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A B S T R A C T 

   In this paper, a collocation-spectral approximation is proposed for weakly nonlinear and neutral 

singular Volterra integral-differential equations with rough solutions. We used some appropriate 

transformations to transform the equation of the equation into a new equation, so that the solution 

of the new equation has a better order (smoothness) and Jacobi's orthogonal polynomial theory can 

be easily used. Under appropriate assumptions on the nonlinear part, we were able to perform an 

acceptable error analysis on the   soft and the weighted    soft. To obtain a numerical 

approximation, some numerical examples (linear and non-linear) with uneven solutions are 

considered and numerical results are also presented. Also, a comparison between the proposed 

method and some existing numerical methods is also provided. 
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1. Introduction 

Integral equations have many applications in engineering, chemistry and biology. A type of integral equations are 
weak single integral equations that appear in many problems such as heat transfer, crystal growth and fluid 
mechanics. Due to the fact that it is not possible to solve many of these equations with analytical methods, numerical 
methods have been described to solve them. Methods for approximating Abel's integral equations are described in 
[1], and Professor Jiang's solution in [2] is among those who have investigated integral equation with weakly 
singular kernel [3]. In [4], a collocation method for Volterra and Fredholm integral equations with a weak single 
kernel is stated. Volterra's nonlinear integral-differential equations with a weak single kernel are defined as follows: 

  ( )   (   ( ))  ∫   

 

 

(     ( ))       ,   - 

   Where         (     )    (   ) (     ) and functions  (     )  (   ) are smooth functions. 
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If the kernel   in Volterra's integral equations is dependent on   , then we call Volterra's integral-differential 
equations neutral, which will be as follows: 

  ( )   (   ( ))  (   )( )     ,   - 

With the initial condition, 

 ( )     

Where    is defined as follows: 

(   )( )  ∫   

 

 

.      ( )   ( )/    

And its kernel is defined as follows: 

  (        )    (   ) (        ) (     ) 

The purpose of this research, which is taken from [5], is the numerical solutions of some weak singular nonlinear 
integral equations of the first type using the spectral collocation method, which will be introduced as follows: 

 ( )   ∫  (   )  

 

 

(   ) ( ( )                     ,   - 

and 

  ( )  {
                
  | |                  

 

Where  ( ) and  (   ) are known continuous functions in  . It is assumed that  ( )     and  ( ( ))     ( ) is 
an inverse nonlinear function in terms of the unknown function  ( )      . Therefore, according to [6], some 
important forms of the function  ( ( )) will be as follows. 

For  ( )( ) , it is assumed that     ( )   ( )            (   )         , where  ( )  represents the     
derivative function of   with respect to  ;   ( ) , is the   power of  ( )      
 or any combination of these functions. Therefore, according to the combined ( )  و (( ) )   ،(( ) )    ،(( ) )   
expansion, keeping in mind the above definitions in this research, we are looking for new numerical solutions for 
some weak singular nonlinear integral equations of the first type. 

2. Nonlinear Volterra integral-differential equations with weak singular kernel 

Definition 2.1 

As we know, the integral equations of the second type with weakly singular kernel are defined as follows [7]: 

 ( )   ( )  ∫
 

√   

 

 

 ( )        ,   -                                                                                               ( ) 

They often appear in many fields of physics, mathematics and chemistry, such as heat transfer, electrochemistry, etc. 
It should be noted that   is a fixed number and         depends on the model under study. It is also assumed that 
 ( ) is sufficiently smooth, so that the existence of a unique solution for (1) is guaranteed. Integral equation in (1) is 
placed in the series of single integral equations with kernel  (   )  

 

√   
 [8]. 

Recently, it has become a considerable task to obtain the real solution or the approximate solution with high 
accuracy for these models. Collocation methods have been used to obtain the approximate solution of such 
equations. 

The nonlinear Volterra differential integral equations with weak single kernels are defined as follows: 
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  ( )   (   ( ))  ∫   (     ( ))               ,   -
 

 

                                                                                      ( ) 

Where     (     )      (    )  (     )  and          and the functions  (   )  and  (      )  are smooth 
functions. 

If the kernel     in Volterra's integral-differential equations depends on    , then we call Volterra's integral-
differential equations neutral, which will be as follows: 

  ( )   (   ( ))   (   )( )     ,   -                                                                                                      ( ) 

With initial condition: 

 ( )                                                                                                                                           ( ) 

Where    is defined as follows: 

(   )( )  ∫   (     ( ) ( )   ( ))
 

 

                                                                                                        ( ) 

And its Kernel is defined as follows: 

  (        )     (     ) (        )     (     )  

First, we will examine the characteristics of the linear shape, which is defined as follows: 

 (      )   ( )                                                                                                     ( ) 

 (        )  ∑   (   )  
 

   
                                                                                       ( ) 

We consider the given functions   and   which are continuous on   and   respectively. The collocation solution for 
(4) is calculated in the space of the following smooth piecewise polynomials: 

    
( ) (  ) {     ( )   | ̅(      (       )}                                                         ( ) 

With     and also the dimension     
( ) (  )             , the collocation answer    is defined as 

follows: 

  
 

 
( )   (    ( ))  (  )( )                                                                                       ( ) 

 ( )      

That, 

   {                        (       )} 

     (  )                      
 (    ) 

And, 

  (      )       ∑   ( )    

 

   

             ,   -                                                                                       (  ) 

That, 

  ( )  ∫   

 

 

( )                                                                                                                              (  ) 

By placing the collocation Lagrange representation in (11), with       (               ) the system of 
algebraic equations for         is obtained. From the answer    of this device, the values of the collocation 
solution are obtained from (10) and its derivative values from (9) [9]. 
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3. Numerical approximation and convergence analysis 

We consider the following nonlinear weakly integro-differential equation of Volterra: 

{
  ( )   (   ( ))  ∫ (   )   (     ( )   ( ))         ,   -

 

  
 ( )                                                                                                                

                                                                      (  ) 

Where  ( )       is an unknown function and the given continuous functions  (   )  and  (          ) 
respectively on ,   -    and (  *(   )       +)     and the relation to   and    are nonlinear. We 
assume that (12) has a unique solution and the functions 

𝜕 
 

 

𝜕   
 
 
 and 

𝜕 
 

 

𝜕 𝜕 
 respectively on ,   -    and      are 

continuous. The purpose of this chapter is to present a collocation-spectral method for the above equation and 
analyze the error of the numerical method [10]. 

As we mentioned in the previous chapter, for every integer  , the     derivative of the solution  ( ) of  (12), when 
    behaves like  ( )( )         has that in        ( )    , to overcome the unevenness problem, we 
consider the solution of the following transformations: 

   ( )                          ( )     

Using this transformation, (12) is written as follows: 

{
  ( )   (̅   ( ))  ∫ ( ( )   ( ))

  
 ̅(     ( )   ( ))  

 

  
  ( )                                                                                                     

                                                                            (  ) 

Where   is a positive integer and: 

  ( )   ( ( ))      (̅   ( ))     ( ) ( ( )  ( ))   

 ̅(     ( )   ( ))    ( )  ( ) ( ( )  ( )   ( )
 

  ( )
  ( )+ 

We rewrite the solution of the first equation of (13) as follows: 

  ( )   (̅   ( ))  ∫ (   )  
 

 

 ̂(      ( ))                 [  √ 
 

]                                                                           (  ) 

 ̂(     ( )   ( ))  {
(

 ( )   ( )

   
)  ̂(     ( )   ( ))              

 

(  ( ))
  

 ̅(     ( )   ( ))     

 

And  ̂(     ( )   ( )) is smooth, if  ̅(     ( )   ( )) is smooth. Therefore, the solution of (14) with the initial 
condition ν( )   

 
 applies in the following relationship [11]: 

  ( )   (   )                      

Therefore, the solution of the transformed equation can be smoothed with the appropriate choice of q, and therefore 
we can easily use the collocation-spectral method to solve it. When  ( ) is known, using inverse transformations: 

  ( )  
  (   ( ))

  (   ( ))
                    ( )   (   ( ))  

  ( )  
  (   ( ))

  (   ( ))
                 ( )   (   ( ))  

The value of the main function    ( ) and its derivative   ( ) are obtained. 
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3.1. Numerical approximation with Jacobi collocation method 

In this section, we use the collocation-spectral Jacobi method to numerically solve the transformed equation. We 
assume that     ( )  (   ) (   )  is a weight function where         for a given positive integer   Gauss 
points Jacobi corresponding to the weight function     ( ) is denoted by *  +   

  and its corresponding weights are 
denoted by *  +   

 . Suppose that    represents the space of all maximal polynomials of degree  . For any 
continuous function   in the Lagrange polynomial, we show it as    

        , which applies to the following 
relationship [12]: 

   
   

 (  )   (  )                  

The Lagrange interpolator polynomial can be written as follows: 

   
   

 (  )  ∑  (  )  ( ) 

 

   

 

Where   ( ) is the basis function of the Lagrange interpolator depending on the points *  +   
 . To apply spectral 

methods on the standard interval ,    - using variable transformations: 

  
√ 
 

 
(   )              

√ 
 

 
(   ) 

We write (13) with its initial condition as follows: 

  ( )   (   ( ))  ∫ (   )   ̃
 

  

(     ( )   ( ))        ,    -                                                                          (  ) 

 (  )                                                                                                                                    (  ) 

In which: 

 ( )   (
√ 
 

 
(   ))                        (   ( ))  

√ 
 

 
 ̅ (

√ 
 

 
(   )  ( ))  

 ̃(     ( )   ( ))  (
√ 
 

 
)

   

 ̂ (
√ 
 

 
(   ) 

√ 
 

 
(   )  ( ) 

 

√ 
   ( ))  

To facilitate the analysis of equations, we rewrite (15) as follows: 

 ( )      ∫   
 

  

( )   

First, we assume that (15) and (16) hold at the collocation points *  +   
  (    ), or equivalently: 

  (  )   (    (  ))  ∫   (    )   ̃(      ( )   ( ))  
  

  

                                                                        (  ) 

  (  )      ∫   ( )
  

  

                                                                                                                   (  ) 

To calculate the integral expressions in the above equations by Gauss integration rule, we move the integration 
interval ,     - to the interval [-1,1]. Therefore, based on this idea, using variable change: 

   (    )  
    

 
  

    

 
                                                                                                        (  ) 

The integral expressions in (17) and (18) are written as follows: 
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∫   (    )   ̃(      ( )   ( ))  
  

  

 ∫  (   )    (    (    )  ( (    ))   ( (    )))  
  

  

                                             (  ) 

  .    (    )  ( (    ))   ( (    ))/     

∫   ( )   
    

 
∫    (    )  

 

  

  

  

                                                                                                         (  ) 

In which, 

.    (    )  ( (    ))   ( (    ))/  (
    

 
*

   

 ̃ .    (    )  ( (    ))   ( (    ))/ 

Using Gauss integral formulas, we approximate the integral expressions, in which case the above equations are 
written as follows: 

∫  (   )    .    (    )  ( (    ))   ( (    ))/   
  

  

 

 ∑   . (    ̅ )  . (    ̅ )/    . (    ̅ )//

 

   

 ̅                                                                                        (  ) 

∫   ( (    ))   ∑    . (    ̂ )/ ̂ 

 

   

  

  

                                                                                                      (  ) 

Where * ̅ +   
   and { ̂ }

   

  
respectively represent Gauss-Jacobi points corresponding to weights      ( ) and 

    ( ) [13]. 

Now we assume that   
  and    are the approximate values of the functions  (  ) and   (  ), respectively. We expand 

the functions   ( ) and  ( ) using Lagrange interpolator polynomials as follows: 

  ( )    
 ( )  ∑   

 

 

   

  ( )            ( )    
 ( )  ∑   

 

   

  ( )                                                                           (  ) 

In this case, Jacobi's collocation method is used to search for the values *  
 +   

   and *  
 +   

  , which apply to the 
following collocation equations: 

  
   (     )  ∑   

 

   

(    (    ̅ ) ∑   

 

   

   . (    ̅ )/  ∑   
 

 

   

   . (    ̅ )/   ̅ )                                                            (  ) 

       
    

 
∑   

 

 

   

(∑  

 

   

   ( (    ̂ ) ̂ ),                                                                                              (  ) 

The above equations form a        equation device with        unknowns. After solving this device and finding 
the unknowns   

  and   , we can obtain the approximate solutions of   
 ( ) and    

 ( ) by placing these values in 
(24) [14]. 

Note 3.1 

Since the degree of polynomials               does not exceed  , therefore we have: 

∫ ∑   
 

 

   

  

  

  ( )   
    

 
∫ ∑   

   

 

   

 

  

( (    ))   
    

 
∑   

 

 

   

(∑    

 

   

( (    ̂ ) ̂ ), 
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4. Numerical examples 

In this part, in order to show the efficiency and accuracy of Jacobi's collocation approximation for the solution of 
non-linear weakly Volterra integro-differential equations, some examples of these equations are solved with this 
approximation method and we compare the obtained numerical results with the numerical results of the proposed 
methods in other references. To analyze the behavior of the approximate solutions   ( ) and    ( ), we define the 
softs    and    for them as follows: 

‖  ‖ 
    (    )   (∫ |  |     

 

  

( )  )

 

 

  

‖  ‖ 
    (    )   (∫ |   |

     
 

  

( )  )

 

 

  

‖  ‖  
 (    )     

     
  

‖   ‖  
 (    )     

     
|  (  )     (  )|  

Where     ( )  (   ) (   )        , it should be noted that all numerical calculations using It was done 
by Mathematica software. 

Example 4.1 

We consider the following nonlinear weakly integro-differential equation of Volterra: 

{
  ( )   (   ( ))  ∫ (   ) 

 

  (     ( )   ( ))         ,   - 
 

  
 ( )                                                                                                        

                                                                             (  ) 

In which, 

 (     ( )   ( ))  
 

 
  

 

   
 

 . 
 

   
 

  
 

   
 

 / . 
 

   /
 

( 
  ( 

 
 

  
)
  ( )     (  

 

 
   ( ))  +  

 (   )  
 

 
 

 

  
 

   
    ( ) 

 

 (    √  (  
 

 

 
√ 

 0
 

 
1
), 

The exact solution of this equation is equal to  ( )   √ 
 

        in order to overcome the unevenness of the 
derivatives, we use the following variable change for the solution of this equation near    : 

   ( )                 ( )      

By using this variable change, the solution of the modified equation is equal to  ( )   ( ( ))      , in order to 
numerically approximate the solution of this equation and also the derivative of this solution, first this transferred 
the equation to the interval −1,1 using variable change, 

                        

And then we approximate the solution of the modified equation using the collocation method. 

 ( )   (   )  

Table 1 shows the approximate solution error   ( ) and its derivative    ( ) for different values of  . 

In Fig. 1, we have drawn the corresponding numerical error in the    and     software. These numerical results 
show that with the increase of  , the error decreases rapidly, so the speed of the spectral method can be seen from 
these results. 
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Table 1 - Error of   ( ) and    ( ) for    
  

  
 and    

 

  
 values in Example 4.1. 

‖      ‖  ‖      ‖
     ‖    ‖  ‖    ‖

       

                                       2 

                                        3 

                                        4 

                                        5 

                                       6 

                                        7 

                                       8 

 

 

Fig. 1 -         
  errors for the function   ( ) (left) and its derivative    ( ) (right) in Example 4.1. 

In Fig. 2, we have drawn the exact solution of  ( ) and its derivative   ( ), as well as the approximations of these 
functions, i.e.   ( ) and    ( ). As can be seen, for a small value of      , the approximate and original solutions 
are completely matched with each other, which indicates the high accuracy of the approximation. 

 

    Fig. 2 - Comparison of   and its approximation    (left) and comparison of    and its approximation   
  

(right) in Example 4.1. 
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Example 4.2 

We consider the following weakly nonlinear integro-differential equation of Volterra: 

{
  ( )   (   ( ))  ∫ (   ) 

 

  (     ( )   ( ))                 ,   -
 

  
 ( )                                                                                                            

                                                                     (  ) 

In which: 

 (     ( )   ( ))    ( ) 

 (   ( ))  
 

 
  

 

  
 

  
 

 

  

The exact answer of this equation is equal to  ( )  √  . As in the previous example, to overcome the unevenness of 
the derivatives of the solution of this equation near    , we use the following variable change. 

By using this variable change, the solution of the changed equation is equal to  ( )   ( ( ))   , in order to 
numerically approximate the solution of this equation as well as the derivative of this solution, first this equation by 
using the variable change to the interval ,    - transfer data. 

  
   

 
                               

   

 
  

And then we approximate the solution of the modified equation using the collocation method. 

 ( )   (
   

 
*  

Table 2 shows the approximate answer error   ( ) and its derivative    ( ) for different values of      . 

Table 2 - Error of   ( ) and    ( ) for    
  

  
 and    

  

  
 values in Example 4.2. 

‖      ‖  ‖      ‖
     ‖    ‖  ‖    ‖

       

                                       2 

                                         3 

                                        4 

                                           5 

                                            6 

                                            7 

                                            8 

In Fig. 3, we have drawn the corresponding numerical error in the    and    softs. These numerical results show 
that with the increase of  , the error decreases rapidly, and therefore the speed of the spectral method can be seen 
from these results. 
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Fig. 3 -    and  
    
  errors for the function   ( ) (left) and its derivative    ( ) (right) in Example 4.2. 

5. Conclusion  

In this paper, the collocation method for obtaining an approximate solution and an approximate derivative of the 
solution of weak nonlinear neutral integral-differential equations with smooth solutions is explained in full detail. 
This method is used by changing some variables in order to change the original equation to a new equation that has 
a better order, and Jacobi's orthogonal polynomial theory can be easily used. With reasonable assumptions about 
non-linearity, we proved the convergence of the method and obtained the error in the soft    and the weighted soft 
  . Numerical examples confirm the theoretical results and show the significant improvement of the proposed 
methods over some other methods. 
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