

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

actions . Also, we illustrated the relation between them.

Our main aim is introduced some concepts in dynamical system in rough theory . We give the definition of periodic points and critical points and investigate their properties in rough

Dynamical Properties of Rough Group Spaces

Eman Hatef Fahem^a , Sattar Hameed Hamzah^b

^aDepartment of Mathematics ,College of Education ,Uinversity of Al-Qadisiyah,Iraq .Email:Math.edu.post12@qu.edu.iq

^bDepartment of Mathematics ,College of Education ,Uinversity of Al-Qadisiyah,Iraq.Email: sattar.hamzah@qu.edu.iq

ABSTRACT

MSC..

A R T I C L E I NF O

Article history: Received: 16 /08/2024 Rrevised form: 27 /08/2024 Accepted: 29 /08/2024 Available online: 30 /09/2024

Keywords:

Rough topological group

Rough action

Perodic points

Critical points

https://doi.org/ 10.29304/jqcsm.2024.16.31664

1.Introduction:

Pawlak in 1982 introduce a rough sets [1] . The applications of rough sets appeared in many fields[4,5]. In this work, we explained some properties of dynamical concepts in rough theory .We define the periodic points, and the critical points in rough action . We also explained the relation between them by giving some theorems about them.

2. Fundamental Concepts.

Some basic properties about rough sets and related concepts are introduced in this section .

[∗]Corresponding author: Eman Hatef Fahem

Email addresses: *Math.edu.post12@qu.edu.iq*

Definition 2.1:[1]

A Pawlak approximation space is a pair $W = (\mathcal{U}, \mathcal{R})$ where \mathcal{U} be a non-empty set and \mathcal{R} be an equivalence relation on U.For any sub set $\chi \subseteq U$, $\mathcal{R}(\chi)$ called lower approximation and $\overline{\mathcal{R}}(\chi)$ called upper approximation and are defined as follows:

 $\mathcal{R}(\chi) = \{ x \in \mathcal{U} : x\mathcal{R} \subseteq \chi \}$

 $\overline{\mathcal{R}}(\gamma) = \{ x \in \mathcal{U} : x\mathcal{R} \cap \gamma \neq \emptyset \}$

Where xR being the equivalence class of x with respect to R.

Remark 2.2:

We used symbol χ instead $\mathcal{R}(\chi)$ and symbol $\overline{\chi}$ instead $\overline{\mathcal{R}}(\chi)$.

Definition 2.3:[1]

Aset $\chi = (\chi, \overline{\chi})$ called rough in W if and only if $\overline{\chi} \neq \chi$, otherwise, χ is an exact set in W.

Example 2.4

Let $\mathcal{U} = \{1,2,3,4\}$ and $\mathcal{R} = \{(1,1), (2,2), (3,3), (4,4), (1,3), (3,1)\}\)$ be an equivalence relation on \mathcal{U} , then $W = (U,R)$ being an approximation space. The quotient set of W is $U\setminus\mathcal{R} = \{1,3\}, \{2\}, \{4\}\}\$, for $\chi = \{1,4\}$ we have $\chi = \{4\}$, and $\overline{\chi} = \{1,3,4\}$ i.e., $\overline{\chi} \neq \chi$ in W, then χ is rough set in W

Example 2.5

Let $\mathcal{U} = \{1,2,3\}$ and $\mathcal{R} = \{(1,1), (2,2), (3,3), (1,3), (3,1)\}$ be an equivalence relation on \mathcal{U} , then $\mathcal{W} = (\mathcal{U}, \mathcal{R})$ being an approximation space .The quotient set of W is $\mathcal{U}\setminus\mathcal{R} = \{\{1,3\},\{2\}\}\$ for $\chi = \{1,3\}$. Then $\chi = \{1,3\}$, and $\overline{\chi} = \{1,3\}$ i.e., $\overline{\chi} = \chi$ in W, then χ is exact set in $\mathcal{W} = (\mathcal{U}, \mathcal{R})$.

Definition 2.6: [1]

A rough set $A = (A, \overline{A})$ called a rough subset of rough set $B = (B, \overline{B})$ iff $A \subset B$ and $\overline{A} \subset \overline{B}$.

Definition 2.7: [1]

The union of rough sets $A = (\underline{A}, \overline{A})$ and $B = (\underline{B}, \overline{B})$ defined as $A \cup B = (\underline{A} \cup \underline{B}, \overline{A} \cup \overline{B})$ and their intersection defined as $A \cap B = (A \cap B, \overline{A} \cap \overline{B}).$

Definition 2.8 : [2]

Let $W = (U, \mathcal{R})$ be an approximation space and (\cdot) be a binary operation on U. A rough group is a subset $\Gamma = (\Gamma, \overline{\Gamma})$ of W satisfies the following conditions :

1.
$$
x \cdot y \in \overline{\Gamma}
$$
, $\forall x, y \in \Gamma$.

 $2.(x \cdot v) \cdot z = x \cdot (v \cdot z)$, $\forall x \cdot v \cdot z \in \overline{\Gamma}$.

 $3. \forall x \in \Gamma$. $\exists e \in \overline{\Gamma}$ such that $x \cdot e = e \cdot x = x$.

 $4.\forall x \in \Gamma$, $\exists y \in \Gamma$ such that $x \cdot y = y \cdot x = e$.

. The element e called the rough identity and the element y called the rough inverse of x and denoted by x^{-1} . We used the symbol xy instead of $x \cdot y$

Theorem 2.9 : [2]

A necessary and sufficient condition for a subset H of a rough group Γ to be a rough subgroup is that:

1. $\forall x,y \in \mathcal{H}$, $xy \in \overline{\mathcal{H}}$.

 $2.\forall y \in \mathcal{H}, y^{-1} \in \mathcal{H}.$

Definition 2.10 : [5]

A rough group $\Gamma = (\Gamma, \overline{\Gamma})$ with a topology τ on $\overline{\Gamma}$ and the topology τ_{Γ} on Γ induced by τ is a topological rough group if the following conditions are satisfied:

1. The multiplication mapping μ : $\Gamma \times \Gamma \rightarrow \overline{\Gamma}$, $\mu(x,y) = xy$ is continuous.

2. The inversion mapping $\mathcal{N}: \Gamma \to \Gamma$, $\mathcal{N}(x) = x^{-1}$ is continuous. We used the symbol $T \mathcal{R} \mathcal{G}$ instead of topological rough group.

Example 2.11 :

Let $\mathcal{U} = \{a, b, c, d\}$ be group with four elements and R be an equivalence relation on U such that $\mathcal{U}/\mathcal{R} =$

 $\{\{a,c\},\{b\},\{d\}\}\$. Let $\Gamma = \{b,c\}$, then $\Gamma = \{b\}$, $\overline{\Gamma} = \{a,b,c\}$. A topology τ on $\overline{\Gamma}$ is

 $\tau_{dis} = {\{\overline{\Gamma}, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}\}\$ then the relative topology is $\tau_{\Gamma} = {\{\Gamma, \phi, \{b\}, \{c\}\}\}\$. Hence Γ is a TRG .

Definition 2.12:

Let $\Gamma = (\Gamma, \overline{\Gamma})$ be a TRG and fix $q \in \Gamma$. Then

(1) The mapping $l_a: \Gamma \rightarrow \Gamma$ defined by $l_a(x) = gx$, is called rough left translate.

(2) The mapping $R_a: \Gamma \to \Gamma$ defined by $R_a(x) = x\mathscr{G}$, is called rough right translate.

(3) The mapping $\mathcal{N}: \Gamma \rightarrow \Gamma$, $\mathcal{N}(x) = x^{-1}$ is called the inversion mapping.

Theorem 2.13 :

Let $\Gamma = (\Gamma, \overline{\Gamma})$ be a TRG . Then

- (1) The rough left translate l_a is injective and continuous, $\forall \mathcal{G} \in \Gamma$.
- (2) The rough right translate R_a is injective and continuous, $\forall \phi \in \Gamma$.
- (3) The inversion $\mathcal N$ is homeomorphism.

Proof : clear.

3. Rough Actions

The definition of rough action and some of properties are introduced in this section.

Definition 3.1 :[3]

A left rough action of Γ on χ is a continuous map $\varphi : \overline{\Gamma} \times \overline{\chi} \to \overline{\chi}$ satisfies the following conditions:

i.
$$
\varphi(g_1, \varphi(g_2, x)) = \varphi(g_1 g_2, x) \quad \forall g_1, g_2 \in \Gamma \text{ and } x \in \overline{\chi}.
$$

ii. φ (e, x) = x, \forall x $\in \overline{\chi}$.

Then (χ, φ) called rough group space. For short a rough Γ - space or $\mathcal{R}\Gamma$ -space. We used the symbol φ x instead of φ (q , x). Right rough action defined in similar way.

Example3.2 :

Let $\Gamma = (\Gamma, \overline{\Gamma})$ be a TRG such that $\overline{\Gamma}$ is group. Then Γ acts on itself by multiplication, $\varphi: \overline{\Gamma} \times \overline{\Gamma} \to \overline{\Gamma}$, $(g, g') \to gg'$.

Definition 3.3:

Let $\Gamma = (\Gamma, \overline{\Gamma})$ be a TRG and (χ, φ) be $R\Gamma$ -space. Then for every $\varphi \in \Gamma$.

(i) The map $L_a: \overline{\chi} \to \overline{\chi}$; $L_a(x) = \varphi(g \ x)$ is called g-left transformation.

(ii) The map $R_a: \overline{\chi} \to \overline{\chi}$; $R_a(x) = \varphi(x, \varphi)$ is called φ -right transformation.

Theorem 3.4:

Let $\Gamma = (\underline{\Gamma}, \overline{\Gamma})$ be a TRG and (χ, φ) be $\mathcal{R}\Gamma$ -space. Then $L_g \& R_g$ are homeomorphism, for every $g \in \Gamma g$.

Proof :

The map L_a is bijective with inverse $(L_a)^{-1} = L_a^{-1}$ and both are continuous by the continuity of the action .Therefore L_a is homeomorphism.

Theorem 3.5:

Let (χ, φ) be $\mathcal{R}\Gamma$ -space. Then

(i) \mathcal{A} is open in $\overline{\chi}$ for each open set A in $\overline{\chi}$ and $\mathcal{A} \in \overline{\Gamma}$

(ii) \mathcal{A} is closed in $\overline{\chi}$ for each closed set A in $\overline{\chi}$ and $\mathcal{A} \in \overline{\Gamma}$

Proof:

By using theorem 3.4 and the fact $L_a(A) = gA$, $\forall g \in \Gamma$.

Definition 3.6 : [3]

Let (x, φ) be $\mathcal{R}\Gamma$ -space and $x \in \overline{x}$. Then

1. The rough orbit of x is the set $R\Gamma(x) = {\varphi(g, x): g \in \overline{\Gamma}}.$

2. The rough stabilizer of x is the set $RS(x) = \{ \phi \in \overline{\Gamma} : \phi(\phi, x) = x \}.$

3. The rough kernel of the action is the set \mathcal{R} ker $(\varphi) = \{ \varphi \in \overline{\Gamma} : \varphi(\varphi, x) = x, \forall x \in \overline{\gamma} \}$.

Theorem 3.7 :

Let (χ, φ) be $\mathcal{R}\Gamma$ -space such that $\overline{\Gamma}$ is a group. Then $\mathcal{R}S(x)$ being a subgroup in $\overline{\Gamma}$.

Proof :

1. we have $\varphi(g_1, x) = \varphi(g_2, x) = x, \forall g_1, g_2 \in \mathcal{RS}(x)$ and then $\varphi(g_1, g_2, x) = x$. Hence $g_1, g_2 \in \mathcal{RS}(x)$.

2. $e \in \mathcal{R}S(x)$ by definition 3.1,ii.

3. Let $g \in \mathcal{R}S(x)$. Then $\varphi(g^{-1}, x) = \varphi(g^{-1}, \varphi(g, x)) = \varphi(g^{-1}g, x) = \varphi(e, x) = x$. Thus $g^{-1} \in \mathcal{R}S(x)$. Hence $\mathcal{R}S(x)$ being a subgroup of $\overline{\Gamma}$.

4. Periodic Points and Critical Points

The definition of periodic points and critical points in $\mathcal{R}\Gamma$ -spaces and some of properties are introduced in this section.

Definition 4.1

Let $\Gamma = (\Gamma, \overline{\Gamma})$ be a TRG . A subset $H = (H, \overline{H})$ of $\Gamma = (\Gamma, \overline{\Gamma})$ called rough syndetic if a compact set K of Γ exist with $\mu(\mathcal{K},\mathcal{H})=\overline{\Gamma}.$

Example 4.2 :

Let $\mathcal{U} = Z$ and \mathcal{R} be identity relation, $\Gamma = (Z, +)$ with discrete topology, then $\overline{\Gamma} = \overline{Z} = Z$ and $\mu: \Gamma \times \Gamma \to \overline{\Gamma}$, $\mu(x, y) = x + y$. Then Z_e is rough syndetic set, since $\mathcal{K} = \{-1, 3\}$ compact set in $\Gamma = Z$ such that Γ.

Corollary 4.3:

Let $\Gamma = (\Gamma, \overline{\Gamma})$ be a TRG . Then

1. If H be a rough syndetic of Γ , then both A H , H A are rough syndetic subset of Γ .

2. If H sub group of Γ , then H be a left rough syndetic set if and only if H^{-1} be a right rough syndetic.

Proof: By using theorem 2.13.

Corollary 4.4 :

Let H be a rough syndetic subset of Γ , then AHA⁻¹ rough syndetic subset of Γ for all A.

Proof : By using theorems 2.13 and 4.3 .

Definition 4.5 :

Let (χ, φ) be a $\mathcal{R}\Gamma$ -space, a rough subset $\mathcal{P}_x = (\mathcal{P}_x, \mathcal{P}_x)$ of $\Gamma = (\Gamma, \Gamma)$ is said to be period of x under Γ if \mathcal{P}_x being a maximal set in Γ such that φ $(\mathcal{P}_x, x) = x$,

Theorem 4.6 :

Let (χ, φ) be a RF-space and $\mathcal{P}_x = (\mathcal{P}_x, \overline{\mathcal{P}_x})$ period of x. Then $\overline{\mathcal{P}_x} = \varphi_x^{-1}(x)$, where $\varphi_x : \overline{\Gamma} \to \overline{\chi}$, $\varphi_x(h) = \varphi(h, x)$.

Proof: By definition (4.5) $\overline{\mathcal{P}_x}$ being maximal subset of $\overline{\Gamma}$ so we have $\overline{\mathcal{P}_x} = \{\mathbf{h} \in \overline{\Gamma} : \phi(\mathbf{h}, \mathbf{x}) = \mathbf{x}\}\$ and then $\overline{\mathcal{P}_x} = \{\mathbf{h} \in \overline{\mathcal{P}_x}\}$ $\overline{\Gamma}$: $\phi_x(h) = x$ } = ϕ_x^-

Theorem 4.7:

Let (χ, φ) be a $\mathcal{R}\Gamma$ -space and \mathcal{P}_x period of x. Then $g^{-1}\mathcal{P}_x g$ being period of $\varphi(g, x)$, $\forall g \in \overline{\Gamma}$.

Proof:

Assume that H period of $\varphi(g, x)$, so by theorem (4.6) $\mathcal{H} = \varphi_{\varphi(g, x)}^{-1}(\varphi(g, x))$. Then $\varphi(\mathcal{H}, \varphi(g, x)) =$

Since $\varphi(\mathcal{H}, \varphi(g, x)) = \{\varphi(h, \varphi(g, x)) : h \in \mathcal{H}\}\$, Then $\varphi(hg, x) = \varphi(g, x)$ for all $h \in \mathcal{H}$, $\varphi(g^{-1}hg, x) = x$, Since \mathcal{P}_x is period of x, then g^{-1} hg $\in \mathcal{P}_x$.Now , let $k = g^{-1}$ hg then $h = gkg^{-1}$ and $\varphi(hg, x) = \varphi(h, \varphi(g, x)) = \varphi(g, x)$, then $gkg^{-1} \in \mathcal{H}$. Thus $\mathcal{H} = g\mathcal{P}_x g^{-1}$.Then $g\mathcal{P}_x g^{-1}$ is period of

Definition 4.8:

Let (χ, φ) be a $\mathcal{R}\Gamma$ -space, a rough subset $\mathcal{P} = (\mathcal{P}, \overline{\mathcal{P}})$ of $\Gamma = (\Gamma, \overline{\Gamma})$ called period of Γ if $\overline{\mathcal{P}}$ being a maximal set in $\overline{\Gamma}$ such that $\varphi(\overline{\mathcal{P}}, x) = x$, $\forall x \in \overline{\chi}$.

Theorem 4.9 :

Let (χ, φ) be a RF-space and $\mathcal{P} = (\underline{\mathcal{P}}, \mathcal{P})$ a period of $\Gamma = (\underline{\Gamma}, \Gamma)$, then $\mathcal{P} = \bigcap_{x \in \chi} \mathcal{P}_x$ where $\mathcal{P}_x = (\mathcal{P}_x, \mathcal{P}_x)$ is a period of x.

Proof: clear

Definition 4.10 :

Let (χ, φ) be a \Re F-space, a point $x \in \overline{\chi}$ called periodic if $\overline{\mathcal{P}_x}$ being rough syndetic in $\overline{\Gamma}$.

Theorem 4.11 :

Let (χ, φ) be a RF-space and P_x a period of x, then P_x being a rough subgroup in

Proof:

By definition 4.5 we have $\varphi(\overline{P_x}, x) = x$ so $\varphi(p, x) = x$, $\forall p \in \overline{P_x}$, Thus $\varphi(p^{-1}, x) = x$, hence $p^{-1} \in \overline{P_x}$. Now, if $p_1, p_2 \in \mathcal{P}_x$, then $\varphi(p_1, p_2, x) = \varphi(p_1, \varphi(p_2, x)) = x$. Hence $p_1 p_2 \in \mathcal{P}_x$. Thus \mathcal{P}_x is a rough subgroup in

Theorem 4.12 :

Let (χ, φ) be a Hausdorff $\mathcal{R}\Gamma$ -space and $x \in \overline{\chi}$ be periodic point, then $\overline{\mathcal{P}_x}$ being closed set in $\overline{\Gamma}$.

Proof:

. Since {x} is closed set and from (theorem 4.6) we have $\overline{P_x} = \phi_x^{-1}(x)$ and then $\overline{P_x}$ is closed set.

Theorem 4.13 :

Let (χ, φ) be a $\mathcal{R}\Gamma$ -space and $x \in \overline{\chi}$ be periodic point, then a compact set \mathcal{K} of $\overline{\Gamma}$ exist with $\varphi(\mathcal{K}, x) = \mathcal{R}\Gamma(x)$.

Proof:

From definition (4.10) \mathcal{P}_x is rough syndetic set, so a compact set $\mathcal{K} \subseteq \Gamma$ exist such that $\varphi(\mathcal{K}, \mathcal{P}_x) = \Gamma$, and then φ (h, x) = φ (φ ($\mathcal{K}, \mathcal{P}_x$), x) = φ (\mathcal{K}, x). Hence $\mathcal{R}\Gamma(x) = \varphi(\mathcal{K}, x)$.

Theorem 4.14 :

Let (χ, φ) be a $\mathcal{R}\Gamma$ -space and $x \in \overline{\chi}$ be periodic, then $\mathcal{R}\Gamma(x)$ being compact set.

Proof:

By theorem (4.13) a compact set $\mathcal K$ of Γ exist with $\mathcal R\Gamma(x) = \varphi(\mathcal K, x)$. Thus $\varphi_x(\mathcal K) = \varphi(\mathcal K, x) = \mathcal R\Gamma(x)$ is compact. Since $\phi_x: \Gamma \to \overline{\chi}$ is continuous

Definition 4.15:

Let (χ, φ) be a $\mathcal{R}\Gamma$ -space, apoint $x \in \overline{\chi}$ called a critical if $\varphi(g, x) = x \quad \forall g \in \overline{\Gamma}$. The set of all critical points denoted by $\mathcal{CR}(\chi)$.

Example 4.16 :

Let (χ, φ) be a $\mathcal{R}\Gamma$ -space where $\Gamma = (\mathbb{R}, \cdot)$ with discrete topology, and identity relation, $\chi = \mathbb{R}$ and $\varphi: \overline{\Gamma} \times \overline{\chi} \to \overline{\chi}$ by φ (g, h) = h, then (γ, φ) is RF-space has critical point $x = \{1\}$.

Theorem4.17 :

Let (χ, φ) be a $\mathcal{R}\Gamma$ -space and $x \in \overline{\chi}$ be a critical point then x being periodic point with period equal to $\overline{\Gamma}$.

Proof:

From definition 4.15 we have $\mathcal{R}\Gamma(x) = \{x\}$ and $\overline{\Gamma}$ maximal syndetic set such that $\omega(g, x) = x$. Therefore $\overline{\Gamma}$ being period of x, and then x being periodic.

Theorem 4.18:

Let (χ, φ) be a Hausdorff $\mathcal{R}\Gamma$ -space and $x \in \overline{\chi}$ be not critical point, then there exist two open nbhds U and V with $x \in U$, $\varphi(h, x) \in V$, $V = \varphi(h, U)$ and $U \cap V = \varnothing$.

Proof: Since x is not critical, then φ (h, x) \neq x for some h $\in \Gamma$ so there exist two open sets W_1, W_2 with $x \in W_1$, $\varphi(h, x) \in W_2$ and $W_1 \cap W_2 = \emptyset$. Thus $\varphi_{xh}(W_1)$ open contains $\varphi(h, x)$. Now, let $V = \varphi_{xh}(W_1) \cap W_2$ and $U = \varphi(h^{-1}, V)$. Then $V \subset W_2$ and $U \subset W_1$ so that U and V are disjoint and $x \in U$ and $\varphi(h, x) \in V$.

Theorem 4.19 :

Let (χ, φ) be a Hausdorff $\mathcal{R} \Gamma$ -space. Then A point x being a critical point iff each nbhd of x contains an orbit.

Proof:

From definition 4.15 we have $\mathcal{R}\Gamma(x) = \{x\}$ and if U be a nbhd of x then U contains an orbit.

\Longleftarrow

If x is not critical, then $\varphi(h, x) \neq x$ for some $h \in \overline{\Gamma}$. Thus by theorem (4.18) there exist disjoint open nbhds U of x and V of φ (h, x) such that V = φ (h, U). Hence for each y \in U, we have φ (h, y) \notin U since U \cap V = φ , So, there is a nbhd U of x don't contain orbit.

Theorem 4.20:

Let (χ, φ) be a $\mathcal{R}\Gamma$ -space, then $\mathcal{CR}(\chi)$ closed.

Proof:

Assume that $CR(\chi)$ is not closed, so there exist a net $\{x_\beta\}_{\beta \in \Omega}$ in $CR(\chi)$ with $x_\beta \to x$ and x is not critical. Then by theorem (4.18), there exist open sets U containing x and V containing $\varphi(h_\beta, x)$ with $\varphi(h_\beta, U) = V$ and U $\cap V = \varnothing$

REFERENCES :

[1] Pawlak Z., Rough sets, Int.J.Comput.Inform.Sci.,1982,11(5),341–356.

[2] Biswas R., Nanda S., Rough groups and rough subgroups, Bull.Pol. Acad. Sci. Math. ,1994,42,251–254.

[3] Nof Alharbi ,Alla Altassan ,On Topological Rough Groups, arx:1909.02500v1 [math.GR] 5Sep 2019.

[4] Nof Alharbi*, Alaa Altassan , Hassen Aydi, and Cenap Özel, Rough quotient in topological rough sets Received January 10, 2019; accepted November 4, 2019. [https://doi.org/10.1515/math-2019-0138.](https://doi.org/10.1515/math-2019-0138)

[5] Bagirmaz N.,IcenI .,Ozcan A.F. ,Topological roughgroups ,Topological.Algebra Appl. ,2016,4,31– 38,DOI:10.1515/taa-2016-0004.