 

Putting             and     we obtain   which was studied by Libera [11]. 

 

Let   be the class of functions   with       , which are analytic and convex univalent in  .  

 

Definition 1. 1. A function      is said to be in the class               if it satisfies the subordination condition: 

                                                                         

where      and     . 

 
     A function     is said to be in the class  ∗    if 

  {
      

    
}                

for some         .  
When           ∗    is the class of starlike functions of order   in  . 
     A function     is said to be prestarlike of order   in U if  

 

           
∗       ∗                                                              
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We note this class by     .  

Clearly a function     is in the class      if and only if    is convex univalent in U and  (
 

 
)   ∗ 

 

 
 . 

Lemma 1. 1[13]. Let   be analytic in U and let   be analytic and convex univalent in   with          . If 

     
 

 
                                                                        

where                   then  

      ̃        ∫                
 

 

  

and  ̃    is the best dominant of (1.7) .  

 Lemma 1.2[18]. Let         ∗    and       . Then, for any analytic function   in  , 

 ∗     

 ∗  
      ̅̅̅(    )  

where    ̅̅ ̅(    )  denotes the closed convex hull of     . 

     Some of the following properties studied for other classes in [5], [10], [15] and [21]. 

2. Main Results 

Theorem 2.1. Let        . Then                                   

Proof. Let          and                    

 
Suppose that  

                                                                                      

Then the function   is analytic in U with         .  
Since                    then we have  

       
                   

                                                     

From (2.1) and (2.2) we get  

       
                   

                       
   

    
                                

By using Lemma 1.1 we have   

                                                                                            

Nothing that   
  

  
   and that   is convex univalent in  . 

Hence  
       

                   
                  

 
  
  
(       

                   
             )  (  

  
  
)              

Therefore                , and we obtain the result. 

Theorem 2.2. Let                ,      and 

  {       }  
 

 
                                                                 

Then 
  ∗                      

Proof. Let                  , and       . Then we have  
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                   ∗                        ∗       

           (       ) ∗                    (       ) ∗ (                  )  (       ) ∗            

where 
                                                                               

From (2.5) note that the function         has the Herglotz representation  

        ∫
     

    | |  

                                                                      

where      is a probability measure defined on the unit circle | |    and  

∫          
| |  

 

Since   is convex univalent in, it follows from (2.6) to (2.8) that  

                   ∗                        ∗       ∫                 
| |  

 

Therefore  
  ∗                       

Corollary2.1. Let                , be defined as in (1.1) and let  

  {  ∑
   

   

 

     

    }  
 

 
                                                                      

Then 

     
   

  
∫     

 

 

               

is also in the class              . 

Proof.  Let                ,  be defined as in (1.1). 

Then 

      
   

  
∫     

 

 

          ∑
   

   

 

     

   
   

 (   ∑    
 

 

     

) ∗ (   ∑
   

   

 

     

   )    ∗                                             

where 

        ∑    
 

 

     

               

and  

         ∑
   

   

 

     

        

Note that  
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  {       }    {  ∑
   

   

 

     

    }  
 

 
                                        

From (2.10) and (2.11) and by using Theorem 2.2, we get                   . 

Theorem 2.3. Let                ,      and                    .  

Then 
  ∗                      

Proof. Let                  , and       . Then, we have 

                                                                              

Now 

From              is equivalent to  

         

    
             

  

    
                   

                              

Hence  

         

    
              ∗       

  

    
    (           ∗      )

 

 

 
         

    
(       ) ∗ (                )  

  

    
(       )        ∗ (    (             )

 

) 

 
(        ) ∗        

(        ) ∗  
                                   

where  

     
         

    
             

  

    
                   

                       

Since   is convex univalent in  ,                          and    ∗             

it follows from (2.14) and Lemma 1.2 , we get the result. 

Theorem2.4. Let          and                       . If       , where  

   
 

 
(  

    

  
∫

 
    

  
  

   

 

 

  )

  

                                           

then                  . The bound    is the sharp when       
 

   
 . 

Proof.  Suppose that   
                                                                      

Let                       with      and     . 

Then, we have  

     
  

    
                                                   

By using Lemma 1.1, we have  



Zainab Swayeh Ghali, Journal of Al-Qadisiyah  for Computer Science and Mathematics00.0 (YEAR) PP.000–000                                                  7 

 

     
       

  
 
 
    

  ∫  
    

  
  

 

 

             ∗                               

where 

     
       

  
 
 
      

  ∫
 
    

  
  

   

 

 

                                                   

If         , where       is given by (2.16), then it follows from (2.19) that  

  (    )  
       

  
∫  

    

  
  

 

 

  (
 

    
)       

         
       

  
∫

 
    

  
  

   

 

 

       
 

 
   

Now, by using the Herglotz representation for    , from (2.17) and (2.18), we arrive at     

               ∗              

Since    is convex univalent in U, then                . 

For      
 

   
  and      defined by  

                 
       

  
 
 
      

  ∫
 
    

  
  

   

 

 

         

we have  

                                           

Thus                          

Also for       , we have  

  {                }  
       

  
∫

 
    

  
  

   

 

 

        
 

 
       

 which implies that                 .  

Therefore the bound    cannot be increased when      
 

   
. 

This completes the proof of the theorem.  

Theorem 2.5. Let     (          
    

    
),                 Then   

                    ̃    
      

  
 
 
        

  ∫  
      

  
  

 

 

(
    

    
)   

and  ̃ is the best dominant .  

Proof.  Let      (          
    

    
) . Then, we have  
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Suppose that   

                                                                                             

Then the function    is analytic in   with        . 

From (1.5), (2.20) and (2.21), we get  

                                       
  

      
       

    

    
                           

By Lemma 1.1, we obtain  

      ̃    
      

  
 
 
        

  ∫  
      

  
  

 

 

(
    

    
)   

and  ̃ is the best dominant . Thus we have the result. 

3.Conclusions 

    The study explored various inclusion relationships among subclasses of p-valent functions defined by a family of 
integral operators. It demonstrated that certain classes of multivalent analytic functions are closed under specific 
operations, confirming previous results and expanding the understanding of these function classes. 
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