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A B S T R A C T 

The Introduction of integral transforms as a partial differential equation solution technique 
results from the tremendous significance of differential equations and integral transforms in 
scientific domains. This study proposes a new integral transform Abeer Al- Tememe 
transform. The suggested transform applications has demonstrated its capacity to resolve 
partial differential equations. 
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1. Introduction 

An equation with the derivative of one or more functions is known as a differential equation in 

mathematics. An ordinary differential equation is a differential equation that has all of its derivatives with 

respect to one variable. A differential equation having derivatives with respect to several variables is 

called an n-degree partial differential equation, where n is the greatest derivative connected to the 

differential equation. The partial differential equation's solution is a function that results from utilizing 

the process of mathematics to solve it; when this function is introduced into the equation, it takes on a 

form of identity [5, 7] . 

   Because partial differential equations can generate mathematical formulas for real-world applications 

involving numerous variables, they are regarded as powerful tools. As a result, partial differential 

equation solving has attracted the attention of many mathematicians, and numerous methods have been 

put forth to find both approximate and exact solutions to these kinds of issues [14,15]. 
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   Many scientific and technical problems can be solved with the help of integral transformations 

[6,8,10,11]. Over time, mathematicians have created a variety of integral transformations that are useful 

for solving partial differential equations [2,3,9,12,13].  

     In 2016 [4],  the Al-Tememe transform defines certain fundamental concepts of differentiation and 

integration and is utilized in the solution of certain types of PDEs with variable coefficients . 

   In 2017[1] , the researchers use Al-Tememe transform to solve the linear systems of first and second 

order of partial differential equations with variable coefficients and solve linear systems of partial 

differential equations by matrices 

2.Definition and Basic Concepts 

2.1 Definition of Abeer-Al-Tememe transform  

 Abeer Al-Tememe transform is described as AT(f( ))=∫   
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2.2 Some properties of Abeer-Al-Tememe transform 

2.2.1Linearity Property 

The Linear property that is characteristic of this transformation is 
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where     are constants while the functions   (   ) and   (   ) are defined when (ƫ  )  

2.2.2 The partial derivatives of Abeer-Al- Tememe transform 

If AT(μ(ᶍ,ƫ))= w(ᶍ,s) , then 
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Now that It is assumed that   has an exponential order and is piecewise continuous. 
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3. AT transform for basic functions: 

No.  ( )  ( ( )) 
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3.1 Definition of Inverse  Abeer-Al-Tememe transform 
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Assuming a function μ(ᶍ,ƫ)   where (ƫ >1) and AT(μ(ᶍ,ƫ))= w(ᶍ,s) then, μ(ᶍ,ƫ) is said to be the inverse for the Abeer Al-

Tememe transformation and its written as:       (  )  [w(ᶍ,s)]=
 

    
∫   
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μ(ᶍ,ƫ)  

where (  )   returns the transform to the originally function. 
 

4.Applications 

Examples 4 .1 

1.To solve the PDE 
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By taking (  )   to both sides then we get  
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Example 4.2 : To solve the PDE 
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Now, to solve the  above ODE we assume  

     , thus         (    )       and    
 

  
    

After we substitute the a above a assumption in the differential equation, we get  

.  
  

   

  
/  

  

   
  

Firstly we find the homogenous solution  

   
   

  
    

    
   

  
 

   

  
⟹    

√   

 
  

Then the homogeneous solution  

     ( ) 
√   

 
    ( ) 

 
√   

 
   

     ( ) 
√   

    ( ) 
 
√   

    

Since we have  (   )   ⟹   ( (   ))   (   )   , then 

     ( ) 
√   

    ( ) 
 
√   

   

  ( ) 
√   

    ( ) 
 
√   

    ... (1) 

And since we have  (   )   ⟹   ( (   ))   (   )   ,then  

     ( ) 
√   

    ( ) 
 
√   

     

       ⟹         

By substitute in (1) we get that          

Now to find the particular solution of  

.  
  

   

  
/ (   )  

   

   
  

We substitute (1) instead of (  ), then to find the form of     

  (   )  
    

(   )(      )
  

  (   )  
   

(   )(      )
  

Taking 
  

(   )(      )
 

 

   
 

    

      
  

        
 

   
 

    

.  
 

 
 /

 
 
 

 
  

  



8 Abeer F. Abaas, Ali H. Mohammed, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol.16.(3) 2024,pp.Math 701–771

 

⟹                

Then 
   

(   )(      )
 

  

(   )
 

   
 

 
   

.  
 

 
 /

 
 
 

 
  

 
 

 
   

.  
 

 
 /

 
 
 

 
  

  

              
  

(   )
 

  .  
 

 
 /

.  
 

 
 /

 
 
 

 
  
 

 

 

  

.  
 

 
 /

 
 
 

 
  

   

Now, we take (  )   to both sides, so we get  

        
 

    
√ 

 
    

 

√ 
 
 

    
√ 

 
      

Example 4.3: To solve the following PDF 
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By using the AT transform to both sides of the equation, so we get  
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Now we take (  )   to both sides, we obtain  
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5.conclusions 

This essay presents and explains the Abeer-Al-Tememe  transform of partial derivatives and demonstrates its 
application to a number of initial value problems. we were able to determine the right response quite rapidly. 
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