The Iteration of Points of Henon Map where $a > \frac{-(1+|b|)^2}{4}$

Iftichar Mudar Talb

Kawa Ahmad Hassan

Abstract

We study the dynamics of the two dimensional mapping the non linear mapping $H_{a,b}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}a-by-x^2\\x\end{pmatrix}$. We study the iteration of all points in the plane . We determine the regain which contain the set of periodic points

1- Introducation

About 30 years ago the French astronomer –mathematician Michel-Henon was searched for a simple two-dimensional map possessing special properties of more complicated systems .The result was a family of maps denoted by $H_{a,b}$ given by $H_{a,b}\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 1-ax^2 + y\\ bx \end{pmatrix}$

where a, b are real numbers .These maps defined in above are called Henon maps [5].

we will prove one theorem about iteration of $H_{a,b}$ where b > 0 and $a > \frac{-(1+b)^2}{4}$ which is given in [3]. prove we prove that for a closed region

$$\mathbf{S}_{a,b} = \{ \begin{pmatrix} x \\ y \end{pmatrix} : |x| \le C_{a,b}, |y| \le C_{a,b} \} \text{ if } a > \frac{-(1+b)^2}{4} \text{ and } b > 0 \text{ then for all } \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbf{R}$$

either $|x_n| \longrightarrow \infty \text{ as } n \longrightarrow \infty \text{ or } |y_{-n}| \longrightarrow \infty \text{ as } n \longrightarrow \infty$, where b > 0 and $a < \frac{-(1+b)^2}{4}$, by finding some regions and prove some necessary lemma for our proof..

2- The Set of Periodic Points

The main purpose of this section is to prove one theorem on Henon map $H_{a,b}$ where $a > \frac{-(1+|b|)^2}{4}$. To prove this theorem, we need to prove some lemmas. To state and prove our lemmas, we fix *b* and define two crucial *a*-values

1-
$$a_0(b) = \frac{-(1+|b|)^2}{4}$$

2- $a_1(b) = 2(1+|b|)^2$
and, for any particular *a*-value, we define C=C_{*a,b*} by
 $C_{a,b} = \frac{1+|b|+\sqrt{(1+|b|)^2+4a}}{2}$, we will go to prove necessary lemmas.

Lemma (2.1)[4]

(i) C is positive real and the larger root of $C^2 - (1+|b|)C - a = 0$ if and only if $a_0 \le a$.

(ii) a - |b|C > C if and only if $a > a_1$

proof: (i) Since $a_0 \le a$, we have $(1+|b|)^2 + 4a \ge 0$, so C is positive real number, if $C^2 - (1+|b|)C - a = 0$, since $(1+|b|)^2 + 4a \ge 0$. We have two distinct real roots which are $\frac{1+|b|+\sqrt{(1+|b|)^2+4a}}{2}$ and $\frac{1+|b|-\sqrt{(1+|b|)^2+4a}}{2}$, the first is positive and the second may be negative so C is larger root.

(ii) If a - |b|C > C, this implies that a > (1 + |b|)C(2.1) We have $2C - (1 + |b|) = \sqrt{(1 + |b|)^2 + 4a}$.

(2.2) Now let $(1+|b|) = \beta$, then $2C - \beta = \sqrt{\beta^2 + 4a}$, that is $(2C - \beta)^2 = \beta^2 + 4a$, so $C^2 - \beta C = a$. We put the value of a in (2.1), we get that $C^2 - \beta C > \beta C$ (2.3)

so $C^2 > 2\beta C$, since C is positive we have $C > 2\beta$, that is C > 2(1+|b|). (2.4)

Now by (2.4) $(1+|b|) + \sqrt{(1+|b|)^2 + 4a} > 4(1+|b|)$, that is $4a + (1+|b|)^2 > 9(1+|b|)^2$, hence $a > 2(1+|b|)^2$.

By the same way, we can prove that if $a > a_1$ then a - |b|C > C. \Box

Lemma (2.2)[4]

(i) The image under $H_{a,b}$ of the horizontal strip $|y_0| \le \gamma$ is the region bounded by the two parabolas $a - |b|\gamma - y_1^2 \le x_1 \le a + |b|\gamma - y_1^2$ and the image under $H_{a,b}$ of the vertical strip $|x_0| \le \gamma$ is the horizontal strip $|y_1| \le \gamma$, where γ is positive real number.

(ii) The inverse image of the vertical strip $|x_0| \le \gamma$ is the region bounded by two parabolas $-\gamma + a - x_{-1}^2 \le by_{-1} \le a + \gamma - x_{-1}^2$ and the image of the horizontal strip $|y_0| \le \gamma$ is the vertical strip $|x_{-1}| \le \gamma$.

Proof

(i) we have $|y_0| \leq \gamma$, so $-\gamma \leq y_0 \leq \gamma$, if -1 < b < 0 then $b\gamma \leq -by_0 \leq -b\gamma$ and |b| = -b, hence $-|b|\gamma \leq -by_0 \leq |b|\gamma$. (2.5) If 0 < b < 1, then $b\gamma \geq -b\gamma$, |b| = b hence $-|b|\gamma \leq -by_0 \leq |b|\gamma$. (2.6) Now in all case $-|b|\gamma \leq -by_0 \leq |b|\gamma$, so $a - |b|\gamma \leq a - by_0 \leq a + |b|\gamma$, since $x_0 = y_1$ $a - |b|\gamma - y_1^2 \leq x_1 \leq a + |b|\gamma - y_1^2$. (2.7) Also if $|x_0| \leq \gamma$, since $x_0 = y_1$, we have $|y_1| \leq \gamma$ that means the image under H_{a,b} of the vertical strip $|x_0| \leq \gamma$ is the horizontal strip $|y_1| \leq \gamma$.

(ii) We have $|x_0| \le \gamma$ so $\gamma \le -x_0 \le -\gamma$ so $a - \gamma - x_{-1}^2 \le by_{-1} \le a + \gamma - x_{-1}^2$, $y_0 = x_{-1}$, so $|y_0| = |x_{-1}|$, the image under $H_{a,b}^{-1}$ of the horizontal strip $|y_0| \le \gamma$ is the vertical strip $|x_{-1}| \le \gamma$. \Box

Lemma (2.3)[2]

Let
$$P\begin{pmatrix}a\\b\\\gamma\end{pmatrix} = \{\begin{pmatrix}x\\y\end{pmatrix}: a - |b|\gamma - y^2 \le x \le a + |b|\gamma - y^2\} S_h(\alpha, \beta) = R \times [\alpha, \beta] \text{ and}$$

 $S_{\nu}(\alpha,\beta) = [\alpha,\beta] \times R, \gamma \in R$ and then for the Henon map $H_{a,b}$ the following are hold :

(i)
$$H_{a,b}(S_{\nu}(-\gamma,\gamma)) = S_{h}(-\gamma,\gamma).$$

(ii) $H_{a,b}(S_{h}(-\gamma,\gamma)) \subset P\begin{pmatrix}a\\b\\\gamma\end{pmatrix}.$
(iii) $H_{a,b}^{-1}(P\begin{pmatrix}a\\b\\\gamma\end{pmatrix}) \subset S_{h}(-\gamma,\gamma).$

Proof: (i)
$$\operatorname{Let}\begin{pmatrix} x \\ y \end{pmatrix} \in \operatorname{H}_{a,b}(\mathbf{S}_{v}(-\gamma,\gamma))$$
, so there exists $\begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} \in \operatorname{S}_{v}(-\gamma,\gamma)$ such
that $\operatorname{H}_{a,b}\begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$, that is $x = a - by_{0} - x_{0}^{2}$, $y = x_{0}$, since $\begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} \in [-\gamma,\gamma] \times \mathbb{R}$
we have $x_{0} \in [-\gamma,\gamma]$, hence $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R} \times [-\gamma,\gamma]$, that is $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbf{S}_{h}(-\gamma,\gamma)$.
Conversely: Let $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbf{S}_{h}(-\gamma,\gamma)$, then $x \in \mathbb{R}$ and $y \in [-\gamma,\gamma]$, so
 $\frac{a - x - y^{2}}{b} \in \mathbb{R}$, thus $\begin{pmatrix} y \\ \frac{a - x - y^{2}}{b} \end{pmatrix} \in [-\gamma,\gamma] \times \mathbb{R}$, since $\begin{pmatrix} x \\ y \end{pmatrix} = \operatorname{H}_{a,b}\begin{pmatrix} y \\ \frac{a - x - y^{2}}{b} \end{pmatrix}$, we have $\begin{pmatrix} x \\ y \end{pmatrix} \in \operatorname{H}_{a,b}(\mathbf{S}_{v}(-\gamma,\gamma))$.

(ii)
$$\operatorname{Let}\begin{pmatrix} x \\ y \end{pmatrix} \in \operatorname{H}_{a,b}(S_{h}(-\gamma,\gamma))$$
, so there exists $\begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} \in S_{h}(-\gamma,\gamma)$ such that
 $\operatorname{H}_{a,b}\begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$ and $\begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} \in \operatorname{R} \times [-\gamma,\gamma]$, so we get that $|y_{0}| \leq \gamma$ and by lemma (2.2)

Part (i)
$$a - |b|\gamma - y_1^2 \le x_1 \le a + |b|\gamma - y_1^2$$
 so $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbf{P} \begin{pmatrix} a \\ b \\ \gamma \end{pmatrix}$.
(iii) $\operatorname{Let} \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbf{H}_{a,b}^{-1} (\mathbf{P} \begin{pmatrix} a \\ b \\ \gamma \end{pmatrix})$, so there exists $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in \mathbf{P} \begin{pmatrix} a \\ b \\ \gamma \end{pmatrix}$ such that
 $\mathbf{H}_{a,b}^{-1} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$, hence $a - |b|\gamma - y_0^2 \le x_0 \le a + |b|\gamma - y_0^2$. Clearly $x \in \mathbf{R}$. To

show that $y \in [-\gamma, \gamma]$, suppose that $y > \gamma$ then $\frac{a - x_0 - y_0^2}{b} > \gamma$ (2.8) Now if b > 0, then from (2.8) $a - x_0 - y_0^2 > |b|\gamma$, so $x_0 < a - |b|\gamma - y_0^2$ which is contradiction , if b < 0 then from (2.8) $a - x_0 - y_0^2 < b\gamma$, so $x_0 > a + |b|\gamma - y_0^2$ which is contradiction.

To show that $y \ge -\gamma$, if b > 0 then $x_0 \le a + |b|\gamma - y_0^2$ so $-b\gamma \le a - x_0 - y_0^2$ thus $-\gamma \le \frac{a - x_0 - y_0^2}{b} = y$, that is $y \ge -\gamma$, if b < 0 then |b| = -b, hence $x_0 \ge a + b\gamma - y_0^2$

so
$$-b\gamma \ge a - x_0 - y_0^2$$
 thus $-\gamma \le \frac{a - x_0 - y_0^2}{b} = y$, that is $y \ge -\gamma$ hence $y \in [-\gamma, \gamma]$
 $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbf{S}_h(-\gamma, \gamma). \square$

Proposition (2.4)[2]

Let $S_{a,b} = \{ \begin{pmatrix} x \\ y \end{pmatrix} : |x| \le C_{a,b}, |y| \le C_{a,b} \}$ be a closed region in \mathbb{R}^2 , for Henon

map $H_{a,b}$, if $b \neq 0$ then $H_{a,b}(S_{a,b}) = P \begin{pmatrix} a \\ b \\ C \end{pmatrix} \cap S_h(-C,C)$.

Proof: From definition of $S_{a,b}$, we have $S_{a,b} = S_h(-C,C) \cap S_v(-C,C)$.

So
$$H_{a,b}(S_{a,b}) = H_{a,b}(S_h(-C,C)) \cap H_{a,b}(S_v(-C,C))$$

(2.9)

Now by lemma (2.3)(ii) $H_{a,b}(S_h(-C,C)) \subset P\begin{pmatrix}a\\b\\C\end{pmatrix}$.

(2.10)

By lemma (2.3)(iii), since $H_{a,b}$ is diffeomorphism, we get that

P
$$\begin{pmatrix} a \\ b \\ C \end{pmatrix} \subset H_{a,b}(\mathbf{S}_{h}(-C,C))$$
)

(2.11)

Hence from (2.10) and (2.11), we get that $H_{a,b}(S_h(-C,C)) = P \begin{pmatrix} a \\ b \\ C \end{pmatrix}$

(2.12) From lemma (2.3)(i) we have $H_{a,b}(S_v(-C,C)) = S_h(-C,C)$ (2.13)

Now by (2.9), (2.12) and (2.13)
$$H_{a,b}(S_{a,b}) = P\begin{pmatrix}a\\b\\C\end{pmatrix} \cap S_h(-C,C)$$
. \Box

Remark (2.5)

We define some region and proof one theorem on Henon map for $a > a_0$, the regions are M₁, M₂, M₃ and M₄ where :

Fig(10)Region M₁, M₂, M₃, M₄

Theorem (2.6)[3]

Suppose $S_{a,b} = \{ \begin{pmatrix} x \\ y \end{pmatrix} : |x| \le C_{a,b}, |y| \le C_{a,b} \}$ is a closed region in \mathbb{R}^2 . If $a > a_0(b)$ and b > 0, then for all $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 - S_{a,b}$ either $|x_n| \longrightarrow \infty$ as $n \longrightarrow \infty$ or $|y_{-n}| \longrightarrow \infty$ as $n \longrightarrow \infty$.

Lemma (2.7)

Let $H_{a,b}$ be a Henon map, $\begin{pmatrix} x \\ y \end{pmatrix} \in M_1$ and b > 0. Then the sequence $\langle x_n \rangle$ is strictly decreasing sequence and $|x_n| \longrightarrow \infty$ as $n \longrightarrow \infty$.

Proof

If $|y_0| \neq C$ then we have two cases:

Case 1: $|y_0| < C$, hence $|C - |y_0| = C - |y_0|$, so $x_0 < \frac{-(C - |y_0|) - C - |y_0|}{2} = -C$ $x_0 < -C < -|y_0|$ thus Now $x_1 - x_0 = a - by_0 - x_0^2 - x_0$, So $x_1 - x_0 \le a + |b|y_0 - x_0^2 - x_0$. (2.14)(2.15)Since $x_0 < -|y_0|$, we have $|y_0| < -x_0$, so by (2.15) $x_1 - x_0 < a - |b|x_0 - x_0^2 - x_0$ (2.16) $a - |b|x_0 - x_0^2 - x_0 = a - (|b| + 1)x_0 - x_0^2$ but this equation has two roots which are $x_0^{\mp} = \frac{-(1+|b|) \mp \sqrt{(1+|b|)^2 + 4a}}{2}$, one of them is -C, for any value less than -C $a - (|b|+1)x_0 - x_0^2 < 0$. From (2.14), we have $x_0 < -C$, so $a - (|b|+1)x_0 - x_0^2$ < 0, hence by (2.16) $x_1 - x_0 < 0$, that is $x_1 < x_0$. Case 2: $|y_0| > C$, hence $|C - |y_0| = |y_0| - C$, so $x_0 < \frac{-(|y_0| - C) - C - |y_0|}{2} = -|y_0|$ $|v_0| > C$. $x_0 < -|y_0| < -C$ and thus (2.17)Now $x_1 - x_0 = a - by_0 - x_0^2 - x_0 \le a + |b||y_0| - x_0^2 - x_0$ $< a - |b|x_0 - x_0^2 - x_0 = a - (1 + |b|)x_0 - x_0^2$ (2.18)As case 1, $a - (1+|b|)x_0 - x_0^2 = 0$ has two roots one of them is -C. From $x_0 < -C$, so $a - (1 + |b|)x_0 - x_0^2 < 0$, hence by (2.18) $x_1 < x_0$. (2.17), Now since $x_0 < \frac{-(C - |y_0|) - C - |y_0|}{2}$, we have $x_0 < -C$, that is $y_1 < -C$ so $|y_1| > C$. $|y_1| - C = |C - |y_1||$ Hence (2.19)On the other hand $x_1 < x_0$ and x_0 is a negative real number so $x_1 < -|x_0| =$ $-|y_1|$. From (2.19), we get $x_1 < \frac{-(C - |y_1|) - C - |y_1|}{2}$. As above we get that $x_2 < \frac{-(C - |y_1|) - C - |y_1|}{2}$. $x_1 < \frac{-(C - |y_1|) - C - |y_1|}{2}$ (2.20)Now $|y_1| > C$, from (2.20) ,we have $x_1 = y_2 < -C$ so $|y_2| - C = |C - |y_2||$. (2.21)Also $x_2 < x_1$ and x_1 is a negative real number so $x_2 < -|x_1| = -|y_2|$.

From (2.21) we get $x_2 < \frac{-(C - |y_2|) - C - |y_2|}{2}$. As (2.18), we get $x_3 < x_2$. continuing in this procedure, we get that for a positive integer $n x_n < x_{n-1} < \ldots < x_2 < x_1 < x_0$, that is $\langle x_n \rangle$ is strictly decreasing sequence. For the second part if possible $\langle x_n \rangle$ is bounded, since it is monotone, we get $\langle x_n \rangle$ convergent, since $x_n = y_{n+1}$, that is $\langle x_n \rangle$, also convergent, $H_{a,b}$ is continuous. So there exits a fixed point for $H_{a,b}$ in M_1 which is contradiction, hence $\langle x_n \rangle$ is not bounded, that is $|x_n| \longrightarrow \infty$ as $n \longrightarrow \infty$.

Remark (2.8)[6]

In theorem (2.7) the equality holds only for $x_0 = -C$, $y_0 = \mp C$. Proof: If $b \ge 0$, then $x_1 - x_0 = a - |b|y_0 - x_0^2 - x_0$ if $x_0 = -C$, $y_0 = -C$, then $x_1 - x_0 = a + (1+|b|)C - C^2$, by lemma (2.1) $x_1 - x_0 = 0$, that is $x_1 = x_0$. If b < 0, then $x_1 - x_0 = a + |b|y_0 - x_0^2 - x_0$ if $x_0 = -C$, $y_0 = C$, then $x_1 - x_0 = a + (1+|b|)C - C^2$, by lemma (2.1) $x_1 - x_0 = 0$, that is $x_1 = x_0$.

Lemma (2.9)

Let $H_{a,b}^{-1}$ be the inverse of Henon map, suppose $\begin{pmatrix} x \\ y \end{pmatrix} \in M_2$ and b > 0. Then the sequence $\langle y_{-n} \rangle$ is strictly decreasing sequence and $|y_{-n}| \longrightarrow \infty$ as $n \longrightarrow \infty$.

Proof

Let $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in \mathbf{M}_2$, from remark (2.5) $x_0 \ge y_0$, $y_0 < -C$, consider $b(y_{-1} - y_0) = by_{-1} - by_0 = a - x_0 - y_0^2 - by_0$ (2.22) Since $x_0 \ge y_0$, we have $a - x_0 - y_0^2 - by_0 \le a - y_0 - y_0^2 - by_0$ $= a - (1+b)y_0 - y_0^2$. (2.23) From (2.22) and (2.23), we get $b(y_{-1} - y_0) \le a - (1+b)y_0 - y_0^2$. (2.24)

Now the quadratic equation $a - (1+b)y_0 - y_0^2 = 0$ has a negative root $y_0^- = -C$

if we take another value $y = y_0^*$ such that $y_0^* < -C$,

becomes $a - (1+b)y - y^2 < 0$, and we have $y_0 < -C$, so $a - (1+b)y_0 - y_0^2 < 0$. From (2.24), we get that $b(y_{-1} - y_0) < 0$, since b > 0, we get $y_{-1} < y_0 < -C$ and since $x_{-1} = y_0$, we have $y_{-1} < x_{-1}$ that is $\begin{pmatrix} x_{-1} \\ y_{-1} \end{pmatrix} \in \mathbf{M}_2$.

Now if possible $y_{-k} < y_{-(k-1)} < ... < y_{-1} < y_0$, since $y_0 < -C$, we have $y_{-k} < -C$.

Also
$$x_{-k} = y_{-(k-1)}$$
, we have $y_{-k} < x_{-k}$
(2.25)
 $b(y_{-(k+1)} - y_{-k}) \le a - x_{-k} - y_{-k}^{2} - by_{-k} < a - y_{-k} - y_{-k}^{2} - by_{-k}$
 $= a - (1+b)y_{-k} - y_{-k}^{2}$.

(2.26)

Now the quadratic equation $a - (1+b)y_{-k} - y_{-k}^2 = 0$ has a negative root $y_{-k}^2 = -C$ if we take another value $y = y_{-k}^*$ such that $y_{-k}^* < -C$ becomes $a - (1+b)y - y^2 < 0$ and we have $y_{-k} < -C$, so $a - (1+b)y_{-k} - y_{-k}^2 < 0$, so from (2.26) we get that $b(y_{-(k+1)} - y_{-k}) < 0$, since b > 0, we get $y_{-(k+1)} < y_{-k}$, so we get that $y_{-n} < y_{-(n-1)} < \ldots < y_{-1} < y_0$, that is $\langle y_{-n} \rangle$ is strictly decreasing sequence.

For the second part if possible $\langle y_{-n} \rangle$ is bounded, since it is monotone we get $\langle y_{-n} \rangle$ convergent is, $x_{-(n+1)} = y_{-n}$, that is $\langle x_{-n} \rangle$ also convergent is, $H_{a,b}$ is continuous so there exits a fixed point for $H_{a,b}$ in M_2 which is contradiction hence $\langle y_{-n} \rangle$ not bounded that is $|y_{-n}| \longrightarrow \infty$ as $n \longrightarrow \infty$.

Lemma(2.10)

The region M_3 maps into M_2 under backward iteration of Henon map $H_{a,b}$, provided $a > a_0, b > 0$.

Proof

Let $\binom{x_0}{y_0} \in M_3$, hence by remark (2.5) we have $x_0 \ge -y_0$ and $y_0 > C_{a,b}$ so $b(y_{-1} - y_0) = by_{-1} - by_0 = a - x_0 - y_0^2 - by_0$ (2.27) Since $x_0 \ge -y_0$ and $y_0 > 0$ we have $-by_0 < by_0$ so by (2.27), we have

Since $x_0 \ge -y_0$ and $y_0 > 0$ we have $-by_0 < by_0$ so by (2.27), we have $b(y_{-1} - y_0) \le a + y_0 - y_0^2 + by_0 = a + (1+b)y_0 - y_0^2$ (2.28)

Now by lemma (2.1)(i) the quadratic equation $y_0^2 - (1+b)y_0 - a = 0$ has a positive real root $y_0^+ = C$, for any value $y_0^* > C$ this quadratic equation is negative and we have $y_0 > C$ so from (2.28) $b(y_{-1} - y_0) < 0$, since b > 0, we get $y_{-1} < y_0$ and since $x_{-1} = y_0$, we have $y_{-1} < x_{-1}$.

•

Now we have to show that $y_{-1} < -C$ since $y_{-1} + C = \frac{a - x_0 - y_0^2}{b} + C$, $y_0 > 0$, we have $b(y_{-1} + C) = a - x_0 - y_0^2 + bC < a + y_0 - y_0^2 + by_0$ $= a + (1 + b)y - y^2$.

(2.29)

As above and since $y_0 > C$, we have $a + (1+b)y - y^2 < 0$, hence by (2.29) we get that $b(y_{-1} + C) < 0$, since b > 0, we get $y_{-1} < -C$, hence $\begin{pmatrix} x_{-1} \\ y_{-1} \end{pmatrix} \in \mathbf{M}_2$. \Box

Lemma (2.11)

The region M_4 maps into M_1 under forward iteration of the Henon map $H_{a,b}$, provided $a > a_0, b > 0$.

Proof

Let $\begin{pmatrix} x_0 \\ y \end{pmatrix} \in \mathbf{M}_4$ hence from remark (2.5), we have $|y_0| < C$ and $x_0 > C$ Henon map $x_1 + C = a - by_0 - x_0^2 + C$ definition from of (2.30)Since $x_0 > C$, we have $x_0^2 > C^2$. Furthermore $|y_0| < C$ so $-by_0 < bC$. Now from (2.30) and (2.31) we get that $x_1 + C < a + bC - C^2 + C = a + (1+b)C - C^2$ (2.32)From lemma (2.1)(i), C is a positive real root $y^2 - (1+b)y - a = 0$ so $a + (1+b)C - C^2 = 0$, from (2.32), we get $x_1 + C < 0$, that is $x_1 < -C$, since $y_1 = x_0, x_0 > C$ and we have $x_1 < -C$, we get $y_1 > x_1$ (2.33) $x_0 + x_1 = x_0 + a - by_0 - x_0^2$ Now (2.34)Since $x_0 > C > |y_0|$, so if $y_0 \ge 0$ then $x_0 > y_0$, hence $bx_0 > by_0 > -by_0$. If $y_0 < 0$ then $x_0 > -y_0$ that is $bx_0 > -by_0$. (2.34), we get $x_0 + x_1 < x_0 + a + bx_0 - x_0^2 = a + (1+b)x_0 - x_0^2$. From (2.35)As above C is a positive real root, $x^2 - (1+b)x - a = 0$, for $x_0 > C$ $a + (1+b)x_0 - x_0^2 < 0$, from (2.35), we get that, $x_0 + x_1 < 0$ that is $x_1 < -x_0$ $= -y_1$. Now we have $x_1 < y_1 < -x_1$ so $x_1 < -|y_1|$, $x_0 = |y_1| > C$, which becomes $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \in$ $M_1.\square$

proof of theorem (2.6)

Let $\binom{x}{y} \in \mathbb{R}^2 - \mathbb{S}_{a,b}$, by remark (2.5) $\binom{x}{y} \in \bigcup_{i=1}^4 \mathbb{M}_i$ so we have the following cases : Case I: If $\binom{x}{y} \in \mathbb{M}_1$, by lemma (2.7) the sequence $\langle x_n \rangle$ is strictly decreasing sequence and $|x_n| \longrightarrow \infty$ as $n \longrightarrow \infty$. Case II: If $\binom{x}{y} \in \mathbb{M}_2$, by lemma (2.9) the sequence $\langle y_{-n} \rangle$ is strictly decreasing sequence and $|y_{-n}| \longrightarrow \infty$ as $n \longrightarrow \infty$. Case III: If $\binom{x}{y} \in \mathbb{M}_2$ by lemma (2.10) $\binom{x}{y}$ maps into \mathbb{M}_3 under backward iteration of Henon map $\mathbb{H}_{a,b}$. So from case II the sequence $\langle y_{-n} \rangle$ is strictly decreasing sequence and $|y_{-n}| \longrightarrow \infty$ as $n \longrightarrow \infty$. Case IV: If $\binom{x}{y} \in \mathbb{M}_4$ by lemma (2.11) $\binom{x}{y}$ maps into \mathbb{M}_1 under forward iteration of the Henon map $\mathbb{H}_{a,b}$ so from case I the sequence $\langle x_n \rangle$ is strictly decreasing sequence and $|x_n| \longrightarrow \infty$ as $n \longrightarrow \infty$.

Corollary (2.12)[2]

If $a > a_0(b)$ then $P_{er_n}(H_{a,b}) \subset S_{a,b}$. Proof: Let $\begin{pmatrix} x \\ y \end{pmatrix} \in Per(H_{a,b})$, if $\begin{pmatrix} x \\ y \end{pmatrix} \notin S_{a,b}$, then $\begin{pmatrix} x \\ y \end{pmatrix} \in (S_{a,b})^c$, that is $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}$ ²-S_{*a,b*}, by theorem (2.5) either $|x_n| \longrightarrow \infty$ as $n \longrightarrow \infty$, or $|y_{-n}| \longrightarrow \infty$ as $n \longrightarrow \infty$, $x_n = y_{n+1}$, $x_{-(n+1)} = y_{-n}$, so there is no finite orbit for $H_{a,b}$ of $\begin{pmatrix} x \\ y \end{pmatrix}$ which is contradiction .So $\begin{pmatrix} x \\ y \end{pmatrix} \in S_{a,b}$, that is $P_{er_n}(H_{a,b}) \subset S_{a,b}$.

Definition (2.13)[2]

For $a > a_0(b)$ we define non-escape set of $H_{a,b}$ with respect to a and bby $\Lambda \begin{pmatrix} a \\ b \end{pmatrix} = \{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 : \lim_{n \longrightarrow \pm \infty} \left\| H_{a,b}^{n-n} \begin{pmatrix} x \\ y \end{pmatrix} \right\| \longrightarrow \infty \}^C$.

Corollary (2.14)[2]

For the Henon map $H_{a,b}$, $\Lambda \begin{pmatrix} a \\ b \end{pmatrix} = \bigcap_{m \in \mathbb{Z}} H_{a,b}^{m}(S_{a,b})$.

Proof: Let
$$\begin{pmatrix} x \\ y \end{pmatrix} \in \Lambda \begin{pmatrix} a \\ b \end{pmatrix}$$
. To show that $\begin{pmatrix} x \\ y \end{pmatrix} \in \bigcap_{m \in \mathbb{Z}} H_{a,b}^{m}(S_{a,b})$, if we suppose

that

 $\begin{pmatrix} x \\ y \end{pmatrix} \notin \bigcap_{m \in \mathbb{Z}} H_{a,b}^{m}(S_{a,b})$, then there exists $k \in \mathbb{Z}$, such that $\begin{pmatrix} x \\ y \end{pmatrix} \notin H_{a,b}^{k}(S_{a,b})$, that means there exists $r \in Z$ such that $H_{a,b}^{r}(S_{a,b}) \notin S_{a,b}$, that is $H_{a,b}^{r}(S_{a,b}) \in (S_{a,b})$ ^c, so by theorem (2.5) $\left\| H_{a,b}^{p} \begin{pmatrix} x \\ y \end{pmatrix} \right\| \longrightarrow \infty \text{ as } p \longrightarrow \infty \text{ so} \begin{pmatrix} x \\ y \end{pmatrix} \in (\Lambda \begin{pmatrix} a \\ b \end{pmatrix})^{c}$, that is $\begin{pmatrix} x \\ y \end{pmatrix} \notin \Lambda \begin{pmatrix} a \\ b \end{pmatrix}$ which is contradiction hence $\begin{pmatrix} x \\ y \end{pmatrix} \in \bigcap_{m \in \mathbb{Z}} H_{a,b}^{m}(S_{a,b})$. To show that $\bigcap_{m \in \mathbb{Z}} H_{a,b}^{m}(S_{a,b}) \subset \Lambda \begin{pmatrix} a \\ b \end{pmatrix}$, let $\begin{pmatrix} x \\ y \end{pmatrix} \in \bigcap_{m \in \mathbb{Z}} H_{a,b}^{m}(S_{a,b})$ so $\begin{pmatrix} x \\ y \end{pmatrix} \in \prod_{m \in \mathbb{Z}} H_{a,b}^{m}(S_{a,b})$

 $H_{a,b}^{m}(S_{a,b})$ for all m in Z, hence $H_{a,b}^{n}\begin{pmatrix}x\\y\end{pmatrix} \in S_{a,b}$ for all $n \in \mathbb{Z}$, that means if *n* is very large

$$H_{a,b}^{n} \begin{pmatrix} x \\ y \end{pmatrix} \in S_{a,b}, \text{ where } n \longrightarrow \infty \text{ or } n \longrightarrow -\infty \text{ then } \lim_{n \longrightarrow \pm\infty} H_{a,b}^{n} \begin{pmatrix} x \\ y \end{pmatrix} \in S_{a,b} \text{ so}$$

$$\lim_{n \longrightarrow \pm\infty} \left\| H_{a,b}^{n} \begin{pmatrix} x \\ y \end{pmatrix} \right\| \text{ is real number that is } \begin{pmatrix} x \\ y \end{pmatrix} \in \Lambda \begin{pmatrix} a \\ b \end{pmatrix} \text{ so } \bigcap_{m \in \mathbb{Z}} H_{a,b}^{m} (S_{a,b}) \subset \Lambda \begin{pmatrix} a \\ b \end{pmatrix},$$

$$H_{a,b}^{n} (S_{a,b}) = \bigcap_{m \in \mathbb{Z}} H_{a,b}^{m} (S_{a,b}) . \Box$$

Referencess

[1] Adrian ,S. An Application of The Least –Square Method to System Extraction from Experimental 24 November Parameters Data, 2001.Preprint.

[2] Alaaddin Al-Dhahir, the Henon Map. http://doc.utwente.nl/fid/1502

[3] Devaney ,R.L.An Introduction to Chaotic Dynamical Systems ,Second education ,Addison -Wesley ,1989.

[4] Devaney ,R.L .And Nitecki,Z.Shift Automorphisms in The Henon Mapping

,commun.Math,phys 67, (1979)137-146

[5]] Gulick , D. Encounters with chaos . McGraw – Hill, Inc. U.S. A, 1992.

[6] Galloway .Introduction to Non Linear Systems and Chaos. The niversity of sydniy, Applied Mathematics, Math 2006. Preprint.