On certain properties of α^{**} -continuous functions

Hadi J. Mustafa	Heyam Kh. Al- Awadi
Al-Kuffa University	Al-Kuffa University
College of Science	College of Science
Dept. of Mathematics	Dept. of Mathematics

Abstract

In this work, we introduce and study a new type of continuous functions, which we call α^{**} - continuous function, these are the functions in which the inverse image of α - open set is also α - open. Several properties of these functions are proved .

السخلاصية

فے ہذا البحث نقدم و ندر س نے ع جدید میں البدو ال المستمر ۃ و التے ر مز نےا لہےا بالر مز -continuous function^{**}α)) هذه الدوال تحقق ان الصورة العكسية للمجموعات من النوع (α- open) ايضا تكون (α- open). العديد من خواص هذا النوع من الدوال قد تم بر هانها .

Introduction:

In 1965, O.Najstad [^{γ}] introduce the concept of α - open set as follows: Let (X, τ) be a topological space, let $A \subseteq X$. We say that A is α - open in X if $A \subseteq$ Int cl intA. Where IntA means Interior of the set A, and cl A means the closure of A. It is clear that every open set is α - open, but the converse is not necessarily true. In this work, we introduce and study a new type of continuous functions, which we call α^{**} continuous functions these are the functions in which the inverse image of α - open set is also α - open we will use the symbol (\Box) to indicate the end of the proof.

1-Basic definitions:

In this section we recall and introduce the basic definition needed in this work.

1-1 definition:

Let (X, τ) and (Y, F), be two topological spaces, $f: X \to Y$ be a function. We say that f is continuous if the inverse image of every open set in Y is an open set in X. Equivalently, $f: X \rightarrow Y$ is continuous if for every $x \in X$ and for every V open set in Y containing f(x), \exists an open set U in X containing x such that $f(U) \subseteq V$.

1-2 definition:

Let (X, τ) be a topological space and $A \subset X$. We say that A is α - open in X if $A \subset$ Int cl int(A).

Every open set is α - open while the converse is not necessarily true as it is shown in the following example.

1-3 Example:

Let $\overline{X} = \{a, b, c, d\}$ $\tau = \{\Phi, X, \{a\}\}$ $A = \{a, b\} \subset X$ A α - open but not open when IntA= $\{a\}$, c lint A= cl $\{a\}$ $\tau^{c} = \{X, \Phi, \{b, c, d\}\}$ cl intA= cl $\{a\} = X$, hence A $\subset X$. Then A is α - open but not open.

The collection of all α - open sets in X forms a topology on X which is denoted by τ^{α} It is clear that $\tau \subseteq \tau^{\alpha}$

1-4 Definitions:

Let $f: X \to Y$ be a function. We say that:

- 1- f is α -continuous if the inverse image of every open is α open.
- 2- f is α^* -continuous if the inverse image of α open is open.
- 3- f is α^{**} continuous if the inverse image of α open is α open

The following diagram explain the relations between these types

 α^* - continuous \longrightarrow Continuous

Define $f: X \to Y$ which is α^* - continuous function and let V an open set in Y by definition (1-2) V is α - open, f is α^* - continuous then the inverse image of α - open is Open in X hence f is continuous.

the Proof of the other parts are similar

1-5 Remark:

The concepts of continuous functions and α^{**} - **continuous** functions are independent for example:

1- Let X= { a, b, c, d }, $\tau_x = \{\phi, X, \{a\}, \{b, c\}, \{a, b, c\}\}$ and Y={x, y, z}, $\tau_y = \{\phi, Y, \{x\}\}$ Define $f: X \rightarrow Y$ by f(a)=x, f(b)=y, f(c)=f(d)=zThen f is continuous but it is not a^{**} - continuous 2- Let X= {a, b, c, d}, $\tau_x = \{\phi, X, \{a\}\}$ And Y={x, y, z}, $\tau_y = \{\phi, Y, \{x\}\}$ Define $f: X \rightarrow Y$ by f(a)=f(b)=x, f(c)=y, f(d)=zThen f is a^{**} - continuous but it is not continuous.

1-6 Definition:

The complement of α - open set is called α -closed.

1-7 Remark:

f: X \rightarrow Y is α^{**} - continuous iff the inverse image of α -closed is also α -closed

2-Main results:

In this section, we state and prove several properties of α^{**} - **continuous** functions.

2-1 Theorem:

Let $f: X \to Y$ and $g: Y \to Z$ are α^{**} - continuous functions Then $g \circ f: X \to Z$ is also α^{**} - continuous.

Proof:

Let V be an α -open set in Z. Since g is α^{**} - continuous therefore the inverse image $g^{-1}(v)$ is α -open in Y, and f is α^{**} - continuous therefore the inverse image $f^{-1}(g^{-1}(v))=(g \circ f)^{-1}(v)$ is α - open in X. This implies that $g \circ f$ is an α^{**} - continuous \Box

2-2 theorem:

Let $f : X \to Y$ be a function of topological spaces. Then the following statement are equivalent:

1- f is α^{**} - continuous

2- if $x \in X$, V is α - open in Y containing f(x), then $\exists \alpha$ - open U in X containing x such that $f(U) \subseteq V$.

Proof:

(1)⇒**(2)**

Let V be α - open in Y and $f(x) \in V$. Since f is α^{**} - continuous, $f^{-1}(V)$ is α - open in X and $x \in f^{-1}(V)$. Put U= $f^{-1}(V)$ therefore $x \in U$ and $f(U) = f(f^{-1}(V)) \subseteq V$.

(2)⇒(1)

Let V be α - open in Y and $x \in f^{-1}(V)$. Then $f(x) \in V$ therefore, $\exists a U_x \alpha$ - open in X such that $x \in U_x$ and $f(U_x) \subseteq V$. Therefore $x \in U_x \subseteq f^{-1}(V)$.

This implies that $f^{-1}(V)$ is a union of α - open sets , hence $f^{-1}(V)$ is α - open in X, so f is **\alpha**^{**} - **continuous** \Box

Before, we state the theorem (2-5) we introduce and recall the following definition and remark.

2-3 Definition:

An α - open set which is closed is termed C- α - open.

2-4 Remark:

Let $B \subseteq A \subseteq X$. If A is closed in X and B is α - open in X, then B is α - open in A.

2-5 Theorem:

If $f: X \to Y$ is α^{**} - continuous and A is C- α - open in X, then the restriction $g=f/A: A \to Y$ is α^{**} - continuous.

Proof:

Let V be α - open in Y. Since *f* is α^{**} - **continuous** therefore $f^{-1}(V)$ is α - open in X. Now A is α - open in X, then $f^{-1}(V) \cap A$ is α - open in X but A is closed , hence $f^{-1}(V) \cap A$ is α - open in A, but $g^{-1}(V)=(f/A)^{-1}(V)=f^{-1}(V)\cap A$. So $g^{-1}(V)$ is α - open in A which means that g is α^{**} - **continuous** \Box .

2-6 Remark:

If A is closed only, then f/A is not always $\boldsymbol{\alpha}^{**}$ - continuous. For if we take: $X=\{a, b, c, d\}$, $\tau_x = \{\phi, X, \{a\}\}$ $Y=\{x, y, z\}$, $\tau_y = \{\phi, Y, \{x\}\}$ $A=\{b, c, d\}$ Define $f:X \rightarrow Y$ by f(a)=f(b)=xf(c)=y, f(d)=zThen f is $\boldsymbol{\alpha}^{**}$ - continuous but f/A is not $\boldsymbol{\alpha}^{**}$ - continuous.

Before, we state the next theorem; we introduce and recall the following definition and remark.

2-7 Remark:

If A is α - open in X and B is α - open in Y then A×B is α - open in X×Y.

2-8 definition:

A space X is said to be α -Hausdorf $(\alpha$ -T₂) if for any two distinct points x, y of X, \exists disjoint α - open sets U, V of X such that $x \in U, y \in V$.

2-9 Definition:

Let $f: X \to Y$ be a function. The subset $\{(x, f(x) | x \in X)\}$ of $X \times Y$ is called the graph of f and is denoted by G(f)

It is well known that G(f) is a closed set of X×Y whenever f is continuous and Y is T₂.

2-10 Theorem:

If $f: X \to Y$ is α^{**} - **continuous** and Y is α -T₂ then G(f) is α -closed in X×Y. **Proof**:

Let $(x, y) \in X \times Y - G(f)$, then $y \neq f(x)$. But Y is α -T₂, so \exists disjoint α - open sets W and V in Y $\ni f(x) \in W$ and $y \in V$. Since f is a^{**} - **continuous** therefore $\exists U \alpha$ - open in X such that $x \in U$ and $f(U) \subseteq W$.Now $(x, y) \in U \times V \subseteq X \times Y - G(f)$. Since $U \times V$ is α - open in X $\times Y$, hence X $\times Y$ -G (f) is a union of α - open sets. Therefore, X $\times Y$ -G (f) is α - open. Consequently, G (f) is α -closed in X $\times Y$.

Let $f: X \to Y$ and $g: X \to Y$ be tow functions of topological spaces. It is well known that the set (called difference kernel) A={x \in X | f (x) = g(x)} is closed in X whenever f and g are continuous and Y is T₂.

An analogous result can be given as follows:

2-11 Theorems:

If f and g are two a^{**} - **continuous** functions from a space X into an α -T₂ space Y then the set A={x \in X | f(x) = g(x)} is α -closed in X.

Proof:

Let $x \in X$ -A then $f(x) \neq g(x)$.

Since Y is α -T₂ \exists disjoint α - open sets U and V in Y \ni $f(x) \in U$ and $g(x) \in V$.

Therefore $f^{-1}(U)$ and $g^{-1}(V)$ are α - open sets in X.

Let $B = f^{-1}(U) \cap g^{-1}(V)$, therefore $x \in B$ and B is α - open in X. Moreover $B \cap A = \phi$.

 $\mathbf{H} = \mathbf{H} + \mathbf{H} + \mathbf{H} + \mathbf{H}$

For otherwise $U \cap V \neq \phi$. Consequently, $x \in B \subseteq X$ -A.

So X-A is a union of $\alpha\text{-}$ open sets in X , and thus X-A is $\alpha\text{-}$ open , which means that A is $\alpha\text{-}$ closed in X \Box .

References

x

- 1. Hadi j. Mustafa, T^{*}-separation axioms submitted to alzarqaa university conference, 2008-08-22
- 2. O.Njastad, on some closes of nearly open sets, pacific J.math 15(1965), 961-970
- 3. W.J.pervin, Foundation of general topology, Academic press, new York , (1964).