The Iteration of Points of Henon Map where 4 $(1+|b|)^2$ *a* $-(1 +$ \geq

Iftichar Mudar Talb Kawa Ahmad Hassan

Abstract

 We study the dynamics of the two dimensional mapping the non linear mapping $H_{a,b} \left| \begin{array}{c} x \\ y \end{array} \right|$ J \setminus $\overline{}$ \backslash ſ *y* $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a - by - x^2 \\ x \end{pmatrix}$ J \setminus $\overline{}$ \setminus \int $a - by$ *x* $a - by - x^2$. We study the iteration of all points in the plane . We determine the regain which contain the set of periodic points

1- Introducation

 About 30 years ago the French astronomer –mathematician Michel-Henon was searched for a simple two-dimensional map possessing special properties of more complicated systems .The result was a family \setminus ſ $\binom{x}{y} = \binom{1 - ax^2 + y}{bx}$ \setminus $\left(1 - ax^2 + \right)$ $1 - ax^2 + y$

of maps denoted by H_{a,b} given by H_{a,b} $\left| \begin{array}{c} x \\ y \end{array} \right|$ J $\overline{}$ \setminus *y* J $\overline{}$ \setminus *bx*

where a, b are real numbers . These maps defined in above are called Henon maps [5].

we will prove one theorem about iteration of $H_{a,b}$ where $b > 0$ and 4 $a > \frac{-(1+b)^2}{a}$ which is given in [3]. prove we prove that for a closed region

$$
S_{a,b} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : |x| \le C_{a,b}, |y| \le C_{a,b} \right\} \text{ if } a > \frac{-(1+b)^2}{4} \text{ and } b > 0 \text{ then for all } \begin{pmatrix} x \\ y \end{pmatrix} \in R
$$

either $|x_n| \longrightarrow \infty$ as $n \longrightarrow \infty$ or $|y_{-n}| \longrightarrow \infty$ as $n \longrightarrow \infty$, where $b > 0$ and 4 $a < \frac{-(1+b)^2}{b}$, by finding some regions and prove some necessary lemma for our proof..

2- The Set of Periodic Points

 The main purpose of this section is to prove one theorem on Henon map $H_{a,b}$ where 4 $(1+|b|)^2$ *a* $-(1 +$ $>=\frac{(1+|\nu|)}{2}$. To prove this theorem, we need to prove some lemmas. To state and prove our lemmas, we fix *b* and define two crucial *a*-values

1-
$$
a_0(b) = \frac{-(1+|b|)^2}{4}
$$

\n2- $a_1(b) = 2(1+|b|)^2$
\nand, for any particular a -value, we define C=C_{a,b} by
\n
$$
C_{a,b} = \frac{1+|b| + \sqrt{(1+|b|)^2 + 4a}}{2}
$$
, we will go to prove necessary lemmas.

Lemma (2.1)[4]

(i) C is positive real and the larger root of $C^2 - (1 + |b|)C - a = 0$ if and only if $a_0 \le a$.

(ii) $a - |b|C > C$ if and only if $a > a_1$

proof: (i) Since $a_0 \le a$, we have $(1+|b|)^2 + 4a \ge 0$, so C is positive real number, if $C^2 - (1 + |b|)C - a = 0$, since $(1 + |b|)^2 + 4a \ge 0$. We have two distinct real roots which are 2 $1 + |b| + \sqrt{(1 + |b|)^2 + 4a}$ and 2 $1 + |b| - \sqrt{(1 + |b|)^2 + 4a}$,the first is positive and the second may be negative so C is larger root .

 (ii) If $a - |b|C > C$, this implies that *a* > $(1 + |b|)C$ (2.1) We have $2C - (1 + |b|) = \sqrt{(1 + |b|)^2 + 4a}$

 (2.2) Now $(1+|b|) = \beta$, then $2C - \beta = \sqrt{\beta^2 + 4a}$, that is $(2C - \beta)^2 = \beta^2 + 4a$, so $C^2 - \beta C = a$. We put the value of a in (2.1), we get that $C^2 - \beta C > \beta C$ (2.3)

so $C^2 > 2\beta C$, since *C* is positive we have $C > 2\beta$, that is $C > 2(1+|b|)$. (2.4)

Now by (2.4) $(1+|b|)+\sqrt{(1+|b|)^2+4a} > 4(1+|b|)$,that is $4a + (1+|b|)^2 > 9(1+|b|)^2$, hence $a > 2(1+|b|)^2$.

By the same way, we can prove that if $a > a_1$ then $a - |b|C > C$ \Box

Lemma (2.2)[4]

(i) The image under H_{a,b} of the horizontal strip $|y_0| \le \gamma$ is the region bounded by the two parabolas $a - |b| \gamma - y_1^2 \le x_1 \le a + |b| \gamma - y_1^2$ and the image under H_{a,b} of the vertical strip $|x_0| \leq \gamma$ is the horizontal strip $|y_1| \leq \gamma$, where γ is positive real number.

(ii) The inverse image of the vertical strip $|x_0| \le \gamma$ is the region bounded by two parabolas $-\gamma + a - x_{-1}^2 \leq by_{-1} \leq a + \gamma - x_{-1}^2$ and the image of the horizontal strip $|y_0| \leq \gamma$ is the vertical strip $|x_{-1}| \leq \gamma$.

Proof

(i) we have $|y_0| \le \gamma$, so $-\gamma \le y_0 \le \gamma$, if $-1 < b < 0$ then $b\gamma \le -by_0 \le -b\gamma$ and $|b| = -b,$, hence $-|b|\gamma \leq -by_0 \leq |b|\gamma$. (2.5) If $0 < b < 1$,then $b\gamma \ge -by_0 \ge -b\gamma$, $|b| = b$ hence $-|b|\gamma \le -by_0 \le |b|\gamma$. (2.6) Now in all case $-|b|\gamma \le -by_0 \le |b|\gamma$, so $a - |b|\gamma \le a - by_0 \le a + |b|\gamma$, since $x_0 = y_1$ 2 $y_1 \ge u + |\nu|$ / $-y_1$ $a - |b|\gamma - y_1^2 \le x_1 \le a + |b|\gamma - y_1^2$ (2.7) Also if $|x_0| \le \gamma$, since $x_0 = y_1$, we have $|y_1| \le \gamma$ that means the image under $H_{a,b}$ of the vertical strip $|x_0| \leq \gamma$ is the horizontal strip $|y_1| \leq \gamma$.

(ii) We have $|x_0| \le \gamma$ so $\gamma \le -x_0 \le -\gamma$ so $a - \gamma - x_1^2 \le by_{-1} \le a + \gamma - x_1^2$ $1 \leq a + \gamma - \lambda_{-1}$ $a - \gamma - x_{-1}^2 \leq by_{-1} \leq a + \gamma - x_{-1}^2$, $y_0 = x_{-1}$, so $|y_0| = |x_{-1}|$, the image under H_{a,b} ⁻¹ of the horizontal strip $|y_0| \le \gamma$ is the vertical strip $|x_{-1}| \leq \gamma$. \Box

Lemma (2.3)[2]

Let
$$
P\begin{pmatrix} a \\ b \\ \gamma \end{pmatrix} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : a - |b|\gamma - y^2 \le x \le a + |b|\gamma - y^2 \right\}
$$
 $S_h(\alpha, \beta) = R \times [\alpha, \beta]$ and

 $S_{\nu}(\alpha, \beta) = [\alpha, \beta] \times R$, $\gamma \in R$ and then for the Henon map H_{a,b} the following are hold :

(i)
$$
H_{a,b}(S_\nu(-\gamma,\gamma))=S_\hbar(-\gamma,\gamma).
$$

\n(ii) $H_{a,b}(S_\hbar(-\gamma,\gamma))\subset P\begin{pmatrix}a\\b\\ \gamma\end{pmatrix}.$
\n(iii) $H_{a,b}^{-1}(P\begin{pmatrix}a\\b\\ \gamma\end{pmatrix})\subset S_\hbar(-\gamma,\gamma).$

Proof: (i) Let
$$
\begin{pmatrix} x \\ y \end{pmatrix} \in H_{a,b}(S_y(-\gamma, \gamma))
$$
, so there exists $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in S_y(-\gamma, \gamma)$ such that $H_{a,b}\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$, that is $x = a - by_0 - x_0^2$, $y = x_0$, since $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in [-\gamma, \gamma] \times R$
we have $x_0 \in [-\gamma, \gamma]$, hence $\begin{pmatrix} x \\ y \end{pmatrix} \in R \times [-\gamma, \gamma]$, that is $\begin{pmatrix} x \\ y \end{pmatrix} \in S_h(-\gamma, \gamma)$.
Conversely: Let $\begin{pmatrix} x \\ y \end{pmatrix} \in S_h(-\gamma, \gamma)$, then $x \in R$ and $y \in [-\gamma, \gamma]$, so $\frac{a - x - y^2}{b} \in R$, thus $\begin{pmatrix} y \\ a - x - y^2 \\ b \end{pmatrix} \in [-\gamma, \gamma] \times R$, since $\begin{pmatrix} x \\ y \end{pmatrix} = H_{a,b} \begin{pmatrix} y \\ a - x - y^2 \\ b \end{pmatrix}$, we have $\begin{pmatrix} x \\ y \end{pmatrix} \in H_{a,b}(S_y(-\gamma, \gamma))$.

(ii) Let
$$
\begin{pmatrix} x \\ y \end{pmatrix} \in H_{a,b}(S_b(-\gamma, \gamma))
$$
, so there exists $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in S_b(-\gamma, \gamma)$ such that
\n
$$
H_{a,b} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} x \\ y_0 \end{pmatrix}
$$
 and $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in R \times [-\gamma, \gamma]$, so we get that $|y_0| \leq \gamma$ and by lemma (2.2)

Part (i)
$$
a - |b|\gamma - y_1^2 \le x_1 \le a + |b|\gamma - y_1^2
$$
 so $\begin{pmatrix} x \\ y \end{pmatrix} \in P \begin{pmatrix} a \\ b \\ \gamma \end{pmatrix}$.
\n(iii) Let $\begin{pmatrix} x \\ y \end{pmatrix} \in H_{a,b}^{-1}(P \begin{pmatrix} a \\ b \\ \gamma \end{pmatrix})$, so there exists $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in P \begin{pmatrix} a \\ b \\ \gamma \end{pmatrix}$ such that

 $H_{a,b}$ $\begin{bmatrix} -1 \\ v \end{bmatrix}$ J $\overline{}$ \setminus 0 0 *y* $\begin{pmatrix} x_0 \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$ J $\overline{}$ \setminus *y x*), hence $a - |b|\gamma - y_0^2 \le x_0 \le a + |b|\gamma - y_0^2$ $0 \geq a + |\nu| = y_0$ $a - |b|\gamma - y_0^2 \le x_0 \le a + |b|\gamma - y_0^2$. Clearly $x \in R$. To

show that $y \in [-\gamma, \gamma]$, suppose that $y > \gamma$ then $\frac{a-x_0-y_0^2}{\gamma} > \gamma$ *b* $a - x_0 - y_0^2$ $0 \quad y_0$ (2.8)

Now if $b > 0$, then from (2.8) $a - x_0 - y_0^2 > |b| \gamma$ $x_0 - y_0^2 > |b| \gamma$, so $x_0 < a - |b| \gamma - y_0^2$ $x_0 < a$ – $|b| \gamma - y_0^2$ which is contradiction ,if $b < 0$ then from (2.8) $a - x_0 - y_0^2 < b\gamma$ $y_0 - y_0^2 < b\gamma$, so 2 $x_0 > a + |b|\gamma - y_0^2$ which is contradiction.

To show that $y \ge -\gamma$, if $b > 0$ then $x_0 \le a + |b|\gamma - y_0^2$ $x_0 \le a + |b|\gamma - y_0^2$ so $-b\gamma \le a - x_0 - y_0^2$ thus $-\gamma \leq \frac{u - x_0 - y_0}{l} = y$ *b* $-\gamma \leq \frac{a - x_0 - y_0^2}{a} =$ 2 $\gamma \leq \frac{a-x_0-y_0}{b} = y$, that is $y \geq -\gamma$, if $b < 0$ then $|b| = -b$, hence 2 $x_0 \ge a + b\gamma - y_0$

so
$$
-b\gamma \ge a - x_0 - y_0^2
$$
 thus $-\gamma \le \frac{a - x_0 - y_0^2}{b} = y$, that is $y \ge -\gamma$ hence $y \in [-\gamma, \gamma]$

$$
\begin{pmatrix} x \\ y \end{pmatrix} \in S_h(-\gamma, \gamma).
$$

Proposition (2.4)[2]

Let S_{a,b} = { $\begin{bmatrix} x \\ y \end{bmatrix}$ J \setminus $\overline{}$ \setminus ſ *y* $\begin{cases} x \end{cases}$: $|x| \leq C_{a,b}$, $|y| \leq C_{a,b}$ be a closed region in R², for Henon *a*

map H_{a,b}, if $b \neq 0$ then H_{a,b} (S_{a,b})= P $\overline{}$ $\overline{}$ $\overline{}$ J \setminus $\overline{}$ \mathbf{r} I \setminus ſ *C b* $\bigcap S_{h}(-C, C)$.

Proof: From definition of S_{a,b}</sub>, we have S_{a,b} = S_h(-C,C) \cap S_v(-C,C).

So
$$
H_{a,b}(S_{a,b}) = H_{a,b}(S_{b}(-C,C)) \cap H_{a,b}(-S_{b}(-C,C))
$$
.
(2.9)

Now by lemma $(2.3)(ii)$ $H_{a,b}(S_h(-C,C)) \subset P$ $\overline{}$ $\overline{}$ $\overline{}$ J \setminus I I I \setminus ſ *C b a*

.

(2.10)

By lemma $(2.3)(iii)$, since $H_{a,b}$ is diffeomorphism, we get that

$$
\begin{pmatrix} a \\ b \\ c \end{pmatrix} \subset H_{a,b}(S_b(-C,C)) \qquad \qquad)
$$

(2.11)

Hence from (2.10) and (2.11), we get that $H_{a,b}(S_b(-C, C))=P$ $\overline{}$ $\overline{}$ $\overline{}$ J \setminus I I I \setminus ſ *C b a*

(2.12)

From lemma (2.3)(i) we have $H_{a,b}(S_y(-C,C))=S_b(-C,C)$. (2.13)

Now by (2.9), (2.12) and (2.13) $H_{a,b}$ ($S_{a,b}$)= P $\overline{}$ $\overline{}$ $\overline{}$ J \setminus I \mathbf{I} I \setminus ſ *C b a* $\bigcap S_{h}(-C,C)$. \square

Remark (2.5)

 We define some region and proof one theorem on Henon map for $a > a_0$, the regions are M₁, M₂, M₃ and M₄ where :

Fig(10)Region M₁, M₂, M₃, M₄

Theorem (2.6)[3]

Suppose $S_{a,b} = \left\{ \left| \begin{array}{c} x \\ y \end{array} \right| \right\}$ J \setminus $\overline{}$ \setminus ſ *y* $\begin{cases} x \end{cases}$: $|x| \leq C_{a,b}$, $|y| \leq C_{a,b}$ is a closed region in R². If a > $a_0(b)$ and $b > 0$, then for all $\begin{bmatrix} x \\ y \end{bmatrix}$ J \setminus $\overline{}$ \setminus ſ *y x* $\in \mathbb{R}^2$ - S_{*a,b*} either $|x_n| \longrightarrow \infty$ as $n \longrightarrow \infty$ or $|y_{-n}| \longrightarrow \infty$ as $n \longrightarrow \infty$.

Lemma (2.7)

Let H_{a,b} be a Henon map, $\begin{bmatrix} x \\ y \end{bmatrix}$ J \setminus $\overline{}$ \setminus ſ *y x* \in **M**₁ and *b* > 0. Then the sequence $\langle x_n \rangle$ is strictly decreasing sequence and $|x_n| \longrightarrow \infty$ as $n \longrightarrow \infty$.

Proof

If $|y_0| \neq C$ then we have two cases:

Case 1: $|y_0| < C$, hence $|C - |y_0| = C - |y_0|$, so 2 $(C-|y_0|) - C-|y_0|$ $\mathbf{0}$ $(C-|y_0|) - C-|y_0|$ *x* $\lt \frac{- (C - |y_0|) - C - |y_0|}{2} = -C$ thus $x_0 < -C < -|y_0|$. (2.14) Now $x_1 - x_0 = a - by_0 - x_0^2 - x_0$ $a - by_0 - x_0^2 - x_0$, so $x_1 - x_0 \le a + |b|y_0 - x_0^2 - x_0$. (2.15) Since $x_0 < -|y_0|$, we have $|y_0| < -x_0$, so by (2.15) $x_1 - x_0 < a - |b|x_0 - x_0|^2 - x_0$ (2.16) 0 $a - |b|x_0 - x_0|^2 - x_0 = a - (|b| + 1)x_0 - x_0^2$ but this equation has two roots which are 2 $(1+|b|)\mp \sqrt{(1+|b|)^2+4}$ 0 b \rightarrow $\sqrt{(1+|b|)^2+4a}$ *x* $-(1+|b|)\mp \sqrt{(1+|b|)^2} +$ $\overline{f} = \frac{-(1+|b|)\mp\sqrt{(1+|b|)^2+4a}}{2}$, one of them is $-c$, for any value less than $-C$ $a - (b + 1)x_0 - x_0^2 < 0$. From (2.14), we have $x_0 < -C$, so $a - (b + 1)x_0 - x_0^2$ 0 , hence by (2.16) $x_1 - x_0 < 0$, that is $x_1 < x_0$. Case 2: $|y_0| > C$, hence $|C - |y_0| = |y_0| - C$, so 2 $(|y_0|-C)-C-|y_0|$ $\mathbf{0}$ y_0 $-C$ $-C$ $-y$ *x* $\lt \frac{-(|y_0|-C)-C-|y_0|}{2} = -|y_0|$ and $|y_0| > C$, , thus $x_0 < -|y_0| < -C$ (2.17) Now $x_1 - x_0 = a - by_0 - x_0^2 - x_0$ $a - by_0 - x_0^2 - x_0 \le a + |b||y_0 - x_0^2 - x_0$ $\begin{aligned} \mathcal{L}_{\mathcal{A}}(\mathcal{A}) = \mathcal{L}_{\mathcal{A}}(\mathcal{A}) \mathcal{L}_{\mathcal{A}}(\mathcal{A}) \end{aligned}$ 0 $a - |b|x_0 - x_0|^2 - x_0 = a - (1 + |b|)x_0 - x_0^2$. (2.18) As case 1, $a - (1 + |b|)x_0 - x_0^2 = 0$ has two roots one of them is $-C$. From (2.17) , $x_0 < -C$, so $a - (1 + |b|)x_0 - x_0^2 < 0$, hence by (2.18) $x_1 < x_0$. Now since 2 $(C-|y_0|) - C-|y_0|$ 0 $(C-|y_0|) - C-|y_0|$ *x* $-(C-|y_0|)-C \leq$ $\frac{(C - |y_0|)^2 + C - |y_0|}{2}$, we have $x_0 < -C$, that is $y_1 < -C$ so $|y_1| > C$. Hence y_1 | - C = | C - | y_1 || $\qquad \qquad \qquad$ (2.19) On the other hand $x_1 < x_0$ and x_0 is a negative real number so $x_1 < |x_0|$ $-|y_1|$. From (2.19), we get 2 $(C - |y_1|) - C - |y_1|$ 1 $(C-|y_1|) - C-|y_2|$ *x* $-(C-|y_1|)-C \leq$ $\frac{(C - |y_1|)^2 + C - |y_1|}{2}$. As above we get that x_2 2 $(C - |y_1|) - C - |y_1|$ 1 $C - |y_1|$ $-C - |y_2|$ *x* $\lt \frac{- (C - |y_1|) - C - |y_1|}{2}$ (2.20) Now $|y_1| > C$, from (2.20) ,we have $x_1 = y_2 < -C$ so $|y_2| - C = |C - y_2|$. (2.21) Also $x_2 < x_1$ and x_1 is a negative real number so $x_2 < -|x_1| = -|y_2|$.

From (2.21) we get 2 $(C-|y_2|) - C-|y_2|$ 2 $(C-|y_2|) - C-|y_2|$ *x* $-(C-|y_2|)-C \leq \frac{(C - |y_2|)^2 + C - |y_2|}{2}$. As (2.18), we get $x_3 < x_2$. continuing in this procedure, we get that for a positive integer *n* $x_n < x_{n-1} < \ldots < x_2 < x_1 < x_0$, that is $\langle x_n \rangle$ is strictly decreasing sequence. For the second part ,if possible $\langle x_n \rangle$ is bounded, since it is monotone, we get $\langle x_n \rangle$ convergent, since $x_n = y_{n+1}$, that is $\langle x_n \rangle$, also convergent, H_{a,b} is continuous. So there exits a fixed point for $H_{a,b}$ in M₁ which is contradiction, hence $\langle x_n \rangle$ is not bounded ,that is $|x_n| \longrightarrow \infty$ as $n \longrightarrow \infty$.□

Remark (2.8)[6]

In theorem (2.7) the equality holds only for $x_0 = -C$, $y_0 = \pm C$. Proof: If $b \ge 0$, then $x_1 - x_0 = a - |b|y_0 - x_0^2 - x_0$ $a - |b|y_0 - x_0^2 - x_0$ if $x_0 = -C$, $y_0 = -C$, then $x_1 - x_0 = a + (1 + |b|)C - C^2$, by lemma (2.1) $x_1 - x_0 = 0$, that is $x_1 = x_0$. If $b < 0$, then $x_1 - x_0 = a + |b|y_0 - x_0^2 - x_0$ $a+|b|y_0-x_0^2-x_0$ if $x_0=-C$, $y_0=C$, then $x_1 - x_0 = a + (1 + |b|)C - C^2$, by lemma (2.1) $x_1 - x_0 = 0$, that is $x_1 = x_0$.

Lemma (2.9)

 Let H *a*,*b* ⁻¹ be the inverse of Henon map, suppose $\begin{bmatrix} x \\ y \end{bmatrix}$ $\bigg)$ \setminus $\overline{}$ \setminus ſ *y x* \in M₂ and *b* > 0 Then the sequence $\langle y_{-n} \rangle$ is strictly decreasing sequence and $|y_{-n}| \longrightarrow \infty$ as $n \longrightarrow \infty$.

Proof

Let $\begin{bmatrix} x_0 \\ y \end{bmatrix}$ J \setminus $\overline{}$ \setminus $\int x_0$ 0 *y x* \in M₂, from remark (2.5) $x_0 \ge y_0$, $y_0 < -C$, consider 0 $b(y_{-1} - y_0) = by_{-1} - by_0 = a - x_0 - y_0^2 - by_0$. (2.22) Since $x_0 \ge y_0$, we have $a - x_0 - y_0^2 - by_0 \le a - y_0 - y_0^2 - by_0$ = $a - (1 + b)y_0 - y_0^2$. (2.23) From (2.22) and (2.23), we get $b(y_{-1} - y_0) \le a - (1 + b)y_0 - y_0^2$. (2.24)

Now the quadratic equation $a - (1 + b)y_0 - y_0^2 = 0$ has a negative root y_0 $y_0^ =$ $-C$

if we take another value $y = y_0^*$ y_0^* such that y_0^* $y_0^* < -C$,

becomes $a - (1 + b)y - y^2 < 0$, and we have $y_0 < -C$, so $a - (1 + b)y_0 - y_0^2 < 0$. From (2.24), we get that $b(y_{-1} - y_0) < 0$, since $b > 0$, we get $y_{-1} < y_0 < -C$

and since $x_{-1} = y_0$, we have $y_{-1} < x_{-1}$ that is $\begin{bmatrix} x_{-1} \\ y_1 \end{bmatrix}$ J \setminus $\overline{}$ \setminus ſ --1 1 *y x* \in M₂.

Now if possible $y_{-k} < y_{-(k-1)} < ... < y_{-1} < y_0$, since $y_0 < -C$, we have y_{k} < -*C*. Also $x_{-k} = y_{-(k-1)}$ we have $y_{-k} < x_{-k}$. (2.25)

 $b(y_{-(k+1)} - y_{-k}) \le a - x_{-k} - y_{-k}^2 - by_{-k} < a - y_{-k} - y_{-k}^2 - by_{-k}$ = $a - (1 + b) y_{-k} - y_{-k}^2$.

(2.26)

Now the quadratic equation $a - (1 + b)y_{-k} - y_{-k}^2 = 0$ has a negative root y_{-k} $y_{-k}^ -C$ if we take another value $y = y^*$ y_{-k}^* such that y_{-k}^* $y_{-k}^* < -C$ becomes $a - (1 + b)y - y^2 < 0$ and we have $y_{-k} < -C$, so $a - (1 + b)y_{-k} - y_{-k}^2 < 0$, so from (2.26) we get that $b(y_{-(k+1)} - y_{-k}) < 0$, since $b > 0$, we get $y_{-(k+1)} < y_{-k}$, so we get $y_{-n} < y_{-(n-1)} < ... < y_{-1} < y_0$, that is $\langle y_{-n} \rangle$ is strictly decreasing sequence .

For the second part ,if possible $\langle y_{-n} \rangle$ is bounded, since it is monotone we get $\langle y_{-n} \rangle$ convergent, since $x_{-(n+1)} = y_{-n}$, that is $\langle x_{-n} \rangle$ also convergent, H_{a,b} is continuous so there exits a fixed point for $H_{a,b}$ in M_2 which is contradiction hence $\langle y_{-n} \rangle$ not bounded that is $|y_{-n}| \longrightarrow \infty$ as $n \longrightarrow \infty$.

Lemma(2.10)

The region M_3 maps into M_2 under backward iteration of Henon map $H_{a,b}$, provided $a > a_0, b > 0$.

Proof

Let
$$
\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in M_3
$$
, hence by remark (2.5) we have $x_0 \ge -y_0$ and $y_0 > C_{a,b}$
so $b(y_{-1} - y_0) = by_{-1} - by_0 = a - x_0 - y_0^2 - by_0$
(2.27)
Since $x_0 \ge -y_0$ and $y_0 > 0$ we have $-by_0 < by_0$ so by (2.27), we have

.

 $\boldsymbol{0}$ $b(y_{-1} - y_0) \le a + y_0 - y_0^2 + by_0 = a + (1 + b)y_0 - y_0^2$ (2.28)

Now by lemma (2.1)(i) the quadratic equation y_0^2 $y_0^2 - (1+b)y_0 - a = 0$ has a positive real root y_0^+ y_0^+ = *C*, for any value y_0^* y_0^* > C this quadratic equation is negative and we have $y_0 > C$ so from (2.28) $b(y_{-1} - y_0) < 0$, since $b > 0$, we get $y_{-1} < y_0$ and since $x_{-1} = y_0$, we have $y_{-1} < x_{-1}$.

Now we have to show that $y_{-1} < -C$ since $y_{-1} + C = \frac{a - x_0 - y_0}{l} + C$ *b* $y_{-1} + C = \frac{a - x_0 - y_0^2}{l} + C$ 2 $y_1 + C = \frac{a - x_0 - y_0}{l} + C$, $y_0 > 0$, we have $b(y_{-1} + C) = a - x_0 - y_0^2 + bC < a + y_0 - y_0^2 + by_0$ 2 $0 - y_0$ $b(y_{-1} + C) = a - x_0 - y_0^2 + bC < a + y_0 - y_0^2 + by$ = $a + (1+b)y - y^2$.

(2.29)

As above and since $y_0 > C$, we have $a + (1+b)y - y^2 < 0$, hence by (2.29) we get that $b(y_{-1} + C) < 0$, since $b > 0$, we get $y_{-1} < -C$, hence $\begin{bmatrix} x_{-1} \\ y_{-1} \end{bmatrix} \in$ $\bigg)$ \setminus $\overline{}$ \setminus ſ \overline{a} \overline{a} 1 1 *y* $\left(\begin{matrix} x_{-1} \\ y_2 \end{matrix} \right) \in M_2 \cup \square$

Lemma (2.11)

The region M_4 maps into M_1 under forward iteration of the Henon map $H_{a,b}$, provided $a > a_0, b > 0$.

Proof

Let $\begin{bmatrix} x_0 \\ y \end{bmatrix} \in$ J \setminus $\overline{}$ \setminus $\int x_0$ 0 *y* $\begin{bmatrix} x_0 \\ y_0 \end{bmatrix} \in M_4$ hence from remark (2.5), we have $|y_0| < C$ and $x_0 > C$ from definition of Henon map $x_1 + C = a - by_0 - x_0^2 + C$ $x_1 + C = a - by_0 - x_0^2 + C$. (2.30) Since $x_0 > C$, we have $x_0^2 > C^2$. Furthermore $|y_0| < C$ so $-by_0 < bC$. Now from (2.30) and (2.31) we get that $x_1 + C < a + bC - C^2 + C = a + (1 + b)C - C^2$ (2.32) From lemma (2.1)(i), C is a positive real root $y^2 - (1+b)y - a = 0$ so $a + (1+b)C - C^2 = 0$, from (2.32), we get $x_1 + C < 0$, that is $x_1 < -C$, since $y_1 = x_0, x_0 > C$ and we have $x_1 < -C$, we get $y_1 > x_1$. (2.33) Now 2 $x_0 + x_1 = x_0 + a - by_0 - x_0^2$. (2.34) Since $x_0 > C > |y_0|$, so if $y_0 \ge 0$ then $x_0 > y_0$, hence $bx_0 > by_0 > -by_0$. If $y_0 < 0$ then $x_0 > -y_0$ that is $bx_0 > -by_0$. From (2.34), we get $x_0 + x_1 < x_0 + a + bx_0 - x_0^2$ $x_0 + x_1 < x_0 + a + bx_0 - x_0^2 = a + (1 + b)x_0 - x_0^2$. (2.35) As above C is a positive real root, $x^2 - (1+b)x - a = 0$, for $x_0 > C$ $a + (1 + b)x_0 - x_0^2 < 0$, from (2.35), we get that, $x_0 + x_1 < 0$ that is $x_1 < -x_0$ $= -y_1$. Now we have $x_1 < y_1 < -x_1$ so $x_1 < -|y_1|$, $x_0 = |y_1| > C$, which becomes $\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \in$ $\bigg)$ \setminus $\overline{}$ \setminus ſ 1 1 *y x* \mathbf{M}_1 . \Box

proof of theorem (2.6)

Let $\begin{bmatrix} x \\ y \end{bmatrix} \in$ J \setminus $\overline{}$ \setminus ſ *y* $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$ - S_{a,b}, by remark (2.5) $\begin{pmatrix} x \\ y \end{pmatrix} \in$ J \setminus $\overline{}$ \setminus ſ $\left(\begin{array}{c} x \\ y \end{array}\right) \in \bigcup_{i=1}^{4} M_i$ so we have the following cases : Case I: If $\begin{bmatrix} x \\ y \end{bmatrix} \in$ J \setminus $\overline{}$ \setminus ſ *y* $\mathbf{x} \in \mathbf{M}_1$, by lemma (2.7) the sequence $\langle x_n \rangle$ is strictly decreasing sequence and $|x_n| \longrightarrow \infty$ as $n \longrightarrow \infty$. Case II: If $\begin{bmatrix} x \\ y \end{bmatrix} \in$ J \setminus $\overline{}$ \setminus ſ *y* $\begin{bmatrix} x \\ y \end{bmatrix} \in M_2$, by lemma (2.9) the sequence $\langle y_{-n} \rangle$ is strictly decreasing sequence and $|y_{-n}| \longrightarrow \infty$ as $n \longrightarrow \infty$. Case III: If $\left| \begin{array}{c} x \\ y \end{array} \right| \in$ J \setminus $\overline{}$ \setminus ſ *y* $\begin{pmatrix} x \\ y \end{pmatrix} \in M_2$ by lemma (2.10) $\begin{pmatrix} x \\ y \end{pmatrix}$ J \setminus $\overline{}$ \setminus ſ *y* $\binom{x}{k}$ maps into M₃ under backward iteration of Henon map $H_{a,b}$. So from case II the sequence $\langle y_{-n} \rangle$ is strictly decreasing sequence and $|y_{-n}| \longrightarrow \infty$ as $n \longrightarrow \infty$. Case IV: If $\begin{bmatrix} x \\ y \end{bmatrix} \in$ J \setminus $\overline{}$ \setminus ſ *y* $\begin{pmatrix} x \\ y \end{pmatrix} \in M_4$ by lemma (2.11) $\begin{pmatrix} x \\ y \end{pmatrix}$ J \setminus $\overline{}$ \setminus ſ *y* $\binom{x}{n}$ maps into M₁ under forward iteration of the Henon map $H_{a,b}$ so from case I the sequence $\langle x_n \rangle$ is strictly decreasing sequence and $|x_n| \longrightarrow \infty$ as $n \longrightarrow \infty$. \square

Corollary (2.12)[2]

If $a > a_0(b)$ then $P_{er_n}(H_{a,b}) \subset S_{a,b}$. Proof: Let $\begin{bmatrix} x \\ y \end{bmatrix} \in$ J \setminus $\overline{}$ \setminus ſ *y* $\begin{bmatrix} x \\ y \end{bmatrix} \in \text{Per}(H_{a,b}), \text{if} \begin{bmatrix} x \\ y \end{bmatrix} \notin$ J \setminus $\overline{}$ \setminus ſ *y* $\left(\begin{array}{c} x \\ y \end{array}\right) \notin S_{a,b}$, then $\left(\begin{array}{c} x \\ y \end{array}\right) \in$ J \setminus $\overline{}$ \setminus ſ *y* $\begin{pmatrix} x \\ y \end{pmatrix} \in (\mathbf{S}_{a,b})^c$, that is $\begin{pmatrix} x \\ y \end{pmatrix} \in$ $\bigg)$ \setminus $\overline{}$ \setminus ſ *y* $\left[x \right] \in \mathbb{R}$ $\sum_{a,b}$, by theorem (2.5) either $|x_n| \longrightarrow \infty$ as $n \longrightarrow \infty$, or $|y_{-n}| \longrightarrow \infty$ as $n \longrightarrow \infty$, $x_n = y_{n+1}$, $x_{-(n+1)} = y_{-n}$, so there is no finite orbit for H_{a,b} of $\begin{bmatrix} x \\ y \end{bmatrix}$ J \setminus $\overline{}$ \setminus ſ *y x* which is contradiction .So $\begin{bmatrix} x \\ y \end{bmatrix} \in$ J \setminus $\overline{}$ \setminus ſ *y* $\left[\sum_{a,b}^{\mathcal{X}} \right] \in S_{a,b}$, that is $P_{er_n}(H_{a,b}) \subset S_{a,b}$.

Definition (2.13)[2]

For $a > a_0(b)$ we define non-escape set of $H_{a,b}$ with respect to a and b by $\Lambda \begin{bmatrix} u \\ h \end{bmatrix}$ J \setminus $\overline{}$ \setminus ſ *b* $\begin{pmatrix} a \\ b \end{pmatrix} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \right\}$ J \setminus $\overline{}$ \setminus ſ *y x* $\in \mathbb{R}^2$: *Lim* $\left\| H_{a,b} \right\|_{\infty}^n \to \infty$ J \backslash $\overline{}$ \setminus ſ *y x* $H_{ab}^{\quad n}$ $\left\| \begin{array}{c} \begin{array}{c} n \\ n \end{array} \end{array} \right\|^{\alpha}$ $\left\| \begin{array}{c} \begin{array}{c} n \\ n \end{array} \end{array} \right\|^{\alpha}$.

Corollary (2.14)[2]

For the Henon map $H_{a,b}$, $\Lambda \begin{bmatrix} a \\ b \end{bmatrix}$ J \setminus $\overline{}$ \setminus ſ *b* $\binom{a}{b}$ = $\bigcap_{a,b} H_{a,b}^{\quad m}(S_{a,b})$ *m* $\bigcap_{m\in\mathbb{Z}}H_{a,b}^{\ \ m}(\mathcal{S}_{a,b})$.

Proof: Let
$$
\begin{pmatrix} x \\ y \end{pmatrix} \in \Lambda \begin{pmatrix} a \\ b \end{pmatrix}
$$
. To show that $\begin{pmatrix} x \\ y \end{pmatrix} \in \bigcap_{m \in \mathbb{Z}} H_{a,b}^m(S_{a,b}),$ if we suppose

that

 $\overline{}$ J \setminus $\overline{}$ \setminus ſ *y x* $\notin \bigcap_{a,b} H_{a,b}^m(S_{a,b})$ *m* $\bigcap_{m\in\mathbb{Z}} H_{a,b}^m(S_{a,b})$, then there exists $k \in \mathbb{Z}$, such that $\begin{pmatrix} x \\ y \end{pmatrix}$ $\bigg)$ \setminus $\overline{}$ \setminus ſ *y x* $\notin H_{a,b}^{\n} (S_{a,b}),$ that means there exists $r \in Z$ such that $H_{a,b}^{\, r}(S_{a,b}) \notin S_{a,b}$, that is $H_{a,b}^{\, r}(S_{a,b}) \in (S_{a,b})$ \mathcal{C} , so by theorem (2.5) $\left\| H_{a,b} \right\|^p \xrightarrow{\alpha} \infty$ J \setminus $\overline{}$ \setminus ſ *y x* $H_{ab}^{\quad p}$ $\begin{bmatrix} p \\ p \end{bmatrix}$ $\longrightarrow \infty$ as $p \longrightarrow \infty$ so $\begin{bmatrix} \alpha \\ \gamma \end{bmatrix}$ J \setminus $\overline{}$ \setminus ſ *y x* $\in (\Lambda \begin{bmatrix} u \\ h \end{bmatrix})$ J \setminus $\overline{}$ \setminus ſ *b* $\binom{a}{k}$ ^c, that is $\overline{}$ J \setminus $\overline{}$ \setminus ſ *y x* $\notin \Lambda \begin{bmatrix} a \\ b \end{bmatrix}$ J \setminus $\overline{}$ \setminus ſ *b a*

which is contradiction hence $\begin{bmatrix} x \\ y \end{bmatrix}$ J \setminus $\overline{}$ \setminus ſ *y x* $\in \bigcap_{a,b} H_{a,b}^m(S_{a,b})$ *m* $\bigcap_{m\in\mathbb{Z}}$ $H_{a,b}^{m}(S_{a,b})$.

To show that
$$
\bigcap_{m\in\mathbb{Z}} H_{a,b}^{\quad m}(S_{a,b}) \subset \Lambda \begin{pmatrix} a \\ b \end{pmatrix}
$$
, let $\begin{pmatrix} x \\ y \end{pmatrix} \in \bigcap_{m\in\mathbb{Z}} H_{a,b}^{\quad m}(S_{a,b})$ so $\begin{pmatrix} x \\ y \end{pmatrix} \in$

 $H_{a,b}^{m}(S_{a,b})$ for all *m* in Z, hence $H_{a,b}^{n} \left| \begin{array}{c} x \\ y \end{array} \right| \in S_{a,b}$ $\begin{bmatrix} a, b \\ y \end{bmatrix} \in S$ *x* $H_{a,b}^{-n} \left| \left| \begin{array}{c} \infty \\ \infty \end{array} \right| \in S_{a,b}$ J \setminus $\overline{}$ \setminus $\left(\begin{array}{c} x \\ \end{array} \right) \in S_{a,b}$ for all $n \in \mathbb{Z}$, that means if *n* is very large

so

 $\bigg)$

b a ,

 \setminus

$$
H_{a,b}^{n} \begin{pmatrix} x \\ y \end{pmatrix} \in S_{a,b}, \text{ where } n \longrightarrow \infty \text{ or } n \longrightarrow \infty \text{ then } \lim_{n \longrightarrow \pm \infty} H_{a,b}^{n} \begin{pmatrix} x \\ y \end{pmatrix} \in S_{a,b} \text{ s}
$$

\n
$$
\lim_{n \longrightarrow \pm \infty} \left\| H_{a,b}^{n} \begin{pmatrix} x \\ y \end{pmatrix} \right\| \text{ is real number that is } \begin{pmatrix} x \\ y \end{pmatrix} \in \Lambda \begin{pmatrix} a \\ b \end{pmatrix} \text{ so } \bigcap_{m \in \mathbb{Z}} H_{a,b}^{n} (S_{a,b}) \subset \Lambda \begin{pmatrix} a \\ b \end{pmatrix}
$$

\nthat is $\Lambda \begin{pmatrix} a \\ b \end{pmatrix} = \bigcap_{m \in \mathbb{Z}} H_{a,b}^{n} (S_{a,b}). \square$

Referencess

[1] Adrian ,S. An Application of The Least –Square Method to System Parameters Extraction from Experimental Data, 24 November 2001.Preprint.

[2] Alaaddin Al-Dhahir,the Henon Map. http://doc.utwente.nl/fid/1502

[3] Devaney ,R.L.An Introduction to Chaotic Dynamical Systems ,Second education ,Addison -Wesley ,1989.

[4] Devaney ,R.L .And Nitecki,Z.Shift Automorphisms in The Henon Mapping

,commun.Math,phys 67, (1979)137-146

[5]] Gulick ,D.Encounters with chaos .McGraw –Hill,Inc.U.S.A,1992.

[6] Galloway .Introduction to Non Linear Systems and Chaos. The niversity of sydniy, Applied Mathematics ,Math 2006 . Preprint.