

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

On e-Singular-Hollow-Lifting Modules*

Ali A. Kabban1, Wasan Khalid²

1,2Department of Mathematics, University of Baghdad, College of Science. Baghdad, Iraq. Email: alikuban5@gmail.com

A R T I C L E I NF O

Article history: Received: 27 /08/year Rrevised form: 04 /09/2024 Accepted : 12 /09/2024 Available online: 30 /09/2024

Keywords:

e*S-small submodules

∗ -lifting modules

e*S-lifting modules

Hollow-lifting modules

e*S-hollow-lifting modules

https://doi.org/10.29304/jqcsm.2024.16.31669

1. Introduction

In this paper X will be a unitary left R-module, and R is any ring with identity. Notationally, asubmodule T of an Rmodule X is considered small, which is well known. $T \ll X$, if for all submodule of X, $T + L = X$, then $L = X$, [1], [2]. A new submodule type was created by Baanoon in [3] and it is a generalization of essential submodule called e∗ essential as follows. For any non-zero cosingular submodule B of X, if $A \cap B \neq 0$, we say that A is an e*-essential submodule in X. Denoted by $A \leq_{e*} X$. This is the definition of the singular submodule: $Z(X) = \{m \text{ in } X: \text{ann}(m)\}$ $\leq_e R$ }[4]. We generalized Z(X) to $Z_{e*}(X)$, by applying e*_essential submodules. Let X be a module define $Z_{e*}(X)$ = {*w* in X: $ann(w) \leq_{e*} R$, X is called e*_singular module if $Z_{e*}(X) = X$, and X is called e*_nonsingular module if $Z_{e*}(X) = 0$ [5]. The generalization of small submodule known as e*S-small submodule is introduced in [5], by A. Kabban and W. Khalid. A submodule T of X is called e*S-small submodule of X (signified by T $\ll_{e* S} X$) if whenever X = T + H, with $Z_{e*}(\frac{X}{H})$ $\frac{X}{H}$) = $\frac{X}{H}$ $\frac{\lambda}{\mu}$ implies that X = H. A non-zero module X is called e*S-hollow if each proper submodule of X is e*S-small [6]. Let $H \subseteq W \subseteq X$, if $\frac{W}{H} \ll \frac{X}{H}$ $\frac{\lambda}{\mu}$, then H is called acoessential submodule of W in X [7], [8]. A generalization of the coessential submodule, we present the following as the e*S-coessential submodules in [6]. Let an R–module X and

A B S T R A C T

This research introduces the innovative notions in module X over a ring R. The first is called $\mathop{\mathrm{F}}_{e* S}$ I-lifting module, which is an inference of e*S-lifting. The second concept is e*S-hollow-lifting, which is a generalization of the e*Slifting module. We will illustrate a few of these concept attributes.

MSC.

[∗]Corresponding author: Ali A. Kabban

Email addresses: alikuban5@gmail.com

W, H \subseteq X. Such that W \subseteq H \subseteq X, then W is called e*S-coessential submodule of H in X (denoted by W $\subseteq_{e*S_{ce}}$ H in X) if H W $\ll_{e*S} \frac{X}{W}$ $\frac{\lambda}{W}$. We say that H is called e*S-coclosed submodule of X (denoted by H ⊆_{e*Scc}X) if whenever T ⊆_{e*Sce}H, (i.e. H $B \ll_{e*S} X$), then V is called e*S-supplement of H in X. If each a submodule of X has e*S-supplement, then X is called $\ll_{e*S} \frac{X}{\tau}$ $\frac{1}{T}$) implies that T = H [6]. Let V and H be submodules of the R-module X. If X = V + H and V \cap H \ll_{e*S} H (V e*S-supplemented module [9]. An R-module X is called $\bigoplus e$ *S–supplemented if each submodule of X has an e*S– supplement which is a direct summand of X [9]. Defined T $\beta_{e*5}V$ if $\frac{T+V}{T}\ll_{e*5} \frac{X}{T}$ $\frac{x}{\tau}$ and $\frac{T+V}{V} \ll_{e*S} \frac{x}{V}$ $\frac{x}{v}$. X is H – Supplemented module if for each submodule T of X there is adirect summand V of X such that T $\beta_{e* S}$ V, [9]. Any Rmodule X is called e*S-lifting if for each submodule L of X there is asubmodule V of L such that $X = V \oplus D$, where $D \subseteq$ X and L ∩ D \ll_{e*S} D. A submodule L of X is a fully invariant if *h* (L) ⊆ L for every *h* ∈ End (X). Any R-module X is called duo if each submodule of X is fuly invariant [10]. The notion of hollow-lifting modules was first proposed by Orhan, Keskin, and Tribak. An R-module is considered hollow-lifting if for any submodule L of X with $\frac{x}{L}$ is hollow, there is a direct summand V of X such that V isa coessential submodule of L in X, [11]. In this research we will present e*Shollow-lifting as a generalization of this last concept. We will give properties and examples of it with proofs.

2. Fully invariant e*_Singular-lifting module.

This section presents the notion of fully invariant e^* Singular-lifting modules, including examples and fundamental characteristics.

Remember that module X is called FI-lifting if for each a fully invariant submodule L of X, there is adecomposition $X = T \oplus V$, such that $T \subseteq L$ and $L \cap V \ll V$. See [12].

Definition 2.1: An R-module X is called **Fully invariant e*_Singular-lifting module** (shortly F1-lifting e^{*s} module) if for each fully invariant submodule L of X, there exists asubmodule T of L such that $X = T \oplus V$, where $V \subseteq X$ and $L \cap V \ll_{e * S} V$.

The following proposition gives characterization of F I-lifting modules.

Remark 2.2: Let X be any R-module. Then X is FI-lifting module if and only if for each fully invariant submodules L of X, there is asubmodule T of L such that $X = T \oplus V$, where $V \subseteq X$ and L $\cap V \ll_{e * S} X$.

Proof: Clear by Proposition 13 [5].

Examples and Remarks 2.3:

1) Z_6 as Z-module is F_e^{*S} lifting module.

2) Q as Z-module is $\frac{F}{e*S}$ lifting module.

3) Z as Z-module isn't F_{e*S} lifting. Since the only direct summand contained in the fully invariant submodule 2Z is $\{0\}$, and 2Z is not e*S-small submodule in Z. See examples and remarks 2 [5].

4) It is clear that every e*S-lifting is $F I$ -lifting module. But the converse need not be accurate in general. For example, let X = $Z_8 \oplus Z_2$ as Z-module. Since Z_8 and Z_2 are F_{e*S} I-lifting modules, then X is F_{e*S} ifting, see Theorem 2.11, but not e*S-lifting.

5) Let X be a duo module. Then X is e*S-lifting if and only if X is $\mathop{\mathsf{F}}_{e*S}$ lifting.

6) F_I -lifting modules are closed under isomorphisms.

Theorem 2.4: The statements that follow are equivalent if X is an R-module.

1) X is $\underset{e*S}{\text{F I-lifting module}}$.

2) Each fully invariant submodule N of X can be written as $N = K \oplus S$, where K is a direct summand of X and $S \ll_{e * S} X$.

3) Each fully invariant submodule N of X can be written as $N = K + S$, where K is a direct summand of X and $S \ll_{e * S} X$.

4) For each fully invariant submodule N of X, there is adirect summand K of X such that $K \subseteq N$ and K $\subseteq_{\mathbf{e} * \mathbf{S}_{ce}} N$ in X.

Proof: 1⇒2) Assume that X is a FI-lifting module and let N be afully invariant submodule of X, then there is asubmodule K of N such that $X = K \oplus \hat{K}$, $\hat{K} \subseteq M$ and N $\cap \hat{K} \ll_{e * S} X$, by Remark (2.2). Now, N = N $\cap X = N \cap X$ $(K \oplus K) = K \oplus (N \cap K)$, by Modular law. Hence, we get the result.

 $2\rightarrow 3$) Obvious.

 $3\rightarrow 4$) Let N be afully invariant submodule of X. By (3), N = K + S, where K is adirect summand of X and S $\langle \langle e_{\epsilon s} \rangle$ X. So, X = K \oplus K, K \subseteq X. Since K is e*S-supplement of K in X and S $\langle \langle e_{\epsilon s} \rangle$ X, then K is an e*S-supplement of K + S = N in X, by Proposition (2.10) [9]. To show that $K \subseteq_{e*S_{ce}} N$ in X, let $\varphi: \acute{K} \to \frac{X}{K}$ $\frac{\Delta}{K}$ be a map defined by $\varphi(x) = x + K$, for every $x \in \mathring{K}$. Clearly φ is an isomorphism. Since N $\cap K \ll_{e * S} \mathring{K}$, then $\varphi(N \cap \mathring{K}) = \frac{N}{K} \ll_{e * S}$ X $\frac{A}{K}$. Thus, $K \subseteq_{e*S_{ce}} N$ in X.

 $4\rightarrow 1$) Let N be a fully invariant submodule of X. By (4) there exists a direct summand K of X such that K \subseteq N and $\frac{N}{K} \ll_{e * S} \frac{X}{K}$ $\frac{X}{K}$. We want to prove that N ∩ $\acute{K} \ll_{e * S} \acute{K}$. Let $\acute{K} = (N \cap \acute{K}) + B$ with $Z_{e *}(\frac{\acute{K}}{B})$ $\frac{\hat{K}}{B}$) = $\frac{\hat{K}}{B}$ $\frac{\pi}{B}$, where B \subseteq \hat{K} . Since $X = K + \hat{K} = K + (N \cap \hat{K}) + B$, then $\frac{X}{K} = \frac{K}{K}$ $\frac{(\mathbf{A} \times \mathbf{B}) + \mathbf{B}}{\mathbf{K}} = \frac{\mathbf{K}}{2}$ $\frac{\overline{N} \cap K)}{K} + \frac{B}{K}$ $\frac{F_{\text{N}}}{K}$. Since $K \subseteq K + (N \cap \hat{K}) \subseteq N$ and $K \subseteq_{e * S_{ce}} N$ in X. Then $K \subseteq_{e * S_{ce}} K + (N \cap \hat{K})$ in X, by Proposition (3.5) [6], and $\frac{X}{K+B} = \frac{K}{K}$ $\frac{K+K}{K+B} = \frac{K}{\sqrt{2}}$ $\frac{K+1}{K+B} \cong \frac{\hat{K}}{\hat{K} \cap (K)}$ Ŕ $=\frac{\dot{K}}{R}$ $\frac{\dot{K}}{B}$, by (the Second Isomorphism Theorem and Modular law). Since $Z_{e*}(\frac{\dot{K}}{B})$ $\frac{\dot{K}}{B}$) = $\frac{\dot{K}}{B}$ $\frac{R}{B}$, then $Z_{e*}(\frac{A}{K+B}) = \frac{A}{K+B}$, since $\frac{K + (N \cap K)}{K} \ll_{e * S} \frac{X}{K}$ $\frac{X}{K}$, and hence $\frac{X}{K} = \frac{B}{K}$ $\frac{4\pi}{K}$, implies that X = B + K. Since B \subseteq K and K \cap K = {0}, then B \cap K = {0} and hence X = K \oplus B, that is K = B. Thus, X is F I-lifting module.

Theorem 2.5: The statements that follow are equivalent if X is an R-module.

1) X is F_{e*S} I-lifting module.

2) Each fully invariant submodule V of X has an e*S-supplement T in X, where $T \subseteq X$ such that $T \cap V$ is direct summand of V.

Proof: 1⇒2) Let X be an F_{e*S} lifting module and V is fully invariant submodule of X. By Theorem 2.4, there exists adirect summand A of X such that $A \subseteq V$, $X = A \oplus T$ and $A \subseteq_{e * S_{ce}} V$ in X and $V \cap T \ll_{e * S} T$. Now $V = V$ $\cap X = V \cap (A \oplus T) = A \oplus (T \cap V)$, by Modular law. Since $A \subseteq V$, then $X = V + T$ and $V \cap T \ll_{e * S} T$. Hence T is e*S-supplement of Vin X and $T \cap V$ is a direct summand of V.

 $2\Rightarrow$ 1) Let V be a fully invariant submodule of X. By (2) V has e*S-supplement T in X such that T \cap V is a direct summand of V. Then $X = T + V$, $T \cap V \ll_{e * S} T$, and $V = (T \cap V) \oplus Y$, where $Y \subseteq V$. Since $X = T + V = T + V$

 $(T \cap V) + Y = T + V$ and $\{0\} = T \cap V \cap Y = T \cap Y$. Then $X = T \oplus Y$ and $T \cap V \ll_{e * S} T$. Therefore, X is F_{e*S} module.

Proposition 2.6: Let X be any R-module. Then X is FI-lifting module if and only if for each fully invariant submodule L of X, there is an idempotent $\varphi \in$ End(G) such that $\varphi(G) \subseteq L$ and $(I - \varphi)$ (L) $\ll_{e * S} (I - \varphi)$ (X).

Proof: ⇒) Suppos that X is F_{e*S} lifting module and let L be a fully invariant asubmodule of X. By Theorem 2.5, L has e*S-supplement T in X such that L \cap T is a direct summand of L, then X = L + T, T \cap L \ll_{e*S} T and $L = (L \cap T) \oplus Y$, where $Y \subseteq L$. Now $X = L + T = (L \cap T) + Y + T = Y + T$, and $L \cap T \cap Y = T \cap Y = \{0\}$, implies that X = T \oplus Y. Consider the projection map $\varphi: X \to Y$ it is clear that φ is an idempotent and $\varphi(X) \subseteq Y \subseteq L$. It is sufficient to show that $(I - \varphi)$ (L) $\ll_{e * S} (I - \varphi)$ (X). One can easily show that $(I - \varphi)$ (L) = L \cap $(I - \varphi)$ (X) $= L \cap T \ll_{e * S} T = (I - \varphi) (X).$

 \Leftarrow) Let L be a fully invariant submodules of X. By our assumption there is an idempotent $\varphi \in$ End (X) such that φ (X) \subseteq L and $(I - \varphi)$ (L) $\ll_{e * S} (I - \varphi)$ (X), clearly that $X = \varphi$ (X) $\bigoplus (I - \varphi)$ (X) and L \cap $(I - \varphi)$ (X) = $(I - \varphi)$ (L) $\ll_{e * S}$ (I – φ) (X). Therefore, X is F I-lifting module.

The following Proposition gives another characterization of \mathbb{F}_{e*S} I-lifting module.

Proposition 2.7: The statements that follow are equivalent if X is an R-module.

1) X is F_{e*S} I-lifting module.

2) Each fully invariant submodule of X has a direct summand e*S-supplement.

3) For every fully invariant submodule N of X, there is an e*S-coclosed submodule T of X and a direct summand e*S-supplement L of T such that T $\subseteq_{e*S_{ce}} N$ in X and each homomorphism $f: X \longrightarrow \frac{X}{T \cap G}$ $\frac{\Lambda}{T \cap L}$ can be lifted to an endomorphism $g: X \rightarrow X$ such that $g(x) + (T \cap L) = f(x)$ for all $x \in X$.

Proof: 1⇔2) Suppose that X is F I-lifting and let N be a fully invariant submodule of X, then there is a direct summand T of X such that $T \subseteq N$, $X = T \oplus L$, where $L \subseteq X$ and $N \cap L \ll_{e * S} L$. Clearly that L is an e^{*S}-

supplement of N. Conversely, let N be a fully invariant submodule of X. By our assumptions, there is a direct summand T of X such that $X = T \oplus L$ and T is an e*S-supplement of N in X. It is enough to show that L ⊆ N. Let the projection map *P*: M \rightarrow L. Since N is fully invariant submodule of X, *P*(N) = (N + T) ∩ L = X ∩ L = L \subseteq N. Thus, X is F I-lifting module.

1⇒3) Let N be a fully invariant submodule of X. Since X is FI-lifting module, there exists a decomposition X = T ⊕ L where T ⊆ N and T ⊆_{e*Sce}N in X, then T is e*S-coclosed submodule of X and it is clear that L is a direct summand e^*S -supplement of T in X. Since T \cap L = {0}, then the result is obtained.

 $3\Rightarrow 1$) Let N be a fully invariant submodule of X. By (3) there is an e^{*}S-coclosed submodule T of X and a direct summand e*S-supplement L of T such that T \subseteq N and T $\subseteq_{e*S_{ce}} N$ in X. It follows from ([13], lemma 2.2), that T is a direct summand of X. Thus, X is $\lim_{e \star S}$ I-lifting module.

Proposition 2.8: Let X be an R-module. Consider the following statement.

1) X is e*S-lifting module.

2) X is $\bigoplus e^*S$ -supplemented module.

3) X is F₁-lifting module. Then (1) \Rightarrow (2) \Rightarrow (3). If X is a duo module, then (3) \Rightarrow (1).

Proof: $1 \Rightarrow 2$) Clear.

 $2\Rightarrow 3$) Assume that X is $\bigoplus e^*S$ -supplemented and let L be a fully invariant submodule of X, then L has an e*S-supplement which is a direct summand, hence X is $F\atop e*S$ I-lifting module, by Proposition 2.7.

$3\rightarrow 1$) Clear.

Proposition 2.9: Let X be an H-Supplemented module such that every direct summand of X is e*_Singular, then X is $\frac{F}{e*S}$ I-lifting module.

Proof: Let X be an H_{e*S} -Supplemented and let N be a fully invariant submodule of X, there is a direct summand V of X such that $X = V \oplus K$, where $K \subseteq X$, and N $\beta_{e * S}V$. Since $X = V + K$ and $\frac{\Lambda}{K} \cong V$ is e^{*}_Singular. Let $\frac{X}{N} = \frac{V}{N}$ $\frac{+K}{N} = \frac{N}{N}$ $\frac{+V}{N} + \frac{N}{N}$ $\frac{+K}{N}$ with Z_{e*} $\left(\frac{X}{N+1}\right)$ $\left(\frac{X}{N+K}\right)=\frac{X}{N+K}$ $\frac{X}{N+K}$ and $\frac{N+V}{N} \ll_{e*S} \frac{X}{N}$ $\frac{A}{N}$, then X = N + K. And N = N \cap X = N \cap (V \bigoplus K) = (N \cap V) \bigoplus (N \cap K), so $\frac{N+V}{V} \cong \frac{N}{N\cap}$ $\frac{N}{N \cap V} \cong N \cap K$. Since $\frac{N+V}{V} \ll_{e * S} \frac{X}{V}$ $\frac{1}{V}$, thus N ∩ K \ll_{e*S} X. Then K is an e*Ssupplement of N in X. Thus, by Proposition 2.7, X is F I-lifting module.

Proposition 2.10: Let X be a F I-lifting module and let V be a fully invariant direct summand of X, then V is $\mathop{\mathrm{F}}\limits_{e* S}$ lifting module.

Proof: Let $X = V \bigoplus L$ be a $F I$ -lifting and let V be a fully invariant submodule of X. To show that V is a $F I$ - $e * S$ lifting, let Y be a fully invariant submodule of V, then Y is a fully invariant submodule of X, by (Lemma 1.1 [14]), and hence Y = K \oplus S, where K is a direct summand of X and S \ll_{e*S} X, implies that K is a direct summand of V and S \ll_{e*S} V, by Proposition 13 [5]. Thus, Vis F I-lifting module.

The following Theorem shows that a finite direct sum of $F \underset{e * S}{\text{F}}$ I-lifting modules is $F \underset{e * S}{\text{F}}$ I-lifting.

Theorem 2.11: Let $X = \bigoplus_{i=1}^{n} X_i$ be a direct sum of F I-lifting modules. Then X is F I-lifting.

Proof: Let L be a fully invariant submodule of X, then $L = \bigoplus_{i=1}^n (L \cap X_i)$ and $L \cap X_i$ is a fully invariant submodule of X_i , $\forall i = 1, ..., n$, by (Lemma 1.1 [14]). Since each of X_i is F_i l-lifting, then $L \cap X_i = K_i \bigoplus T_i$, where K_i is a direct summand of X_i and T_i \ll_{e*S} X_i, \forall *i* = 1, …, n. Let K = $\bigoplus_{i=1}^{n}$ K_i and T = $\bigoplus_{i=1}^{n}$ T_i. It is clear that K is a direct summand of X and T $\ll_{e* S}$ X. Thus, X is F I-lifting module.

Proposition 2.12: Let $X = X_1 \oplus X_2$. Then X_2 is FI-lifting module if and only if for each a fully invariant submodule $\frac{N}{X_1}$ of $\frac{A}{X_1}$, there exists a direct summand K of X such that $K \subseteq X_2$, $X = K + N$ and N $\cap K \ll_{e * S} K$.

Proof: \Rightarrow) Assume that X_2 is $F I$ -lifting and let $\frac{N}{X_1}$ be a fully invariant submodule of $\frac{X}{X_1}$. Then N \cap X_2 is a fully invariant submodule of X_2 , see [15]. Since X_2 is F I-lifting, then there exists a direct summand K of such that $K \subseteq N \cap X_2$, $X_2 = K \oplus \hat{K}$, $X_2 = (N \cap X_2) + \hat{K}$ and $N \cap \hat{K} \ll_{e * S} \hat{K}$. Clearly that $X = \hat{K} + N$.

 \Leftarrow) To show that X₂ is F₁I-lifting, let N be a fully invariant submodule of X₂. Then $\frac{N+1}{N_1}$ is a fully invariant submodule of $\frac{x}{X_1}$, see [15]. By hypothesis, then there exist a direct summand K of X such that K $\subseteq X_2$, $X = K + N + X_1$ and $K \cap (N + X_1) \ll_{e * S} K$. Now, $X_2 = X_2 \cap X = X_2 \cap (K + N + X_1) = K + N$. Itis easy to show that K is an e*S-supplement of N in X_2 . Therefore, X_2 is F I-lifting, by Proposition 2.7.

Proposition 2.13: Let X be an F_II-lifting module. Then $\frac{\Lambda}{N}$ is F_{e*S}I-lifting for every fully invariant submodule N of X.

Proof: Let $\frac{L}{N}$ be a fully invariant submodule of $\frac{A}{N}$. Then by Lemma 1.1 [14], L is fully invariant submodule of X. Since X is F_s I-lifting module there is $B \subseteq L$ such that $X = B \oplus A$, for some submodule A of X, and $\frac{L}{B}$ $\ll_{e*S} \frac{\text{X}}{\text{B}}$ $\frac{X}{B}$. By Lemma 5.4 [11], we have $\frac{X}{N} = \frac{B}{B}$ $\frac{+N}{N}$ \bigoplus $\frac{A}{N}$ $\frac{+N}{N}$ with $\frac{B+N}{N} \subseteq \frac{L}{N}$ $\frac{L}{N}$. So, L $\frac{\overline{N}}{B+N} \cong \frac{L}{B+}$ I a second contains $X = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ $\frac{L}{B+N}$ and X $\frac{N}{B+}$ N $\approx \frac{X}{R}$ $\frac{\Delta}{B+N}$, since $\frac{L}{B} \ll_{e * S} \frac{X}{B}$ $\frac{X}{B}$, by proposition 12 [5], $\frac{L}{B+1}$ $\frac{L}{B+N} \ll_{e*S} \frac{X}{B+}$ $\frac{\lambda}{\text{B+N}}$. Therefore, $\frac{\lambda}{\text{N}}$ is F_e I-lifting module.

3. **e*_Singular-hollow-lifting Module.**

Here we define some of the basic characteristics of e*S-hollow-lifting modules. Moreover, we will show some new results.

Definition 3.1: Let X be any R-module. Then X is called **e*_Singular-hollow-lifting** module (denoted by e*S-hollow-lifting), if for each submodule L of X with $\frac{A}{L}$ is e*S-hollow, there is a direct summand Y of X such that X = Y \oplus V, for some V \subseteq X and Y $\subseteq_{e*S_{ce}} L$ in X.

We then provide some e*S-hollow-lifting module characterization.

Theorem 3.2: Any R-module X is e*S-hollow-lifting if and only if for each submodule L of X with $\frac{A}{L}$ e*Shollow, there exists a direct summand Y of L such that $X = Y \oplus V$, for some $V \subseteq X$ and $L \cap V \ll_{\rho * \mathcal{S}} V$.

Proof: \Rightarrow) Let L be a submodule of X with $\frac{A}{L}$ e*S-hollow. Since X is e*S-hollow-lifting, then there exists a direct summand Y of X such that Y $\subseteq_{e*S_{ce}} L$ in X and X = Y \oplus V, where V \subseteq X, L = L \cap X = L \cap (Y \oplus V) = Y \oplus (L \cap V), by Modular law. We want to show that L \cap V \ll_{e*S} V. Where U \subseteq V, Let (L \cap V) + U = V, with $Z_{e*}(\frac{V}{H})$ $\frac{V}{U}$) = $\frac{V}{U}$. Then X = L + U. Now $\frac{X}{Y}$ = $\frac{L}{U}$ $\frac{+U}{Y} = \frac{L}{Y}$ $\frac{L}{Y} + \frac{U}{Y}$ $\frac{+Y}{Y}$, since $\frac{X}{U+Y} = \frac{Y}{U}$ $\frac{Y+V}{U+Y} = \frac{0}{1}$ $\frac{(+Y)+V}{U+Y} \cong \frac{V}{V \cap (U)}$ $\frac{v}{V \cap (U+Y)}$ = V $\frac{V}{U+(Y\cap V)}=\frac{V}{U}$ $\frac{\rm V}{\rm U}$, by (Second Isomorphism and Modular law). Since $Z_{e*}(\frac{\rm V}{\rm U})$ $\frac{V}{U}$) = $\frac{V}{U}$, then $Z_{e*}(\frac{X}{U+1})$ $\frac{\lambda}{U+Y}$) = $\frac{\lambda}{U+Y}$ and L $\frac{L}{Y} \ll_{e * S} \frac{X}{Y}$ $\frac{X}{Y}$, therefore $\frac{X}{Y} = \frac{U}{Y}$ $\frac{N+1}{Y}$, so X = U + Y. Since X = Y \oplus V, and U \subseteq V, then V = U. Thus L \cap V \ll_{e*S} V.

 \Leftarrow) Let L be a submodule of X with $\frac{\lambda}{L}$ is e*S-hollow, then by our assumption, there exists adirect summand Y of L such that $X = Y \oplus V$, where $V \subseteq X$ and $L \cap V \ll_{e * S} V$. Let $\frac{L}{Y} + \frac{U}{Y}$ $\frac{U}{Y} = \frac{X}{Y}$ $\frac{X}{Y}$, with $Z_{e*}(\frac{X}{U})$ $\frac{\lambda}{U}$) = $\frac{\lambda}{U}$ and U is submodule of X containing Y. Thus $X = L + U$. By Modular law $L = L \cap X = L \cap (Y \oplus V) = Y \oplus (L \cap V)$, and hence X = L + U = Y + (L \cap V) + U = (L \cap V) + U. Now, since L \cap V \ll_{e*S} V, by Proposition 12 [5], L \cap V \ll_{e*S} X and $Z_{e*}(\frac{X}{U})$ $\frac{X}{U}$) = $\frac{X}{U}$. So, X = U and $\frac{X}{Y}$ = $\frac{U}{Y}$ $\frac{U}{Y}$. Then $\frac{L}{Y} \ll_{e*S} \frac{X}{Y}$ $\frac{\lambda}{Y}$, therefore Y $\subseteq_{e*S_{ce}} L$ in X. Thus, X is e*S-hollowlifting.

Remark 3.3: Any R-module X is e*S-hollow-lifting if and only if foreach submodule L of X with $\frac{A}{L}$ e*Shollow, there is a direct summand V of L such that $X = V \oplus Y$, where $Y \subseteq X$ and $L \cap Y \ll_{e * S} X$.

Proof: Clear by Proposition 12 [5].

Examples and Remarks 3.4:

1) Z_4 as Z-module is e*S-hollow-lifting module.

2) Q as Z-module is not e*S-hollow-lifting module.

3) The Z-module Z is not e*S-hollow-lifting. For the submodule 4Z, since $\frac{2}{4Z} \cong Z_4$ is e*S-hollow, and the only direct summand contains in 4Z is {0}. So, $\frac{4Z}{\{0\}} \cong 4Z$ is not e*S-small submodule in $\frac{Z}{\{0\}} \cong Z$.

4) Let X = $Z_2 \oplus Z_4$ module, obviously Z_2 and Z_4 as Z-module are e*S-hollow modules. Since X = $Z_2 \oplus Z_4$ is an e*S-lifting then itis e*S-hollow-lifting. See by Proposition 3.5.

5) Every simple module is e*S-hollow-lifting. And every e*S-hollow module is e*S-hollow-lifting.

6) Every module with no e*S-hollow factor module is e*S-hollow-lifting.

7) Every e*S-lifting module is e*S-hollow-lifting. But the converses need not be accurate in general. For example, let X be a nonzero indecomposable module with no e*S-hollow factor. Hence X is e*S-hollowlifting by (6). Claim that X is not e*S-lifting. If not, we have that X is an indecomposable e*S-lifting module. By Proposition 1.6 [6], X is e*S-hollow, and by Corollary 2.7 [6], $\frac{X}{R}$ $\frac{\Delta}{\text{B}}$ is e*S-hollow for any proper submodule B of X, which is a contradiction.

Proposition 3.5: Let X_1 and X_2 be e*S-hollow modules. The statements that follow are equivalent if for the module $X = X_1 \oplus X_2$.

1) X is e*S-hollow-lifting module.

2) X is e*S-lifting module.

Proof: 1 \Rightarrow 2) Let L be a submodule of X. Deem the two natural projections homomorphism π_1 :X \rightarrow X₁ and $\pi_2:X\longrightarrow X_2$. We have two cases:

Case I: If $\pi_1(L) \neq X_1$ and $\pi_2(L) \neq X_2$. Then by our assumption $\pi_1(L) \ll_{e * S} X_1$ and $\pi_2(L) \ll_{e * S} X_2$. So, by Proposition 12 [5], we get $\pi_1(L) \oplus \pi_2(L) \ll_{e*S} X_1 \oplus X_2$. Now, claim that $L \subseteq \pi_1(L) \oplus \pi_2(L)$, to see that, let *l* \in L then $l \in X = X_1 \oplus X_2$ and hence $l = (x_1, x_2)$, where $x_1 \in X_1, x_2 \in X_2$. Now, $\pi_1(l) = \pi_1(x_1, x_2) = x_1$ and $\pi_2(l) = \pi_2(x_1, x_2) = x_2$. This implies that $l = (\pi_1(l), \pi_2(l))$ and we get $L \subseteq \pi_1(L) \oplus \pi_2(L)$, hence $L \ll_{e * S} X$. Thus, X is e*S-lifting module.

Case II: Now, if $\pi_1(L) = X_1$, then $\pi_1(L) = \pi_1(X)$. So, itis easy to see that $X = L + X_2$. By (Second Isomorphism Theorem), $\frac{X}{L} = \frac{L}{L}$ $\frac{+X_2}{L} \cong \frac{X}{L \cap}$ $\frac{\lambda_2}{\lambda_1 \wedge \lambda_2}$. Since X_2 is e*S-hollow, then $\frac{\lambda_2}{\lambda_1 \wedge \lambda_2}$ is e*S-hollow and thus $\frac{\lambda_1}{\lambda_2}$ is e*S-hollow. But X is e*S-hollow-lifting, therefore there is an e*S-coessential submodule of Lin X which is direct summand of X. Hence, X is e*S-lifting.

 $2\rightarrow 1$) Clear.

The following proposition gives acondition to make afactor of e^*S -hollow-lifting is an e^*S -hollow-lifting module.

Proposition 3.6: Let X be any R-module. If X is e *S-hollow-lifting module, then $\frac{A}{L}$ is e *S-hollow-lifting for each fully invariant submodule L of X.

Proof: Let $\frac{1}{L}$ be a submodule of $\frac{1}{L}$ such that X $\frac{L}{Y} \cong \frac{X}{Y}$ Since X is e*S-hollow-lifting module, then there is a submodule T of X such that T $\subseteq_{e*S_{ce}} Y$ in X and X = T $\frac{\lambda}{\gamma}$ is e*S-hollow, by (Third Isomorphism Theorem). H, for some H \subseteq X. Now, obviously T + L \subseteq Y and thus $\frac{T+L}{L} \subseteq \frac{Y}{L}$ $\frac{Y}{L}$. Let $f: \frac{X}{T}$ $\frac{x}{T} \rightarrow \frac{x}{T+1}$ $\frac{\lambda}{T+L}$ be a mapping defined by *f* $(x + T) = x + (T + L)$, for all $x \in X$. It is easy to verify that *f* is an epimorphism. Since $T \subseteq_{e * S_{ce}} Y$ in X, then by Proposition 12 [5], $f(\frac{Y}{T})$ $(\frac{Y}{T}) \ll_{e*S} \frac{X}{T+1}$ $\frac{X}{T+L}$ and thus $f(\frac{Y}{T})$ $(\frac{Y}{T}) = \frac{Y}{T+L} \ll_{e*S} \frac{X}{T+L}$ $\frac{A}{T+L}$. So, T + L $\subseteq_{e*S_{ce}} Y$ in X. By (Third

Isomorphism Theorem), we get $\frac{T+L}{L} \subseteq_{e*S_{ce}} \frac{Y}{L}$ $\frac{1}{L}$ in $\frac{A}{L}$. Now, since L is a fully invariant submodule of X, then by Lemma 5.4 [11], $\frac{X}{I}$ $\frac{X}{L} = \frac{T}{L}$ $\frac{+L}{L}$ \oplus $\frac{H}{L}$ $\frac{1}{L}$. Hence $\frac{1+L}{L}$ is a direct summand of $\frac{\lambda}{L}$. Thus, $\frac{\lambda}{L}$ is e*S-hollowlifting.

 A condition under which a direct summand of an e*S-hollow-lifting module is e*S-hollow-lifting is provided by the following Corollary.

Corollary 3.7: Let X be a duo e*S-hollow-lifting module. Then each a direct summand of X is an e*Shollow-lifting.

Proof: Obvious by Proposition 3.6.

Theorem 3.8: Any R-module X is e*S-hollow-lifting, if and only if for each submodule L of X with $\frac{A}{L}$ e*Shollow, has e^*S -supplement V in X such that V \cap L is a direct summand of L.

Proof: \Rightarrow) Assume that X is e*S-hollow-lifting and let L \subseteq X with $\frac{A}{L}$ e*S-hollow. Then there is a submodule V of L such that $V \subseteq_{e * S_{ce}} L$ in X and X = V \oplus C, for some C \subseteq X. By Modular law, L = L \cap X = L \cap (V \oplus C) = $V \oplus (L \cap C)$. Then $(L \cap C)$ is a direct summand of L and $X = L + C$. Using the same Theorem 3.2 argument, we have $L \cap C \ll_{\rho * S} C$. Thus, C is e^{*}S-supplement of L in X.

 \Leftarrow) Let L be a submodule of X with $\frac{A}{L}$ e*S-hollow, thus based on our assumption, there is X = L + V, L ∩ V $\ll_{e*S} V$, and L = (L $\cap V$) $\oplus K$, where K \subseteq L. Now, X = L + V = (L $\cap V$) + K + V = K + V. Itis clear that K $\cap V$ = $\{0\}$, so X = K \oplus V. Let $\frac{L}{K}$ + $\frac{Y}{K}$ $\frac{Y}{K} = \frac{X}{K}$ $\frac{X}{K}$, with $Z_{e*}(\frac{X}{Y})$ $\frac{A}{Y}$) = $\frac{A}{Y}$, where Y \subseteq X containing K. Then X = L + Y. So, X = (L V) \oplus K + Y = (L \cap V) + Y. Now, since L \cap V \ll_{e*S} V, and by Proposition 12 [5], L \cap V \ll_{e*S} X, and $Z_{e*}(\frac{x}{y})$ $\frac{A}{Y}$) = X $\frac{X}{Y}$. Then X = Y, and $\frac{Y}{K} = \frac{X}{K}$ $\frac{X}{K}$, thus $\frac{L}{K} \ll_{e*S} \frac{X}{K}$ $\frac{A}{K}$, therefore K $\subseteq_{e * S_{ce}} L$ in X. Then X is e*S-hollow-lifting.

Theorem 3.9: Let X be any R-module. The statements that follow are equivalent.

1) X is e*S-hollow-lifting.

2) Each submodule L of X with $\frac{A}{L}$ e*S-hollow, can be written as L = V \oplus H, with V is a direct summand of X and H \ll_{e*S} X.

3) Each submodule L of X with $\frac{A}{L}$ e*S-hollow, can be written as L = V + H, with V is a direct summand of X and $H \ll_{e * S} X$.

Proof: 1 \Rightarrow 2) Let L be asubmodule of X, with $\frac{A}{L}$ e^{*}S-hollow. Since X is e^{*}S-hollow-lifting, then there is a submodule V of X such that $V \subseteq_{e * S_{ce}} L$ in X and X = V \oplus Y, where Y \subseteq X. By (Modular law) L = L \cap X = L $(V \oplus Y) = V \oplus (L \cap Y)$. By the same argument of Theorem 3.2, we have $L \cap Y \ll_{e \ast S} Y$, by proposition 12 [5], L ∩ Y \ll_{e*S} X. Let H = L ∩ Y, so L = V ⊕ H, where V is a direct summand of X and H \ll_{e*S} X.

 $2\rightarrow 3$) Obvious.

3⇒1) Let L be a submodule of X with $\frac{A}{L}$ e*S-hollow. By (3) L can be written as L = V + H, with V is a direct summand of X and H \ll_{e*S} X. We want to show that $V\subseteq_{e*S_{ce}} L$ in X. Let $V\subseteq C$ and $\frac{L}{V}+\frac{C}{V}$ $\frac{C}{V} = \frac{X}{V}$ $\frac{X}{V}$, with $Z_{e*}(\frac{X}{C})$ $\frac{A}{C}$) = X $\frac{X}{X}$. Then X = L + C = V + H + C = H + C. Since H $\ll_{e*S} X$, and $Z_{e*}(\frac{X}{C})$ $\frac{X}{C}$) = $\frac{X}{C}$, then X = C and $\frac{C}{V}$ = $\frac{X}{V}$ $\frac{\lambda}{V}$. Thus, $\frac{L}{V}$ $\ll_{e*S} \frac{X}{V}$ $\frac{\lambda}{V}$, therefore $V \subseteq_{e * S_{ce}} L$ in X, and X is e*S-hollow-lifting.

Proposition 3.10: Let X be an e*S-hollow-lifting. If X = V + L, where L is a direct summand of X and $\frac{1}{V}$ is e*S-hollow, then L contains an e*S-supplement of V in X.

Proof: Since X is e*S-hollow-lifting and $\frac{\lambda}{\nu}$ is an e*S-hollow, then by Theorem 3.9, V \cap L = Y \oplus C, where Y is a direct summand of X and C $\ll_{e * S} X$. But L is a direct summand of X and C \subseteq L, thus by Proposition 13 [5], $C \ll_{e \ast S} L$. Let $X = Y \oplus H$, where $H \subseteq X$. By (Modular law) $L = L \cap X = L \cap (Y \oplus H) = Y \oplus (L \cap H)$. Let $D = L \cap X$ L \cap H, so X = V + Y + D = V + D. Also, V \cap L = V \cap (Y \oplus D) = Y \oplus (V \cap D). Let π : Y \oplus D \to D be the natural projection map. So, we have $V \cap D = \pi(Y \oplus (V \cap D)) = \pi(V \cap L) = \pi(Y \oplus C) = \pi(C)$. Since $C \ll_{e * S} L = Y \oplus D$, then by Proposition 12 [5], $\pi(C) \ll_{e * S} D$, and hence V $\cap D \ll_{e * S} D$. Thus, D is an e*S-supplement of V in X and D is contained in L.

Proposition 3.11: Let $X = X_1 \oplus X_2$ be a duo module. Then X is e*S-hollow-lifting if and only if X_1 and X_2 are e*S-hollow-lifting.

Proof: ⇒) Obvious by Corollary 3.7.

←) Let L be a submodule of X with $\frac{X}{L}$ e*S-hollow. By Lemma 5.4 [11], $\frac{X}{L}$ $\frac{X}{L} = \frac{L}{L}$ $\frac{+X_1}{L}$ \oplus $\frac{L}{L}$ $\frac{1}{L}$, since $\frac{\lambda}{L}$ is e^{*}S-hollow, we can assume that $\frac{L + X_1}{L} = \frac{X}{L}$ $\frac{X}{L}$, then $X_2 \subseteq L$. Since $\frac{L+X_1}{L} \cong \frac{X}{L \cap L}$ $\frac{\lambda_1}{\lambda_1 \wedge \lambda_1}$, by (Second Isomorphism Theorem), and X_1 is e*S-hollow-lifting. Then there is a direct summand V of X_1 such that $\frac{L\cap X_1}{V}$ \ll_{e*S} $\frac{X_1}{V}$ $\frac{\lambda_1}{V},$ since L = L \cap X = L \cap (X₁ \bigoplus X₂), then L = (L \cap X₁) \bigoplus (L \cap X₂), we get $\frac{L}{v \bigoplus x_2} \ll_{e * S} \frac{x}{v \bigoplus x_1}$ $\frac{\lambda}{\nu \oplus x_2}$. Furthermore, it is obvious $V \oplus X_2$ is a direct summand of X. Hence, X is e*S-hollow-lifting.

Proposition 3.12: Let X be any R-module. Then X is e*S-hollow-lifting module if and only if for each submodule L of X with $\frac{A}{L}$ e^{*}S-hollow, there is an idempotent $Q \in$ End (X) with $Q(X) \subseteq L$ and $(I - Q)$ (L) [∗](I – *Q*) (X).

Proof: \Rightarrow) Let L be a submodule of X with $\frac{A}{L}$ e^{*}S-hollow. Since X is e^{*}S-hollow-lifting, then by Theorem 3.8, L has an e*S-supplement V in X such that L \cap V is a direct summand of V, then X = L + V, L \cap V \ll_{e*S} V and L = $(L \cap V) \oplus Y$, where $Y \subseteq L$. Then X = L + V = $(L \cap V)$ + Y + V = Y + V and L $\cap V \cap Y$ = V $\cap Y$ = {0}, and hence X = V \oplus Y. Define the map that follows now. *Q*: X \rightarrow Y be the natural projection map. It is easy to show that *Q* is an idempotent and *Q* (X) \subseteq Y. Since Y \subseteq L, then *Q* (X) \subseteq L. Now, $(I - Q)$ (X) = { $(I - Q)$ (*x*), $x \in$ X } = {(I – *Q*) (*c* + *w*), where $c \in Y$, $w \in V$ } = {(I – *Q*) ($c + w$) = $c + w - c = w$ } = V. We aim to prove that (I – *Q*) $(L) = L \cap (I - Q)$ (X). Let $n \in (I - Q)$ (L), then there is $l \in L$, such that $n = (I - Q)$ (l) = $l - f(l)$. Thus $n \in L$ and n \in $(I - Q)$ (X) . So, $n \in L \cap (I - Q)$ (X) . Hence, $(I - Q)$ $(L) \subseteq L \cap (I - Q)$ (X) . Let $d \in L \cap (I - Q)$ (X) , then $d \in L$ and d \in $(I - Q)$ (X). There is $y \in X$ such that $d = (I - Q)$ $(y) = y - Q$ (y) . Hence, $d + Q$ $(y) = y \in L$, then $d \in (I - Q)$ (L). So, $(I - Q)$ $(L) = L ∩ (I - Q) (X) = L ∩ V \ll_{e * S} V$. Hence $(I - Q) (L) \ll_{e * S} (I - Q) (X)$.

 ϵ) Let L be a submodule of X with $\frac{A}{L}$ e^{*}S-hollow. By our assumption, there is an idempotent $Q \in$ End (X) with $Q(X) \subseteq L$ and $(I - Q)$ $(L) \ll_{e * S} (I - Q)$ (X) . Claim that $X = Q(X) \oplus (I - Q)$ (X) . To show that, let $x \in X$, then $x = x + Q(x) - Q(x) = Q(x) + x - Q(x) = Q(x) + (I - Q)(x)$. Thus $X = Q(x) + (I - Q)(x)$. Now, let $w \in Q$ $(X) \cap (I - Q)$ (X) , then $w = Q(x_1)$ and $w = (I - Q)(x_2)$, for some $x_1, x_2 \in X$. So, $Q(w) = Q(x_1) = Q((I - Q)(x_2)$ (x_2) = *Q* (x_2) – *Q* (x_2) = {0}, then *Q* (*Q* (x_1) = *Q* (x_1) = {0}, thus $w =$ {0}. Thus $X = Q(X) \oplus (I - Q)(X)$. Obviously, L ∩ (I – *Q*) (X) = (I – *Q*) (L). Since (I – *Q*) (L) \ll_{e*S} (I – *Q*) (X), then L ∩ (I – *Q*) (X) \ll_{e*S} (I – *Q*) (X). Thus, X is e*S-hollow-lifting.

References.

- **10** Ali A. A. Kabban , Journalof Al-Qadisiyah for Computer Science and Mathematics **Vol.16.(3) 2024,pp.Math 81–90**
- [2] N. S. A. M. K. Ahmmed, "Pr-small R-submodules of modules and Pr-radicals.," *J. Interdiscip. Math.*, vol. 26, no. 7, pp. 1511–1516, 2023.
- [3] H. R. Baanoon and W. Khalid, "e∗-Essential submodule," *Eur. J. Pure Appl. Math.*, vol. 15, no. 1, pp. 224–228, 2022, doi: 10.29020/nybg.ejpam.v15i1.4215.
- [4] K. Goodearl, *Ring Theory: Nonsingular Rings and Modules*. in Chapman & Hall/CRC Pure and Applied Mathematics. Taylor & Francis, 1976. [Online]. Available: https://books.google.iq/books?id=5FKzb7LZMvAC
- [5] W. Khalid, A. Kabban, "On e*_Singular Small Submodules," *Accept. Publ. a J. AIP Conf. Proceeding*, 2025.
- [6] W. Khalid, A. Kabban, "e*-Singular–Hollow Modules and e*-Singular–Coclosed Submodules," *Accept. Publ. Iraqi J. Sci.*, Vol. 66, No. 6, 2025.
- [7] J. Clark, C. Lomp, and R. Wisbauer, *Lifting Modules: Supplements and Projectivity in Module Theory*. 2006. doi: 10.1007/3-7643-7573-6.
- [8] E. M. Kamil and W. Khalid, "On µ-lifting modules," *Iraqi J. Sci.*, vol. 60, no. 2, pp. 371–380, 2019, doi: 10.24996/ijs.2019.60.2.17.
- [9] W. Khalid, A. Kabban, "On e*-Singular–Supplement Submodules," *Accept. Publ. Iraqi J. Sci.*, Vol. 66, No. 10, 2025.
- [10] T. KOŞAN and D. K. TÜTÜNCÜ, "H-Supplemented Duo Modules," *J. Algebr. Its Appl.*, vol. 06, no. 06, pp. 965– 971, 2007, doi: 10.1142/s0219498807002582.
- [11] N. Orhan, D. K. Tütüncü, and R. Tribak, "On hollow-lifting modules," *Taiwan. J. Math.*, vol. 11, no. 2, pp. 545– 568, 2007, doi: 10.11650/twjm/1500404708.
- [12] T. KOŞAN, "the Lifting Condition and Fully Invariant Submodules," vol. 7, no. 1, pp. 99–106, 2005.
- [13] D. Keskin, "Discrete and quasi-discrete modules," *Commun. Algebr.*, vol. 30, no. 11, pp. 5273–5282, 2002, doi: 10.1081/AGB-120015652.
- [14] G. F. Birkenmeier, B. J. Müller, and S. T. Rizvi, "Modules in Which Every Fully Invariant Submodule is Essential in a Direct Summand," *Commun. Algebr.*, vol. 30, no. 3, pp. 1395–1415, Jan. 2002, doi: 10.1080/00927870209342387.
- [15] Y. Talebi and T. Amoozegar, "Strongly FI-Lifting Modules," *Int. Electron. J. Algebr.*, vol. 3, no. July 2007, pp. 75–82, 2008.