

Available online at www.qu.edu.iq/journalcm

JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS

ISSN:2521-3504(online) ISSN:2074-0204(print)

On e*-Singular-Hollow-Lifting Modules

Ali A. Kabban¹, Wasan Khalid²

^{1,2}Department of Mathematics, University of Baghdad, College of Science. Baghdad, Iraq. Email: alikuban5@gmail.com

ARTICLEINFO	ABSTRACT
Article history: Received: 27 /08/year Rrevised form: 04 /09/2024 Accepted: 12 /09/2024 Available online: 30 /09/2024	This research introduces the innovative notions in module X over a ring R. The first is called F I-lifting module, which is an inference of e*S-lifting. The second concept is e*S-hollow-lifting, which is a generalization of the e*S-lifting module. We will illustrate a few of these concept attributes.
Keywords:	MSC.
e*S-small submodules	
F I-lifting modules e^{*S}	
e*S-lifting modules	
Hollow-lifting modules	
e*S-hollow-lifting modules	

https://doi.org/10.29304/jqcsm.2024.16.31669

1. Introduction

In this paper X will be a unitary left R-module, and R is any ring with identity. Notationally, asubmodule T of an R-module X is considered small, which is well known. T \ll X, if for all submodule of X, T + L = X, then L = X, [1],[2]. A new submodule type was created by Baanoon in [3] and it is a generalization of essential submodule called e*-essential as follows. For any non-zero cosingular submodule B of X, if $A \cap B \neq 0$, we say that A is an e*-essential submodule in X. Denoted by $A \leq_{e*} X$. This is the definition of the singular submodule: $Z(X) = \{m \text{ in } X: \operatorname{ann}(m) \leq_{e} R\}$ [4]. We generalized Z(X) to $Z_{e*}(X)$, by applying e*_essential submodules. Let X be a module define $Z_{e*}(X) = \{m \text{ in } X: \operatorname{ann}(m) \leq_{e*} R\}$, X is called e*_singular module if $Z_{e*}(X) = X$, and X is called e*_nonsingular module if $Z_{e*}(X) = 0$ [5]. The generalization of small submodule known as e*S-small submodule is introduced in [5], by A. Kabban and W. Khalid. A submodule T of X is called e*S-small submodule of X (signified by $Z_{e*}(X) = Z_{e*}(X) = Z_{e*}($

*Corresponding author: Ali A. Kabban

Email addresses: alikuban5@gmail.com

W, $H \subseteq X$. Such that $W \subseteq H \subseteq X$, then W is called e*S-coessential submodule of H in H in H in H in H in H is called e*S-coclosed submodule of H in H in H in H is called e*S-coclosed submodule of H in H in H in H is called e*S-coclosed submodule of H in H in H in H is called e*S-coclosed submodule of H in H in H in H is called e*S-supplement of H in H in H in H is called e*S-supplement, then H is called e*S-supplemented module [9]. An H is called H in H is called H in H is called H in H is an e*S-supplement which is a direct summand of H in H is adirect summand H if H is an e*S-supplemented module if for each submodule H of H there is adirect summand H of H such that H is an e*S-supplemented module if for each submodule H of H there is a submodule H of H such that H is an e*S-supplemented module if for each submodule H of H there is a submodule H of H such that H is an e*S-supplemented module if for each submodule H of H there is a submodule H of H such that H is called e*S-lifting if for each submodule H of H there is a submodule H of H such that H is called duo if each submodule H of H is a fully invariant if H and H is a coessential submodule H of H in H in H is research we will present e*S-hollow-lifting as a generalization of this last concept. We will give properties and examples of it with proofs.

2. Fully invariant e*_Singular-lifting module.

This section presents the notion of fully invariant e*_Singular-lifting modules, including examples and fundamental characteristics.

Remember that amodule X is called FI-lifting if for each a fully invariant submodule L of X, there is adecomposition $X = T \oplus V$, such that $T \subseteq L$ and $L \cap V \ll V$. See [12].

Definition 2.1: An R-module X is called **Fully invariant e*_Singular-lifting module** (shortly $\underset{e*S}{F}$ I-lifting module) if for each fully invariant submodule L of X, there exists asubmodule T of L such that $X = T \oplus V$, where $V \subseteq X$ and $L \cap V \ll_{e*S} V$.

The following proposition gives characterization of F I-lifting modules.

Remark 2.2: Let X be any R-module. Then X is F_{e+S} I-lifting module if and only if for each fully invariant submodules L of X, there is a submodule T of L such that $X = T \oplus V$, where $V \subseteq X$ and $L \cap V \ll_{e+S} X$.

Proof: Clear by Proposition 13 [5].

Examples and Remarks 2.3:

- 1) Z_6 as Z-module is $\underset{e*S}{F}$ I-lifting module.
- 2) Q as Z-module is $\underset{e*S}{\text{FI-lifting module}}$.
- 3) Z as Z-module isn't FI-lifting. Since the only direct summand contained in the fully invariant submodule 2Z is $\{0\}$, and 2Z is not e*S-small submodule in Z. See examples and remarks 2 [5].
- 4) It is clear that every e*S-lifting is F I-lifting module. But the converse need not be accurate in general. For example, let $X = Z_8 \oplus Z_2$ as Z-module. Since Z_8 and Z_2 are F I-lifting modules, then X is F I-lifting, see Theorem 2.11, but not e*S-lifting.
- 5) Let X be a duo module. Then X is e*S-lifting if and only if X is F_{e*S} I-lifting.
- 6) F_{ex} I-lifting modules are closed under isomorphisms.

Theorem 2.4: The statements that follow are equivalent if X is an R-module.

- 1) X is $\underset{e*S}{\text{F I-lifting module}}$.
- 2) Each fully invariant submodule N of X can be written as N = K \oplus S, where K is a direct summand of X and S \ll_{e*S} X.
- 3) Each fully invariant submodule N of X can be written as N = K + S, where K is a direct summand of X and $S \ll_{e*S} X$.
- 4) For each fully invariant submodule N of X, there is a direct summand K of X such that $K \subseteq N$ and $K \subseteq_{e*S_{ce}} N$ in X.

Proof: $1\Rightarrow 2$) Assume that X is a F I-lifting module and let N be afully invariant submodule of X, then there is a submodule K of N such that $X = K \oplus K$, $K \subseteq M$ and $K \cap K \ll_{e*S} K$, by Remark (2.2). Now, $K = K \cap K \cap K$ ($K \oplus K$) = $K \oplus K$ ($K \oplus K$), by Modular law. Hence, we get the result.

2⇒3) Obvious.

 $3\Rightarrow 4$) Let N be afully invariant submodule of X. By (3), N = K + S, where K is adirect summand of X and S \ll_{e*S} X. So, X = K \oplus K, K \subseteq X. Since K is e*S-supplement of K in X and S \ll_{e*S} X, then K is an e*S-supplement of K + S = N in X, by Proposition (2.10) [9]. To show that K $\subseteq_{e*S_{ce}}$ N in X, let φ : K $\to \frac{X}{K}$ be a map defined by $\varphi(x) = x + K$, for every $x \in K$. Clearly φ is an isomorphism. Since N $\cap K \ll_{e*S} K$, then $\varphi(N \cap K) = \frac{N}{K} \ll_{e*S} \frac{X}{K}$. Thus, K $\subseteq_{e*S_{ce}}$ N in X.

 $4\Rightarrow 1$) Let N be a fully invariant submodule of X. By (4) there exists a direct summand K of X such that $K\subseteq \mathbb{N}$ and $\frac{\mathbb{N}}{\mathbb{K}}\ll_{e*S}\frac{X}{\mathbb{K}}$. We want to prove that $\mathbb{N}\cap \hat{\mathbb{K}}\ll_{e*S}\hat{\mathbb{K}}$. Let $\hat{\mathbb{K}}=(\mathbb{N}\cap \hat{\mathbb{K}})+\mathbb{B}$ with $Z_{e*}(\frac{\hat{\mathbb{K}}}{\mathbb{B}})=\frac{\hat{\mathbb{K}}}{\mathbb{B}}$, where $\mathbb{B}\subseteq \hat{\mathbb{K}}$. Since $\mathbb{K}=\mathbb{K}+(\mathbb{N}\cap \hat{\mathbb{K}})+\mathbb{B}$, then $\frac{X}{\mathbb{K}}=\frac{\mathbb{K}+(\mathbb{N}\cap \hat{\mathbb{K}})+\mathbb{B}}{\mathbb{K}}=\frac{\mathbb{K}+(\mathbb{N}\cap \hat{\mathbb{K}})}{\mathbb{K}}+\frac{\mathbb{B}+\mathbb{K}}{\mathbb{K}}$. Since $\mathbb{K}\subseteq \mathbb{K}+(\mathbb{N}\cap \hat{\mathbb{K}})\subseteq \mathbb{N}$ and $\mathbb{K}\subseteq_{e*S_{ce}}\mathbb{N}$ in X. Then $\mathbb{K}\subseteq_{e*S_{ce}}\mathbb{K}+(\mathbb{N}\cap \hat{\mathbb{K}})$ in X, by Proposition (3.5) [6], and $\frac{X}{\mathbb{K}+\mathbb{B}}=\frac{\mathbb{K}+\hat{\mathbb{K}}}{\mathbb{K}+\mathbb{B}}=\frac{\hat{\mathbb{K}}+(\mathbb{K}+\mathbb{B})}{\mathbb{K}+\mathbb{B}}\cong\frac{\hat{\mathbb{K}}}{\hat{\mathbb{K}}\cap (\mathbb{K}+\mathbb{B})}=\frac{\hat{\mathbb{K}}}{\mathbb{K}}$, by (the Second Isomorphism Theorem and Modular law). Since $Z_{e*}(\frac{\hat{\mathbb{K}}}{\mathbb{B}})=\frac{\hat{\mathbb{K}}}{\mathbb{B}}$, then $Z_{e*}(\frac{X}{\mathbb{K}+\mathbb{B}})=\frac{X}{\mathbb{K}+\mathbb{B}}$, since $\frac{\mathbb{K}+(\mathbb{N}\cap \hat{\mathbb{K}})}{\mathbb{K}}\ll_{e*S}\frac{X}{\mathbb{K}}$, and hence $\frac{X}{\mathbb{K}}=\frac{\mathbb{B}+\mathbb{K}}{\mathbb{K}}$, implies that $X=\mathbb{B}+\mathbb{K}$. Since $\mathbb{B}\subseteq \hat{\mathbb{K}}$ and $\mathbb{K}\cap \hat{\mathbb{K}}=\{0\}$, then $\mathbb{B}\cap \mathbb{K}=\{0\}$ and hence $\mathbb{X}=\mathbb{K}\oplus \mathbb{B}$, that is $\hat{\mathbb{K}}=\mathbb{B}$. Thus, \mathbb{X} is \mathbb{F} I-lifting module.

Theorem 2.5: The statements that follow are equivalent if X is an R-module.

- 1) X is F_{e*S} I-lifting module.
- 2) Each fully invariant submodule V of X has an e*S-supplement T in X, where $T \subseteq X$ such that $T \cap V$ is adirect summand of V.

Proof: 1 \Rightarrow 2) Let X be an F_{e*S} I-lifting module and V is fully invariant submodule of X. By Theorem 2.4, there exists adirect summand A of X such that $A \subseteq V$, $X = A \oplus T$ and $A \subseteq_{e*S_{ce}} V$ in X and $V \cap T \ll_{e*S} T$. Now $V = V \cap X = V \cap (A \oplus T) = A \oplus (T \cap V)$, by Modular law. Since $A \subseteq V$, then X = V + T and $Y \cap T \ll_{e*S} T$. Hence T is e*S-supplement of Vin X and $Y \cap V$ is a direct summand of V.

2⇒1) Let V be a fully invariant submodule of X. By (2) V has e*S-supplement T in X such that T ∩ V is a direct summand of V. Then X = T + V, T ∩ V \ll_{e*S} T, and V = (T ∩ V) \oplus Y, where Y \subseteq V. Since X = T + V = T +

 $(T \cap V) + Y = T + V$ and $\{0\} = T \cap V \cap Y = T \cap Y$. Then $X = T \oplus Y$ and $T \cap V \ll_{e*S} T$. Therefore, X is F I-lifting module.

Proposition 2.6: Let X be any R-module. Then X is F_{e*S} -lifting module if and only if for each fully invariant submodule L of X, there is an idempotent $\varphi \in End(G)$ such that $\varphi(G) \subseteq L$ and $(I - \varphi)$ $(L) \ll_{e*S} (I - \varphi)$ (X).

Proof: \Rightarrow) Suppos that X is F I-lifting module and let L be a fully invariant asubmodule of X. By Theorem 2.5, L has e*S-supplement T in X such that L \cap T is a direct summand of L, then X = L + T, T \cap L \ll_{e*S} T and L = (L \cap T) \oplus Y, where Y \subseteq L. Now X = L + T = (L \cap T) + Y + T = Y + T, and L \cap T \cap Y = T \cap Y = {0}, implies that X = T \oplus Y. Consider the projection map φ : X \rightarrow Y it is clear that φ is an idempotent and φ (X) \subseteq Y \subseteq L. It is sufficient to show that (I $-\varphi$) (L) \ll_{e*S} (I $-\varphi$) (X). One can easily show that (I $-\varphi$) (L) = L \cap (I $-\varphi$) (X) = L \cap T \ll_{e*S} T = (I $-\varphi$) (X).

 \Leftarrow) Let L be a fully invariant submodules of X. By our assumption there is an idempotent $\varphi \in \text{End }(X)$ such that $\varphi(X) \subseteq L$ and $(I - \varphi)(L) \ll_{e * S} (I - \varphi)(X)$, clearly that $X = \varphi(X) \oplus (I - \varphi)(X)$ and $L \cap (I - \varphi)(X) = (I - \varphi)(L) \ll_{e * S} (I - \varphi)(X)$. Therefore, X is $F_{e * S}$ I-lifting module.

The following Proposition gives another characterization of $\underset{e*S}{\text{F I-lifting module.}}$

Proposition 2.7: The statements that follow are equivalent if X is an R-module.

- 1) X is $\underset{e*S}{F}$ I-lifting module.
- 2) Each fully invariant submodule of X has a direct summand e*S-supplement.
- 3) For every fully invariant submodule N of X, there is an e*S-coclosed submodule T of X and a direct summand e*S-supplement L of T such that $T \subseteq_{\mathbf{e} * \mathbf{S}_{ce}} \mathbb{N}$ in X and each homomorphism $f: X \longrightarrow \frac{X}{T \cap L}$ can be lifted to an endomorphism $g: X \longrightarrow X$ such that $g(x) + (T \cap L) = f(x)$ for all $x \in X$.

Proof: $1 \Leftrightarrow 2$) Suppose that X is $\underset{e*S}{F}$ I-lifting and let N be a fully invariant submodule of X, then there is a direct summand T of X such that $T \subseteq N$, $X = T \oplus L$, where $L \subseteq X$ and $N \cap L \ll_{e*S} L$. Clearly that L is an e*S-supplement of N. Conversely, let N be a fully invariant submodule of X. By our assumptions, there is a direct summand T of X such that $X = T \oplus L$ and T is an e*S-supplement of N in X. It is enough to show that $L \subseteq N$. Let the projection map $P: M \longrightarrow L$. Since N is fully invariant submodule of X, $P(N) = (N + T) \cap L = X \cap L = L \subseteq N$. Thus, X is $\underset{e*S}{F}$ I-lifting module.

- 1⇒3) Let N be a fully invariant submodule of X. Since X is F I-lifting module, there exists a decomposition $X = T \oplus L$ where $T \subseteq N$ and $T \subseteq_{\mathbf{e} * \mathbf{S}_{ce}} N$ in X, then T is $\mathbf{e} * \mathbf{S}$ -coclosed submodule of X and it is clear that L is a direct summand $\mathbf{e} * \mathbf{S}$ -supplement of T in X. Since $\mathbf{T} \cap \mathbf{L} = \{0\}$, then the result is obtained.
- 3⇒1) Let N be a fully invariant submodule of X. By (3) there is an e*S-coclosed submodule T of X and a direct summand e*S-supplement L of T such that $T \subseteq N$ and $T \subseteq_{e*S_{ce}} N$ in X. It follows from ([13], lemma 2.2), that T is a direct summand of X. Thus, X is F_{e*S} I lifting module.

Proposition 2.8: Let X be an R-module. Consider the following statement.

- 1) X is e*S-lifting module.
- 2) X is $\bigoplus e^*S$ -supplemented module.
- 3) X is $\underset{e*S}{\text{F I-lifting module.}}$ Then (1) \Rightarrow (2) \Rightarrow (3). If X is a duo module, then (3) \Rightarrow (1).

Proof: 1⇒2) Clear.

2⇒3) Assume that X is \bigoplus e*S-supplemented and let L be a fully invariant submodule of X, then L has an e*S-supplement which is a direct summand, hence X is F I-lifting module, by Proposition 2.7.

3⇒1) Clear.

Proposition 2.9: Let X be an $\underset{e*S}{H}$ -Supplemented module such that every direct summand of X is e^* _Singular, then X is $\underset{e*S}{F}$ _I-lifting module.

Proof: Let X be an $\underset{e*S}{H}$ -Supplemented and let N be a fully invariant submodule of X, there is a direct summand V of X such that $X = V \oplus K$, where $K \subseteq X$, and N $\beta_{e*S}V$. Since X = V + K and $\frac{X}{K} \cong V$ is e^* _Singular. Let $\frac{X}{N} = \frac{V+K}{N} = \frac{N+V}{N} + \frac{N+K}{N}$ with $Z_{e*}\left(\frac{X}{N+K}\right) = \frac{X}{N+K}$ and $\frac{N+V}{N} \ll_{e*S} \frac{X}{N}$, then X = N + K. And $N = N \cap X = N \cap (V \oplus K) = (N \cap V) \oplus (N \cap K)$, so $\frac{N+V}{V} \cong \frac{N}{N \cap V} \cong N \cap K$. Since $\frac{N+V}{V} \ll_{e*S} \frac{X}{V}$, thus $N \cap K \ll_{e*S} X$. Then K is an e^* S-supplement of N in X. Thus, by Proposition 2.7, X is F_I-lifting module.

Proposition 2.10: Let X be a $\underset{e*S}{F}$ I-lifting module and let V be a fully invariant direct summand of X, then V is $\underset{e*S}{F}$ I-lifting module.

Proof: Let $X = V \oplus L$ be a F I-lifting and let V be a fully invariant submodule of X. To show that V is a F I-lifting, let Y be a fully invariant submodule of Y, then Y is a fully invariant submodule of Y, by (Lemma 1.1 [14]), and hence $Y = K \oplus S$, where Y is a direct summand of Y and Y are Y and Y are Y and Y and Y and Y are Y and Y and Y and Y are Y and Y are Y and Y and Y are Y are Y and Y are Y are Y and Y are Y and Y are Y are Y and Y are Y are Y and Y are Y and Y are Y are Y and Y are Y are Y are Y and Y are Y and Y are Y and Y are Y and Y are Y are Y are Y are Y and Y are Y are Y are Y and Y are Y a

The following Theorem shows that a finite direct sum of $\underset{e*S}{\text{F I-lifting modules is }} F_{e*S}$ I-lifting.

Theorem 2.11: Let $X = \bigoplus_{i=1}^{n} X_i$ be a direct sum of F_{e*S} I-lifting modules. Then X is F_{e*S} I-lifting.

Proof: Let L be a fully invariant submodule of X, then $L = \bigoplus_{i=1}^n (L \cap X_i)$ and $L \cap X_i$ is a fully invariant submodule of X_i , $\forall i = 1, ..., n$, by (Lemma 1.1 [14]). Since each of X_i is F_i -lifting, then $L \cap X_i = K_i \oplus T_i$, where K_i is a direct summand of X_i and $T_i \ll_{e*S} X_i$, $\forall i = 1, ..., n$. Let $K = \bigoplus_{i=1}^n K_i$ and K_i and K_i is a direct summand of K_i and K_i and K_i is a direct summand of K_i and K_i and K_i is a direct summand of K_i and K_i and K_i is a direct summand of K_i is a dire

Proposition 2.12: Let $X = X_1 \oplus X_2$. Then X_2 is F I-lifting module if and only if for each a fully invariant submodule $\frac{N}{X_1}$ of $\frac{X}{X_1}$, there exists a direct summand K of X such that $K \subseteq X_2$, X = K + N and $N \cap K \ll_{e*S} K$.

Proof: \Rightarrow) Assume that X_2 is F_{e*S} I-lifting and let $\frac{N}{X_1}$ be a fully invariant submodule of $\frac{X}{X_1}$. Then $N \cap X_2$ is a fully invariant submodule of X_2 , see [15]. Since X_2 is F_{e*S} I-lifting, then there exists a direct summand K of X_2 such that $K \subseteq N \cap X_2$, $X_2 = K \oplus K$, $X_2 = (N \cap X_2) + K$ and $N \cap K \ll_{e*S} K$. Clearly that X = K + N.

 \Leftarrow) To show that X_2 is F_1 -lifting, let N be a fully invariant submodule of X_2 . Then $\frac{N \oplus X_1}{X_1}$ is a fully invariant submodule of $\frac{X}{X_1}$, see [15]. By hypothesis, then there exist a direct summand K of X such that $K \subseteq X_2$, $X = K + N + X_1$ and $K \cap (N + X_1) \ll_{e * S} K$. Now, $X_2 = X_2 \cap X = X_2 \cap (K + N + X_1) = K + N$. It is easy to show that K is an e * S-supplement of K in K in K in K is an K in K in

Proposition 2.13: Let X be an $\underset{e*S}{F}$ I-lifting module. Then $\frac{X}{N}$ is $\underset{e*S}{F}$ I-lifting for every fully invariant submodule N of X.

Proof: Let $\frac{L}{N}$ be a fully invariant submodule of $\frac{X}{N}$. Then by Lemma 1.1 [14], L is fully invariant submodule of X. Since X is F I-lifting module there is $B \subseteq L$ such that $X = B \oplus A$, for some submodule A of X, and $\frac{L}{B} \ll_{e*S} \frac{X}{B}$. By Lemma 5.4 [11], we have $\frac{X}{N} = \frac{B+N}{N} \oplus \frac{A+N}{N}$ with $\frac{B+N}{N} \subseteq \frac{L}{N}$. So, $\frac{\frac{L}{N}}{\frac{B+N}{N}} \cong \frac{L}{B+N}$ and $\frac{\frac{X}{N}}{\frac{B+N}{N}} \cong \frac{X}{B+N}$, since $\frac{L}{B} \ll_{e*S} \frac{X}{B}$, by proposition 12 [5], $\frac{L}{B+N} \ll_{e*S} \frac{X}{B+N}$. Therefore, $\frac{X}{N}$ is F I-lifting module.

3. e*_Singular-hollow-lifting Module.

Here we define some of the basic characteristics of e*S-hollow-lifting modules. Moreover, we will show some new results.

Definition 3.1: Let X be any R-module. Then X is called **e*_Singular-hollow-lifting** module (denoted by e*S-hollow-lifting), if for each submodule L of X with $\frac{X}{L}$ is e*S-hollow, there is a direct summand Y of X such that $X = Y \oplus V$, for some $V \subseteq X$ and $Y \subseteq_{\mathbf{e} * \mathbf{S}_{Ce}} L$ in X.

We then provide some e*S-hollow-lifting module characterization.

Theorem 3.2: Any R-module X is e*S-hollow-lifting if and only if for each submodule L of X with $\frac{X}{L}$ e*S-hollow, there exists a direct summand Y of L such that X = Y \oplus V, for some V \subseteq X and L \cap V \ll_{e*S} V.

Proof:⇒) Let L be a submodule of X with $\frac{X}{L}$ e*S-hollow. Since X is e*S-hollow-lifting, then there exists a direct summand Y of X such that $Y \subseteq_{e*S_{ce}} L$ in X and $X = Y \oplus V$, where $V \subseteq X$, $L = L \cap X = L \cap (Y \oplus V) = Y \oplus (L \cap V)$, by Modular law. We want to show that $L \cap V \ll_{e*S} V$. Where $U \subseteq V$, Let $(L \cap V) + U = V$, with $Z_{e*}(\frac{V}{U}) = \frac{V}{U}$. Then X = L + U. Now $\frac{X}{Y} = \frac{L+U}{Y} = \frac{L}{Y} + \frac{U+Y}{Y}$, since $\frac{X}{U+Y} = \frac{Y+V}{U+Y} = \frac{(U+Y)+V}{U+Y} \cong \frac{V}{V \cap (U+Y)} = \frac{V}{U+(Y\cap V)} = \frac{V}{U}$, by (Second Isomorphism and Modular law). Since $Z_{e*}(\frac{V}{U}) = \frac{V}{U}$, then $Z_{e*}(\frac{X}{U+Y}) = \frac{X}{U+Y}$ and $Z_{e*}(\frac{X}{U+Y}) = \frac{X}{U+Y}$ and $Z_{e*}(\frac{X}{U+Y}) = \frac{X}{U+Y}$, so $Z_{e*}(\frac{X}{U+Y}) = \frac{X}{U+Y}$ and $Z_{e*}(\frac{X}{U+Y}) = \frac{X}{U+Y}$.

 \Leftarrow) Let L be a submodule of X with $\frac{X}{L}$ is e*S-hollow, then by our assumption, there exists adirect summand Y of L such that X = Y \oplus V, where V \subseteq X and L \cap V \ll_{e*S} V. Let $\frac{L}{Y} + \frac{U}{Y} = \frac{X}{Y}$, with $Z_{e*}(\frac{X}{U}) = \frac{X}{U}$ and U is submodule of X containing Y. Thus X = L + U. By Modular law L = L \cap X = L \cap (Y \oplus V) = Y \oplus (L \cap V), and hence X = L + U = Y + (L \cap V) + U = (L \cap V) + U. Now, since L \cap V \ll_{e*S} V, by Proposition 12 [5], L \cap V \ll_{e*S} X and $Z_{e*}(\frac{X}{U}) = \frac{X}{U}$. So, X = U and $\frac{X}{Y} = \frac{U}{Y}$. Then $\frac{L}{Y} \ll_{e*S} \frac{X}{Y}$, therefore Y $\subseteq_{e*S_{ce}}$ L in X. Thus, X is e*S-hollow-lifting.

Remark 3.3: Any R-module X is e*S-hollow-lifting if and only if foreach submodule L of X with $\frac{X}{L}$ e*S-hollow, there is a direct summand V of L such that $X = V \oplus Y$, where $Y \subseteq X$ and $L \cap Y \ll_{e*S} X$.

Proof: Clear by Proposition 12 [5].

Examples and Remarks 3.4:

- 1) Z₄ as Z-module is e*S-hollow-lifting module.
- 2) Q as Z-module is not e*S-hollow-lifting module.

- 3) The Z-module Z is not e*S-hollow-lifting. For the submodule 4Z, since $\frac{Z}{4Z} \cong Z_4$ is e*S-hollow, and the only direct summand contains in 4Z is $\{0\}$. So, $\frac{4Z}{\{0\}} \cong 4Z$ is not e*S-small submodule in $\frac{Z}{\{0\}} \cong Z$.
- 4) Let $X = Z_2 \oplus Z_4$ module, obviously Z_2 and Z_4 as Z-module are e*S-hollow modules. Since $X = Z_2 \oplus Z_4$ is an e*S-lifting then it is e*S-hollow-lifting. See by Proposition 3.5.
- 5) Every simple module is e*S-hollow-lifting. And every e*S-hollow module is e*S-hollow-lifting.
- 6) Every module with no e*S-hollow factor module is e*S-hollow-lifting.
- 7) Every e*S-lifting module is e*S-hollow-lifting. But the converses need not be accurate in general. For example, let X be a nonzero indecomposable module with no e*S-hollow factor. Hence X is e*S-hollow-lifting by (6). Claim that X is not e*S-lifting. If not, we have that X is an indecomposable e*S-lifting module. By Proposition 1.6 [6], X is e*S-hollow, and by Corollary 2.7 [6], $\frac{X}{B}$ is e*S-hollow for any proper submodule B of X, which is a contradiction.

Proposition 3.5: Let X_1 and X_2 be e*S-hollow modules. The statements that follow are equivalent if for the module $X = X_1 \oplus X_2$.

- 1) X is e*S-hollow-lifting module.
- 2) X is e*S-lifting module.

Proof: $1\Rightarrow 2$) Let L be a submodule of X. Deem the two natural projections homomorphism $\pi_1: X \to X_1$ and $\pi_2: X \to X_2$. We have two cases:

Case I: If $\pi_1(L) \neq X_1$ and $\pi_2(L) \neq X_2$. Then by our assumption $\pi_1(L) \ll_{e*S} X_1$ and $\pi_2(L) \ll_{e*S} X_2$. So, by Proposition 12 [5], we get $\pi_1(L) \oplus \pi_2(L) \ll_{e*S} X_1 \oplus X_2$. Now, claim that $L \subseteq \pi_1(L) \oplus \pi_2(L)$, to see that, let $l \in L$ then $l \in X = X_1 \oplus X_2$ and hence $l = (x_1, x_2)$, where $x_1 \in X_1$, $x_2 \in X_2$. Now, $\pi_1(l) = \pi_1(x_1, x_2) = x_1$ and $\pi_2(l) = \pi_2(x_1, x_2) = x_2$. This implies that $l = (\pi_1(l), \pi_2(l))$ and we get $L \subseteq \pi_1(L) \oplus \pi_2(L)$, hence $L \ll_{e*S} X$. Thus, X is e*S-lifting module.

Case II: Now, if $\pi_1(L) = X_1$, then $\pi_1(L) = \pi_1(X)$. So, it is easy to see that $X = L + X_2$. By (Second Isomorphism Theorem), $\frac{X}{L} = \frac{L + X_2}{L} \cong \frac{X_2}{L \cap X_2}$. Since X_2 is e*S-hollow, then $\frac{X_2}{L \cap X_2}$ is e*S-hollow and thus $\frac{X}{L}$ is e*S-hollow. But X is e*S-hollow-lifting, therefore there is an e*S-coessential submodule of Lin X which is adirect summand of X. Hence, X is e*S-lifting.

2⇒1) Clear.

The following proposition gives acondition to make afactor of e*S-hollow-lifting is an e*S-hollow-lifting module.

Proposition 3.6: Let X be any R-module. If X is e*S-hollow-lifting module, then $\frac{X}{L}$ is e*S-hollow-lifting for each fully invariant submodule L of X.

Proof: Let $\frac{Y}{L}$ be a submodule of $\frac{X}{L}$ such that $\frac{X}{L} \cong \frac{X}{Y}$ is e*S-hollow, by (Third Isomorphism Theorem). Since X is e*S-hollow-lifting module, then there is a submodule T of X such that $T \subseteq_{\mathbf{e}*S_{ce}} Y$ in X and $X = T \oplus H$, for some $H \subseteq X$. Now, obviously $T + L \subseteq Y$ and thus $\frac{T+L}{L} \subseteq \frac{Y}{L}$. Let $f: \frac{X}{T} \longrightarrow \frac{X}{T+L}$ be a mapping defined by f(x+T) = x + (T+L), for all $x \in X$. It is easy to verify that f is an epimorphism. Since $T \subseteq_{\mathbf{e}*S_{ce}} Y$ in X, then by Proposition 12 [5], $f(\frac{Y}{T}) \ll_{\mathbf{e}*S} \frac{X}{T+L}$ and thus $f(\frac{Y}{T}) = \frac{Y}{T+L} \ll_{\mathbf{e}*S} \frac{X}{T+L}$. So, $T + L \subseteq_{\mathbf{e}*S_{ce}} Y$ in X. By (Third

Isomorphism Theorem), we get $\frac{T+L}{L} \subseteq_{\mathbf{e}*\mathbf{S}_{ce}} \frac{Y}{L}$ in $\frac{X}{L}$. Now, since L is a fully invariant submodule of X, then by Lemma 5.4 [11], $\frac{X}{L} = \frac{T+L}{L} \oplus \frac{H+L}{L}$. Hence $\frac{T+L}{L}$ is a direct summand of $\frac{X}{L}$. Thus, $\frac{X}{L}$ is e*S-hollow-lifting.

A condition under which a direct summand of an e*S-hollow-lifting module is e*S-hollow-lifting is provided by the following Corollary.

Corollary 3.7: Let X be a duo e*S-hollow-lifting module. Then each a direct summand of X is an e*S-hollow-lifting.

Proof: Obvious by Proposition 3.6.

Theorem 3.8: Any R-module X is e*S-hollow-lifting, if and only if for each submodule L of X with $\frac{X}{L}$ e*S-hollow, has e*S-supplement V in X such that V \cap L is a direct summand of L.

Proof: \Rightarrow) Assume that X is e*S-hollow-lifting and let $L \subseteq X$ with $\frac{X}{L}$ e*S-hollow. Then there is a submodule V of L such that $V \subseteq_{\mathbf{e}*S_{ce}} L$ in X and $X = V \oplus C$, for some $C \subseteq X$. By Modular law, $L = L \cap X = L \cap (V \oplus C) = V \oplus (L \cap C)$. Then $(L \cap C)$ is a direct summand of L and X = L + C. Using the same Theorem 3.2 argument, we have $L \cap C \ll_{e*S} C$. Thus, C is e*S-supplement of L in X.

Theorem 3.9: Let X be any R-module. The statements that follow are equivalent.

- 1) X is e*S-hollow-lifting.
- 2) Each submodule L of X with $\frac{X}{L}$ e*S-hollow, can be written as L = V \oplus H, with V is a direct summand of X and H \ll_{e*S} X.
- 3) Each submodule L of X with $\frac{X}{L}$ e*S-hollow, can be written as L = V + H, with V is a direct summand of X and H \ll_{e*S} X.

Proof: $1\Rightarrow 2$) Let L be asubmodule of X, with $\frac{X}{L}$ e*S-hollow. Since X is e*S-hollow-lifting, then there is a submodule V of X such that $V \subseteq_{e*S_{ce}} L$ in X and $X = V \oplus Y$, where $Y \subseteq X$. By (Modular law) $L = L \cap X = L \cap (V \oplus Y) = V \oplus (L \cap Y)$. By the same argument of Theorem 3.2, we have $L \cap Y \ll_{e*S} Y$, by proposition 12 [5], $L \cap Y \ll_{e*S} X$. Let $H = L \cap Y$, so $L = V \oplus H$, where V is a direct summand of X and $H \ll_{e*S} X$.

2⇒3) Obvious.

 $3\Rightarrow 1$) Let L be a submodule of X with $\frac{X}{L}$ e*S-hollow. By (3) L can be written as L = V + H, with V is a direct summand of X and H \ll_{e*S} X. We want to show that $V \subseteq_{e*S_{ce}} L$ in X. Let $V \subseteq C$ and $\frac{L}{V} + \frac{C}{V} = \frac{X}{V}$, with $Z_{e*}(\frac{X}{C}) = \frac{X}{X}$. Then X = L + C = V + H + C = H + C. Since H \ll_{e*S} X, and $Z_{e*}(\frac{X}{C}) = \frac{X}{C}$, then X = C and $\frac{C}{V} = \frac{X}{V}$. Thus, $\frac{L}{V} \ll_{e*S} \frac{X}{V}$, therefore $V \subseteq_{e*S_{ce}} L$ in X, and X is e*S-hollow-lifting.

Proposition 3.10: Let X be an e*S-hollow-lifting. If X = V + L, where L is a direct summand of X and $\frac{X}{V \cap L}$ is e*S-hollow, then L contains an e*S-supplement of V in X.

Proof: Since X is e*S-hollow-lifting and $\frac{X}{V \cap L}$ is an e*S-hollow, then by Theorem 3.9, $V \cap L = Y \oplus C$, where Y is a direct summand of X and $C \ll_{e * S} X$. But L is a direct summand of X and $C \subseteq L$, thus by Proposition 13 [5], $C \ll_{e * S} L$. Let $X = Y \oplus H$, where $H \subseteq X$. By (Modular law) $L = L \cap X = L \cap (Y \oplus H) = Y \oplus (L \cap H)$. Let $D = L \cap H$, so X = V + Y + D = V + D. Also, $V \cap L = V \cap (Y \oplus D) = Y \oplus (V \cap D)$. Let $\pi: Y \oplus D \longrightarrow D$ be the natural projection map. So, we have $V \cap D = \pi(Y \oplus (V \cap D)) = \pi(V \cap L) = \pi(Y \oplus C) = \pi(C)$. Since $C \ll_{e * S} L = Y \oplus D$, then by Proposition 12 [5], $\pi(C) \ll_{e * S} D$, and hence $V \cap D \ll_{e * S} D$. Thus, D is an e*S-supplement of V in X and D is contained in L.

Proposition 3.11: Let $X = X_1 \oplus X_2$ be a duo module. Then X is e*S-hollow-lifting if and only if X_1 and X_2 are e*S-hollow-lifting.

Proof: \Rightarrow) Obvious by Corollary 3.7.

Proposition 3.12: Let X be any R-module. Then X is e*S-hollow-lifting module if and only if for each submodule L of X with $\frac{X}{L}$ e*S-hollow, there is an idempotent $Q \in \text{End}(X)$ with $Q(X) \subseteq L$ and $(I - Q)(L) \ll_{e*S} (I - Q)(X)$.

Proof: ⇒) Let L be a submodule of X with $\frac{X}{L}$ e*S-hollow. Since X is e*S-hollow-lifting, then by Theorem 3.8, L has an e*S-supplement V in X such that L ∩ V is a direct summand of V, then X = L + V, L ∩ V \ll_{e*S} V and L = (L ∩ V) \oplus Y, where Y \subseteq L. Then X = L + V = (L ∩ V) + Y + V = Y + V and L ∩ V ∩ Y = V ∩ Y = {0}, and hence X = V \oplus Y. Define the map that follows now. $Q: X \to Y$ be the natural projection map. It is easy to show that Q is an idempotent and $Q(X) \subseteq Y$. Since Y \subseteq L, then $Q(X) \subseteq L$. Now, (I – Q) (X) = {(I – Q) (x), x \in X} = {(I – Q) (c + w), where $c \in Y$, $w \in V$ } = {(I – Q) (c + w) = c + w - c = w} = V. We aim to prove that (I – Q) (L) = L ∩ (I – Q) (X). Let $n \in (I - Q)$ (L), then there is $l \in L$, such that n = (I - Q) (l) = l - f(l). Thus $n \in L$ and l0 \in (I – l0) (X). So, l1 \in L ∩ (I – l0) (X). Hence, (I – l0) (L) \in L ∩ (I – l0) (X), then l2 \in L and l3. There is l3 \in X such that l3 \in (I – l0) (X). Hence, l4 \in (I – l0) (X). There is l5 \in X such that l5 \in Y. Hence (I – l0) (X). Hence, l4 \in (I – l0) (X).

=) Let L be a submodule of X with $\frac{X}{L}$ e*S-hollow. By our assumption, there is an idempotent $Q \in End(X)$ with $Q(X) \subseteq L$ and $(I - Q)(L) \ll_{e*S} (I - Q)(X)$. Claim that $X = Q(X) \oplus (I - Q)(X)$. To show that, let $x \in X$, then x = x + Q(x) - Q(x) = Q(x) + x - Q(x) = Q(x) + (I - Q)(x). Thus X = Q(x) + (I - Q)(x). Now, let $w \in Q(X) \cap (I - Q)(X)$, then $w = Q(x_1)$ and $w = (I - Q)(x_2)$, for some $x_1, x_2 \in X$. So, $Q(w) = Q(x_1) = Q((I - Q)(x_2)) = Q(x_2) - Q(x_2) = \{0\}$, then $Q(X) = \{0\}$, thus $W = \{0\}$. Thus $X = Q(X) \oplus (I - Q)(X)$. Obviously, $X \cap (I - Q)(X) = (I - Q)(X)$. Since $X \cap (I - Q)(X) = (I - Q)(X)$. Thus, $X \cap (I - Q)(X) = (I - Q)(X)$. Thus, $X \cap (I - Q)(X) = (I - Q)(X)$.

References.

[1] F. Kasch, Modules and Rings. 1982. doi: 10.1017/cbo9780511529962.

- [2] N. S. A. M. K. Ahmmed, "Pr-small R-submodules of modules and Pr-radicals.," *J. Interdiscip. Math.*, vol. 26, no. 7, pp. 1511–1516, 2023.
- [3] H. R. Baanoon and W. Khalid, "e*-Essential submodule," *Eur. J. Pure Appl. Math.*, vol. 15, no. 1, pp. 224–228, 2022, doi: 10.29020/nybg.ejpam.v15i1.4215.
- [4] K. Goodearl, *Ring Theory: Nonsingular Rings and Modules*. in Chapman & Hall/CRC Pure and Applied Mathematics. Taylor & Francis, 1976. [Online]. Available: https://books.google.iq/books?id=5FKzb7LZMvAC
- [5] W. Khalid, A. Kabban, "On e* Singular Small Submodules," Accept. Publ. a J. AIP Conf. Proceeding, 2025.
- [6] W. Khalid, A. Kabban, "e*-Singular-Hollow Modules and e*-Singular-Coclosed Submodules," *Accept. Publ. Iraqi J. Sci.*, Vol. 66, No. 6, 2025.
- [7] J. Clark, C. Lomp, and R. Wisbauer, *Lifting Modules: Supplements and Projectivity in Module Theory*. 2006. doi: 10.1007/3-7643-7573-6.
- [8] E. M. Kamil and W. Khalid, "On μ -lifting modules," *Iraqi J. Sci.*, vol. 60, no. 2, pp. 371–380, 2019, doi: 10.24996/ijs.2019.60.2.17.
- [9] W. Khalid, A. Kabban, "On e*-Singular-Supplement Submodules," Accept. Publ. Iraqi J. Sci., Vol. 66, No. 10, 2025.
- [10] T. KOŞAN and D. K. TÜTÜNCÜ, "H-Supplemented Duo Modules," *J. Algebr. Its Appl.*, vol. 06, no. 06, pp. 965–971, 2007, doi: 10.1142/s0219498807002582.
- [11] N. Orhan, D. K. Tütüncü, and R. Tribak, "On hollow-lifting modules," *Taiwan. J. Math.*, vol. 11, no. 2, pp. 545–568, 2007, doi: 10.11650/twjm/1500404708.
- [12] T. KOŞAN, "the Lifting Condition and Fully Invariant Submodules," vol. 7, no. 1, pp. 99–106, 2005.
- [13] D. Keskin, "Discrete and quasi-discrete modules," *Commun. Algebr.*, vol. 30, no. 11, pp. 5273–5282, 2002, doi: 10.1081/AGB-120015652.
- [14] G. F. Birkenmeier, B. J. Müller, and S. T. Rizvi, "Modules in Which Every Fully Invariant Submodule is Essential in a Direct Summand," *Commun. Algebr.*, vol. 30, no. 3, pp. 1395–1415, Jan. 2002, doi: 10.1080/00927870209342387.
- [15] Y. Talebi and T. Amoozegar, "Strongly FI-Lifting Modules," *Int. Electron. J. Algebr.*, vol. 3, no. July 2007, pp. 75–82, 2008.