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A B S T R A C T 

In recent years, Machine Learning (ML) has brought about a significant revolution in several 
fields such as medicine, justice, cybersecurity, and other vital fields that require intelligent 
and urgent decision-making. With this development, a type of adversarial attack targeting ML 
models called a Poisoning Attack (PA) has emerged. One realistic attack scenario is for an 
adversary to subtly update samples or reverse some labels of training data, causing 
degradation to the model's overall accuracy during the testing phase. To gain a deeper 
understanding of this scenario, a survey will be conducted about the attack and how it is 
carried out against different models. In addition to the protection techniques to identify their 
weaknesses. Finally, some solutions will be proposed to maintain the availability, robustness, 
and integrity of ML models. 

MSC.. 

https://doi.org/10.29304/jqcsm.2024.16.41776 

1. Introduction 

ML has recently gained popularity as one of the best techniques for solving classification and prediction problems. It 
is also widely utilized in the Internet of Things (IoT) environment, Recommendation Systems (RSs), Sensor 
Networks (SNS), Fraud Detection (FD), and Verification Code (VC) recognition [1]. The majority of ML models 
constantly require publicly available data. The data is typically sourced from untrustworthy sources. As a result, an 
attacker could take advantage of these weaknesses as part of what is known as a Poisoning Attack (PA), which 
affects the model's decision-making process and can lead to the faults during the testing phase. Smart City (SC) 
systems provide an obvious example: multiple sensors including cell-phones collect vast volumes of data. It is also 
anticipated that PA targeting SC systems could have disastrous effects; this kind of incident will likely happen due to 
the system's high reliance on public data [2][3]. Therefore, it is essential to encourage the development of advanced 
protection techniques (such as De-Pois, and kernel-based Support Vector Machine (K-SVM)) to maintain the 
robustness of ML models and thus mitigate the impact of poisoning [4]. The following is a list of this survey's 
primary contributions:  

1. Various previous strategies of defense will be studied to identify their weakness. 
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2. In this work, several solutions will be proposed to maintain ML models' availability, robustness, and 
integrity. 

The paper is organized as follows: Types of ML algorithms are discussed in Section 2. Section 3 provides a 
comprehensive overview of the attack and its types. Security requirements, interest metrics, and attacker 
knowledge are presented in Sections 4, 5, and 6. While the previous works are provided in Section 7. Section 8 is the 
conclusion of the paper. 

2. Classification of ML Algorithms 

Generally, ML algorithms can be classified depending on learning style into supervised, unsupervised, semi-
supervised or reinforcement learning as shown in Figure 1.     

1. Supervised-Learning: During the training stage, every input is provided with the appropriate label, which 
could be a class label for a categorization or a continuous value for a regression model. Next, the model can 
be used to predict the label for a new input in the testing stage. It encompasses a variety of methods, such as 
logistic regression, SVM, and Naïve Bayes [5] [6].  

2. Unsupervised-Learning: Refers to the process through which a technique trains with unlabeled data and 
generates predictions related to the dataset without supervision. Among the most popular unsupervised 
algorithms is clustering, which includes density-based, K-means, hierarchical, etc. [7] [8].  

3. Semi-Supervised-Learning: This method works with data, some classified while others are unclassified. Even 
a tiny portion of labeled data can help the model train and produce an accurate outcome prediction [9]. 

4. Reinforcement-Learning: The process by which a model learns to adapt and improve itself through ongoing 
feedback from its output is called reinforcement learning. It functions as a reward, and the objective is to 
increase the positive benefits in order to raise performance. Among the most widespread reinforcement 
learning methods is quality-learning [10]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Categories of ML Algorithms [9]. 
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3. Poisoning Attack (PA) 

     It also known as Data Poisoning Attack (DPA), is an attack used to modify the training data (by, for example, 
inverting labels, contaminating features, adjusting model configuration parameters, and changing model weights). 
There is an assumption that attackers can add to or manipulate the training data as shown in Figure 2. This affects 
the model's learning output, leading to a notable decline in accuracy [11]. There are several categories of PAs which 
are: 

1. Label Flipping (LF): wherein a hacker modifies the labels of particular training samples to produce 
poisoned samples. For instance, a spam detection system uses a classified dataset of emails to gather 
information about spam email patterns. The method employs human annotators to ascertain the classification 
of emails as either spam or non-spam. However, a label flipping attack can compromise the system's 
performance because the model acquires erroneous connections between email characteristics and inaccurate 
spam/non-spam classifications. Hence, safeguarding against such attacks is of utmost importance [12].  
2. Watermarking: in this attack, an attacker can merge and mask an intended sample onto the training set, 
introducing perturbations and producing poisoned instances instead of labels. In the context of DeepFake video 
detection systems, it is possible for an attacker to selectively focus on a subset of the training data and 
incorporate a subtle and invisible pattern or watermark inside a specific set of selected films. An example of 
this would be the attacker inserting a minute and imperceptible pattern into the entirety of the "authentic" 
movies within the training dataset. This watermark has the potential to be intentionally crafted to induce the 
model to incorrectly identify any films that exhibit the identical pattern as "authentic," despite the fact that the 
video is, in fact, a DeepFake [13]. 
3. Clean Label (CL): This occurs when a hacker produces poisoned samples that contain adversarial 
perturbations that are detrimental to ML models but "invisible" to human specialists. A sentiment analysis 
system is developed for an e-commerce platform to detect and categorize textual reviews provided by visitors 
as either "positive" or "negative". The assailant has the ability to selectively focus on a portion of the learning 
data and discreetly alter the reviews in order to modify their sentiment. As an illustration, the assailant may 
take an authentic "positive" review and make slight alterations, such as altering some words or phrases, to 
transform it into a "negative" review, while safeguarding the authenticity and credibility of the reviews [14]. 

 

 
Figure 2. PAs Against ML Models [5]. 
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4. Requirement of Security 

The Requirements of Security in ML Models includes:  

1. Integrity is the capacity of a model to behave understandably and predictably according to predetermined 
criteria. In PA, a hacker may alter the model's parameters during training, compromising the model's overall 
integrity. For example, the quantity of label- flipped or the ratio of the attack-affected models' parameters to 
the target model demonstrates [15] [16].  

2. An ML model's availability is related to its capacity to function as predicted in the face of severe disruptions. 
One obvious way to measure availability is to analyze the decision boundary of the machine learning model; 
this is also represented in the accuracy metric. For example, the decision boundary completely collapses 
when a DP attack injects poisoned data points into the training sample [17].  

3. The ability of the model to continue operations in a desired manner despite disturbances in the input 
distributions is known as robustness. Such perturbations could be purposefully created by a criminal, in 
which case training a model with poisoning data would significantly compromise the robustness of the model. 
Metrics such as the Area Under the Curve (AUC) and Receiver Operating Characteristics (ROC) curve can be 
applied [15].  

5. Metrics of Interest  

     The degree of performance deterioration exhibited by the model being attacked through the testing stage is used 
to determine the impact of DP attacks. The total misclassification percentages in each class, which show True 
Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN), can be used to confirm this further. 
Furthermore, the attack's efficacy is demonstrated by a notable decline in total accuracy, often known as an 
accuracy deterioration. ROC, accuracy, and recall are a few of the artificial intelligence criteria that can also be 
employed [18] [19]. 

 

6. Knowledge of Attacker  

     The attacker's understanding of the five elements—feature space, classifier type, classifier learning method, 
classifier learning hyperparameters, and training dataset—necessitates several assumptions [20] as shown in 
Figure 3, which are:  

1. A scenario known as a "white box" occurs when the attacker possesses complete knowledge of all five 
earlier-mentioned elements and any defense mechanisms that have been installed on top of the model [21] 
[22]  

2. When the target model is unknown, this is known as a "black-box" situation. It is crucial to note that the 
attacker gains the advantage over any defender simply by having access to the training data [23].  

3. The term "gray-box " refers to a situation in which the attacker is aware of the five criteria beforehand but is 
unaware of the protection mechanism. This is considered to be a compromise between white-box and black-
box scenarios. Typically, it is employed to assess the defense against hostile assaults [24]. 
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Figure 3. Knowledge of Attacker [20]. 

 

7. Poisoning -Attacks and Defense Mechanisms 

      Several contributions have been made to solve the problem of PAs; some of them are: 

     Mehran Mozaffari-Kerman et al. [25] created malicious instances from the original dataset to offer a general 
attack technique for ML algorithms and medical datasets. The assault tilts the model in favor of the class that is 
assaulting. Five datasets have been used to assess six ML algorithms under PAs: thyroid disease (TD), breast cancer 
(BC), acute inflammations (AI), echocardiograms, and molecular biology (MB). The algorithms include the Best-First 
(BF) decision tree, Ripple-Down (RD) rule learner, Naive Bayes (NB) decision tree, Nearest-Neighbor (NN) classifier, 
Multilayer Perceptron (MLP), and Sequential Support-vector minimal optimization (SMO). Halfway through the 
assault and at the very end, when all malicious instances have been added, with 15% and 30% of the initial dataset, 
the algorithms are evaluated. According to the findings, the most reliable technique is SMO as shown in Table 1. 
Additionally, the study shows how well the suggested countermeasure against poisoning assaults utilizing the 
Kappa statistic and correctly identified occurrences (CCI) works. As part of the countermeasure, a model is built 
using the training dataset, its accuracy is assessed using the validation dataset, and an alarm is raised if any 
questionable changes occur, such as the accuracy threshold the user selects being less than the ideal number. 

TABLE 1. Effectiveness of Proposed Assault on ML Techniques. 

Assault Dataset kind Misclassification Rate (from most to least susceptible) 
15% 
added 

Thyroid Disease 

NN  
(9%) 

BFTree 
(7%) 

RD  
(5%) 

NBTree 
(4%) 

MLP (3%) SMO (3%) 

30% 
added 

MLP 
(20%) 

RD  
(18%) 

BFTree 
(18%) 

NN  
(16%) 

NBTree 
(13%) 

SMO (12%) 

15% 
added 

Acute Inflammations 

RD  
(9%) 

BFTree 
(9%) 

NN  
(8%) 

NBTree 
(8%) 

MLP (6%) SMO (6%) 

30% 
added 

RD  
(21%) 

BFTree 
(18%) 

NN  
(18%) 

MLP 
(14%) 

NBTree 
(12%) 

SMO (12%) 

15% 
added 

Molecular Biology 

NN  
(9%) 

BFTree 
(9%) 

RD  
(7%) 

NBTree 
(6%) 

MLP (6%) SMO (5%) 

30% 
added 

BFTree 
(18%) 

NN  
(17%) 

MLP 
(15%) 

NBTree 
(15%) 

RD (12%) SMO (12%) 

15% 
added 

Breast Cancer 

MLP 
(14%) 

NN  
(11%) 

BFTree 
(8%) 

RD  
(4%) 

NBTree 
(3%) 

SMO (3%) 

30% 
added 

MLP 
(26%) 

BFTree 
(23%) 

RD  
(22%) 

NN  
(18%) 

NBTree 
(16%) 

SMO (16%) 

15% 
added 

Echocardiograms 

RD  
(8%) 

NBTree 
(8%) 

NN  
(7%) 

MLP  
(6%) 

BFTree 
(3%) 

SMO (3%) 

30% 
added 

NBTree 
(20%) 

NN  
(18%) 

MLP 
(16%) 

RD  
(16%) 

BFTree 
(11%) 

SMO (11%) 

 
        Huang Xiao et al. [26] examined how embedded feature selection methods like LASSO, RR, and EN can be 
hacked. Such algorithms use a dataset of maleware and 5951 harmless examples gathered from online content. The 
attacker can increase the classification error of algorithms by using one assault point at a time, iteratively changing 
and updating the current sample at each stage. The findings demonstrate that attackers can effectively create 
poisoning attacks using only surrogate data, even without access to training data. All techniques show a tiny 
classification error and dependable performance without an attack. For LASSO, the classification error increases 
almost tenfold when up to 20% (from 2% to 20%) of the training data is poisoned. This effect is marginally less 
pronounced for the elastic net and ridge, showing marginally better robustness against this danger. 
 
      Ricky Laishram and Vir Virander Phoha [27] utilized poisoning strategy with gradient ascent against SVM 
classifiers to increase the FP rate of the classifier. To do this, meticulously created data points must be inserted into 
the training set. Additionally, the Curie method suggested to protect the system-utilized SVM classifier. Curie is a 
filter before the buffered data is used to retrain the SVM. It exploits the fact that the poison data is a regular point in 
the feature space and has reversed labels. Once the data has been clustered in the feature space, the class label is 
used as a feature with a suitable weight when determining the average distance between each point in the same 
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cluster. After that, the data points are removed from the training set with confidence levels less than 95%. The Curie 
approach has been evaluated on the MNSIT dataset. Table 2 displays FPR after varying percentages of PAs have 
been injected, as well as the accuracy of the SVM classifier with and without Curie. 

 

TABLE 2. Accuracy and FPR of SVM. 

Poisoning Points   Without Curie With Curie 
Accuracy (%) FPR Accuracy (%) FPR 

0 0.992 0.017 0.990 0.019 
25 0.958 0.085 0.991 0.018 
50 0.957 0.086 0.991 0.017 
75 0.934 0.128 0.991 0.017 

100 0.905 0.154 0.989 0.022 
125 0.851 0.221 0.990 0.019 

 
       Bo Li et al. [28] using the MovieLens dataset—which has 20 million ratings and 465,000 tag applications applied 
to 27,000 films by 138,000 users—the study assesses the efficacy of a suggested poisoning assault method. The 
average rating for individual items and the Mean Square Error (RMSE) for anticipated unseen entries are the two 
measures used to compare the systems' performance before and after PA assaults. The distributions of rated items 
between malicious and legitimate users are compared using the paired t-test. Compared to other strategies, the 
projected gradient ascent (PGA) strategy produces the highest RMSE score. However, malicious users must rate 
every item evenly and randomly, which could reveal the negative profiles to a knowledgeable defence. Despite 
producing a slightly inferior attacker utility, the Stochastic Gradient Langevin Dynamics (SGLD) approach creates 
rogue users that are challenging to distinguish from legitimate users. Compared to uniform attacks, PGA and SGLD 
increase the attacker's utility. Ultimately, as a defensive tactic, analysis of hostile behavior has been used. 
 
      Patrick P. K. Chan et al. [29] presented a method for data sanitization based on data complexity, a measure of 
categorization difficulty. It uses measurements of class separability, geometry, topology, the density of manifolds, 
and the overlap of individual feature values to categorize the data. Class separability, linear separability, and class 
border complexity measures help determine the maximum feature efficiency of a linear classifier used to organize 
the data. The method distinguishes between valid and tainted samples using a label flip attack, which alters sample 
distribution and raises classification errors. The data complexity metrics accurately reflect the complexity of the 
classification problem. The approach uses Reject on Negative Impact (RONI) and SVM to measure performance in 
applications like letter recognition and spam filtering. The spam dataset from the UCI machine learning repository is 
used in a test, along with linear SVMs trained on tainted training sets. The suggested method is, on average, 3.76% 
more accurate than RONI when applied to linear SVMs under the furthest, far-rotate, and maxErr attacks. The 
performance of the suggested method could be better for those using no protection when there is RONI. The letter 
recognition dataset from the Statlog collection consists of 20,000 samples, 26 classes, and 16 attributes also used. 
Both linear and nonlinear SVMs achieve 97.73 and 99.56% accuracy without assaults. The recommended method 
offers superiorly accurate predictions with statistical significance at 95% compared to RONI and sanitized SVMs. 
 
       Nathalie Baracaldo et al. [30] developed a provenance-based technique for supervised ML to identify and 
remove dangerous instances from data that can be considered Entirely untrustworthy (EU) or Partially trustworthy 
(PT). The PT dataset approach uses supervised ML techniques (SVM and Logistic Regression (LR)) with provenance 
characteristics. Each portion of the untrusted data is examined for poisoning before being divided to share an 
identical provenance signature. The machine learning algorithm tests classifier performance with and without the 
segment as part of its training process. If a model performs better without the segment, it is permanently removed 
from both sets. This approach prevents poisonous points from evading detection and reduces training times by 
requiring only a tiny fraction of RONI's training times for each data segment. A scenario including the Internet of 
Things and numerous contributing devices was used to assess the RONI defense. The outcomes were used as a 
baseline, with the most precise score being the calibrated RONI. Biggio's method was applied in tests of the MNIST 
dataset. For poison EU, the baseline, which calls for at least 120 data points, was the better. Also, a synthetic dataset 
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with 280 data points per signature to test the provenance defense has been used. The poor performance of the 
baseline defense suggests computing data points per signature to avoid false positives.  

 
       Sen Chen et al. [31] presented an adversarial crafting method that uses syntactic traits to build crafted poisoned 
samples that closely resemble real-world attacks. The three machine-learning detection systems- DREBIN, 
MAMADROID, and DROIDAPIMINER—can be tricked by our poisoning approach. for solving the problem, 
KUAFUDET was created. It has two parts: an online detection phase that uses the classifiers (SVM, RF, and K-Nearest 
Neighbor, KNN) that were trained in the first phase; and an offline training phase that picks features from the 
training set and extracts them. An automatic camouflage detector is implemented to filter suspicious false negatives 
and feed them back into the training phase, further mitigating the adversarial environment. This self-adaptive 
learning system connects these two phases. Based on tests, the KUAFUDET has proven its ability to improve 
detection accuracy by at least 15% and dramatically reduce FP or malicious apps that are poisoned. Research on 
over 250,000 mobile applications shows that KUAFUDET can obtain a detection rate of up to 96%. 
 
      Matthew Jagielski et al. [32] suggested a new poisoning regression approach known as the optimization-based 
Poisoning attack (OptP), which outperforms the Baseline Gradient Descent (BGD) assault by a factor of 6.83. To 
attain the mean square error (MSE), the optimal OptP attack chooses the optimization objective, optimization 
argument, and initialization approach. Also, a quick statistical assault (StatP) has been developed. TRIM as a novel 
protection technique that provides excellent robustness and resilience against poisoning attempts, was also 
available. Regression parameters are iteratively estimated, and residual points are eliminated using a trimmed loss 
function. The novel attacks and defenses have been evaluted in four linear regression models (OLS, LASSO, Ridge, 
and EN) and three datasets (healthcare, loan assessment, and real estate domains). Based on the tests, the presented 
attack demonstrated a notable improvement above baseline attacks and increased MSEs of 6.83 and 155.7 
compared to un-poisoned models. At the same time, the TRIM showed an advance in Huber, RANSAC, and RONI by 
(71.13%), (75%) and (95.45%) respectively.  
 
      Bo Lee et al. [33] Created an algorithm that selects important examples and fluctuates them using the greedy 
method to affect the target function. A protection technique was used to apply labels to each case in the training kit 
using K-NN to enforce the standardization of labels via similar examples, especially in areas far from decision limits. 
The technique for each sample in the contaminated k-NNs training group is that the corresponding training sample 
is renamed if the percentage of data points with the most widespread label exceeds the threshold. Three sets of 
actual data from the UCI repository were also used: breast cancer, MNIST, and Spambase. The average classification 
error was increased by a factor of 2.8, 6.0, and 4.5 for breast cancer, MNIST, and spambase, indicating the 
effectiveness of the label reversal attack. At the same time, the defensive approach reduced error rates to 0.06, 0.03, 
and 0.02 for the three datasets. 
 
       Di Cao et al. [34] examined the link between the number of attackers, tainted samples (LF), and attack success 
rate using a federated learning system with the federated averaging (FAv.) technique. Several participants train a 
local model using a local parameter vector and send it to a central parameter server in a federated learning setup. 
Then, FAv. has been used to compare the local model or vector with a global model. Each participant uses the 
Stochastic Gradient Descent (SGD) algorithm to create a new local model after receiving several poisoned Samples 
(S). Multiple attackers who use the same loss function and hyper-parameters as honest participants assault a 
federated learning system. The effectiveness of distributed poisoning assaults is assessed using the MNIST dataset, 
and a Sniper technique to eliminate poisoned local models by solving a maximum clique problem is proposed. 
50,000 samples are included in the training dataset, and 10,000 samples are for testing. The training data are 
distributed equally among ten participants in a federated learning system. Convolutional Neural Network (CNN) 
which has one complete connection layer and four convolution layers is also chosen. The global model's accuracy 
was assessed and the results showed 100%. However, combining local models resulted in an accuracy of 90%, 
showing that a more precise global model is possible. 
 
       Rahim Taheri et al. [35] Designed an attack to target Android malware detection systems named Silhouette 
Clustering-based Label Flipping (SCLF). This method relies on K-means clustering to divide the training samples 
into two clusters and compute silhouette values for the samples along with their predicted labels. In this context, a 
silhouette value close to 1 indicates that a sample fits well within its respective cluster, whereas values relative to -1 
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suggest misclassification. In the SCLF attack, the labels of samples are flipped if the silhouette value is less than zero. 
Additionally, two defense techniques, known as label-based semi-supervised (LSD) and clustering-based semi-
supervised (CSD), have been introduced. In the LSD approach, a semi-supervised strategy based on label estimation 
and the Label Spreading (LS) technique is employed to determine the labels. LS is trained using validation data to 
create a model. Label Propagation (LP) is also applied for label prediction. Subsequently, a Convolutional Neural 
Network (CNN) is used as the third component of an ensemble learning approach, trained with validation data. The 
LSD method's final step involves voting among the results of these three methods and the poisoned label, with the 
resulting label becoming the label for the training samples. 
Conversely, in the CSD approach, a proposed CNN model with validation data and four cluster metrics—the Rand 
Index (RI), Mutual Information (MI), Homogeneity Metric (HM), and Fowlkes-Mallows Index (FMI)—is used. This 
approach involves adding one training sample to the validation dataset, calculating clustering values with the four 
metrics, and comparing them to the base values. If the difference is less than 0.1 (considered a threshold), the 
sample is labeled adequately; otherwise, it is deemed mislabeled. Both defense algorithms were evaluated using 
three datasets: Drebin, Genome, and Contagio. The average accuracy for CSD was approximately 95%, 97.6%, and 
98.5%. In LSD, it was about 80%, 79%, and 77% for all datasets, respectively. 
 
      Patrick P. K. Chan et al. [36] suggested a Causal Detection Technique (CAD) focusing on data complexity 
measurements to find polluted datasets. Geometric characteristics and a two-step secure classification paradigm are 
used to decrease causal attacks, improve generalization potential, and increase learning resistance. Practical data 
analysis is ensured using the UCI and the KEEL-dataset repository to identify causative attacks. Five security-related 
datasets including Steghide, MB1, F5, PDF, and Spam, were used in the suggested methodology. In addition to a 
standard SVM, a robust SVM with kernel matrix correction has also been used. The attack strength significantly 
impacts how accurately perfect, partial, and no-knowledge scenarios may be detected, such as the detection 
accuracies are higher than 82%, 80%, and 75% for the different scenarios, respectively, even though the attack 
strength is only 5%. The detection accuracy remains constant at 84%, 82%, and 80% when the attack strength is 
15% to 20%. 
 
        Liu et al. [37] introduced an innovative attack called the Poisonous Label (PL) attack. The primary goal of this 
attack is to diminish the testing accuracy of Convolutional Neural Networks (CNNs) when exposed to PL images in a 
black-box scenario. The attack comprises two crucial stages: First, to create PL images, introducing counterfeit 
images that align with the target class label is imperative. To accomplish this, they employed Enhanced Conditional 
(EC)-DCGAN, a model based on Generative Adversarial Networks (GANs). Second, symmetric and asymmetric 
poisoning vectors were applied to produce PL images. MNIST, in addition to Fashion MNIST, was used in a series of 
studies. Table 3 presents the results of these tests. 

TABLE 3. Percentage of Mistakes Made by Inserting Poisons. 

Dataset Attack 
Technique 

Poison Percentage = 
0.1 

Poison Percentage = 
0.2 

Poison Percentage = 
0.3 

Max Min Mean Max Min Mean Max Min Mean 
FashionMNIST Symmetric 

Poisonous 
0.784 0.273 0.553 0.822 0.266 0.583 0.864 0.238 0.602 

FashionMNIST Asymmetric 
Poisonous 

0.997 0.851 0.948 0.999 0.951 0.982 1.000 0.971 0.990 

MNIST Symmetric 
Poisonous 

0.989 0.679 0.913 0.999 0.677 0.946 1.000 0.661 0.954 

MNIST Asymmetric 
Poisonous 

1.000 0.981 0.997 1.000 0.989 0.998 1.000 0.993 0.999 

 
       Hongpo Zhang et al. [38] presented two non-traditional LF attacks: LF depending on the Entropy (LF-E) 
approach and LF depending on k-medoids (LF-K medoids). The weight (Wj) of each attribute in the training set was 
determined using E in the LF-E. The scores (si) associated with each malicious example (xi) were then calculated 
using these weights (Wj). Then, all negative examples were rearranged according to their scores (si), and the labels 
of the instances with lower si values were reversed. K-medoids were utilized to calculate the central value of both 
kinds of examples, and the fraudulent instances were rearranged according to their distance from the center of the 
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standard samples. The test set's classification error was maximized by altering the labels of the negative instances 
that were closest to the center of the normal one.  This study evaluated the resilience of the Naive Bayes (NB) 
classifier on three datasets (Spambase, TREC 2006c, and TREC 2007 in the spam domain) under varying noise 
levels. The accuracy of the NB is shown in Table 4. 
 

TABLE 4. Accuracy (%) Of NB. 

Noise (% ) Attack_Method Spambase TREC 2006c TREC 2007 

0 - 90.55 93.13 89.93 

5 
Random 89.9  93.07 89.87 

E_method 89.58 89.8 88.13 
k - medoids 89.47 92.93 87.2 

10 
Random 89.25 91.87 88.8 

E_method 87.73 87.4 84.73 
k - medoids 88.49 87.53 78.07 

15 
random 88.06 91.53 87.6 

E_ method 85.56 86.13 80.13 
k - medoids 86.43 85.53 74.93 

20 
Random 86.75 90.6 85.73 

E_method 83.93 84.53 74.93 
k - medoids 85.02 83.4 71.4 

 
      Bingyin Zhao and Yingjie Lao [39] suggested two methods of class-oriented poisoning attacks, extending 
adversarial objectives to a per-class basis. The first method (class-oriented error-generic (COEG)) DNN model 
creates poisoned data focusing on the supplanter class. This method preserves feature information related to the 
ground-truth class while reducing other classes' features, reducing model accuracy and increasing the Complement 
Fixation Test (CFT) rate, outperforming baseline attacks (FL). Despite the bias introduced by training with a single 
data point, the technique achieves a CFT rate of 85.60% through 20 iterations. In the second method (class-oriented 
error-specific (COES)), a gradient-based approach is used to preserve non-victim performance while reducing the 
precision of the targeted victim class. The COES attack targets one class, affecting the performance of other 
categories. The attack can raise the victim class's CFT rate to 51.14%, outperforming baseline assaults. The 
approach for ImageNet achieves a CFT rate of 62% for the victim class while keeping non-victim classes' CFT rates 
low. To assess the effect of a poisoning attack on CIFAR-10, DNN, and CNN, 1000 training images and 9,000 testing 
images were employed in the study. With a CFT rate and test error above 50%, the suggested strategy outperformed 
the FL assault. A possible countermeasure is periodic checking of the accuracy and loss of learning models, such as 
averaged stochastic gradient classifiers and combinatorial models like bagging. 
 
       Richa Sharma et al. [40] presented a new LF assault; optimal training set instances are identified using 
sequential clustering (SHC); then only 20% are flipped, reducing validation loss. Also, an innovative SCOAP feature-
based strategy has been used to identify poisoned samples in the Categorical Boosting (CatBoost) model and 
through the use of k-NN relabel them to their respective classes to prevent Hardware Trojan (HT) networks (used as 
an example) from wrongly categorizing throughout prediction. Based on a Trust-Hub benchmark test, the proposed 
attack lowers average accuracy by 67%. In comparison, the defense strategy improves CatBoost model prediction 
performance by 32.57%, resulting in an accuracy of 99.66%, as indicated in Table 5. 

 
TABLE 5. Impact of LF on Trust‑Hub Benchmarks. 

LF 

Metrics (Without Defense %) 
Loss Accuracy Recall ROC-AUC 

score 
TNR FPR FNR 

58.5 67.09 50.53 58.7 68.72 32.57 46.16 
Metrics (With Defense %) 

Loss Accuracy Recall ROC-AUC 
score 

TNR FPR FNR 

1.43 99.66 89.45 92.2 99.82 0.1725 10.53688 
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        Qingru Li et al. [41] introduced LF as a unique attack that divides instances of a data set— Agglomerative 
Hierarchical Clustering (AHC) with the drebin and genome—into normal and aberrant clusters. Subsequently, the 
Silhouette Clustering (SC) value is computed based on the clustering findings to identify the samples that are most 
likely to be contaminated. It is then used to damage a dataset that can be used to train different classifiers including 
the Logistic Regression (LR), AdaBoost, Random Forest (RF), Support Vector Machine (SVM), Decision Tree (DT), 
and Multilayer Perceptron (MLP). Finally, label flipping is meant to be prevented using a defense method called 
TrAdaBoost. Weights for the training set are modified in this way: if an instance from the contaminated dataset is 
mislabeled, its weight is decreased; otherwise, it is increased.  
In contrast, the weight of a sample from the uncontaminated category is increased when it is incorrectly classified 
and decreased when it is correctly classified. The classification model is then retrained using the modified training 
set. The classifiers were tested at a 20% rate of LF, and the outcomes are found in Table 6. 
 

TABLE 6. Accuracy of Classifiers Under 20% Percentage of LF. 

Attack Method Accuracy Without Defense (%) 

LF 

RF 
(71.7) 

SVM 
(69.5) 

DT (71.5) LR 
 (69) 

MLP 
(72) 

Accuracy With Defense (%) 

RF 
(89.6) 

SVM 
(90) 

DT (88.5) LR (89.2) MLP 
(89.5) 

 
      Hesamodin Mohammadian et al. [42] executed an innovative LF attack against network-based intrusion 
detection systems (NIDS). The study uses DNN with two datasets: CIC-IDS2017 and CSECIC-IDS2018. For the 
network's attack classification, it first employs MLP with 256 neurons and the RelU activation function. After that, 
the assault (LF) scenario starts with an evasion strategy that uses examples from the original dataset to produce 
adversarial instances, and then it trains a DNN on tainted datasets. According to the experimental findings, a deep 
learning model performs noticeably worse as the percentage of flipped labels from malicious to benign rises. When 
70% of the labels (CIC-IDS2017) are reversed, the average accuracy falls from 98.06% without flipped labels to 
29.25%. A similar outcome was found with the CSE-CIC-IDS2018 dataset, with the average accuracy falling from 
97.36% with no flipped labels to 29.2%. The results of comparisons are presented in Table 7. 

 
TABLE 7. Results of ML Methods 

ML Methods 
CIC-IDS2017 CSE-CIC-IDS2018 

F1-score Precision Recall F1-score Precision Recall 
DT 99.84 99.76 99.92 97.70 99.73 96.14 

Naïve Bayes 28.47 32.43 73.75 48.29 49.48 72.79 
LR 36.71 39.76 34.96 57.79 64.13 56.84 
RF 96.58 99.79 94.24 94.23 99.81 90.97 

DNN 97.99 92.98 88.09 97.97 97.51 97.46 

8. Discussion 

    In Table 8, a comparison of previous studies has been made based on the proposed attack method, targeted ML 
models, and the defense methods used in addition to the strength and Limitations and their implications for real-
world applications. 

TABLE 8. A Comparison of Earlier Studies for PAs. 
 

Reference 
and 

Proposed 
attack 

Method of 
Defense 

Target ML 
model 

              Strength Limitations and their 
implications for real-world 

applications 

algorithm- Monitor and    NN,BFTree,       Early Detection: 1) Sensitivity to noise: the 
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independent 
attack [25] 
 

identify 
variations in 
metrics (CCI and 
Kappa) related to 
accuracy. 

RD,NBTree,   
MLP, SMO 

Observation and 
identification of 
fluctuations in these 
measures can facilitate 
early detection of PA, 
thereby mitigating their 
risk of significantly 
compromising the model's 
performance. 

protection technology 
depends on tracking and 
detecting deviations in 
accuracy metrics, the 
reversal of data and noise 
will have an effect on 
detecting process. 

2) In the context of medical 
applications aimed at 
detecting early indications of 
diseases or tracking the 
advancement of medical 
disorders, establishing 
thresholds for CCI and Kappa 
to detect PA in patient data, 
such as vital signs and 
diagnostic testing results, 
might pose challenges due to 
the presence of noise in 
biological data. 

CL [26] 
 

_ LASSO, EN, 
and RR 

1) L1 regularization 
employed by LASSO 
enhances its robustness 
against outliers in the 
training data, a critical 
factor in PA detection 
models. 
2) The use of L1 and 
L2 regularization in EN can 
increase generalization, 
thereby providing 
advantages against 
poisoning attempts that 
seek to diminish the 
model's performance on 
uncontaminated data. 
3) RR is 
demonstrated to be 
efficacious in addressing 
the issue of multi-
collinearity within 
datasets, a prevalent 
attribute observed in 
poisoned datasets. 

1) LASSO may exhibit 

reduced efficacy when 

challenged by advanced PAs, 

such as CL and 

watermarking, which can 

bypass feature selection 

procedure. 

2) The efficacy of EN 

relies heavily on the 

appropriate choice of two 

hyper-parameters (α and λ). 

As a result, these parameters 

can directly influence EN's 

robustness against poisoning 

assaults. 

3) The linear 
characteristics of Ridge 
Regression may impose 
constraints on its capacity to 
efficiently address poisoning 
assaults that specifically 
target unstructured data, 
such as text, photos, or audio 
components. 
4) Within the context of 
Intrusion Detection System 
(IDS) applications, the 
limitations of these 
methodologies can 
potentially result in higher 
rates of false positives or 
false negatives, thereby 
diminishing the system's 
resilience and reliability 
when faced with poisoning 
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attack scenarios 

LF [27] 
 

Curie SVM 1) The Curie 

algorithm is specifically 

developed to detect 

anomalies or outliers 

within the dataset that 

exhibit deviations from 

the established regular 

patterns. it is useful in 

identifying potential 

poisoning instances that 

add data points that 

deviate from the 

anticipated distribution. 

2) Due to its lack of 
reliance on labeled 
training data, this has the 
potential to enhance its 
resilience against specific 
forms of PAs, such as LF. 

Curie's dependence on the 

identification of anomalies 

within the data may 

occasionally result in an 

increased frequency of false 

positive detections. 

Unwarranted alarms or 

disruptions may arise, thereby 

diminishing the overall efficacy 

of systems such as Intrusion 

Detection Systems (IDS). 

LF [28] 
 

analysis of hostile 
behavior 

PGA and SGLD By prioritizing the 

examination of belligerent 

conduct, the defensive 

mechanism can enhance its 

ability to detect 

aberrations from typical 

user or system interactions 

that could potentially 

signify an ongoing PA 

1) Highly skilled assailants' 
ability to modify their 
poisoning tactics in order to 
avoid detection through 
hostile behavior analysis is 
particularly evident when they 
have a comprehensive 
understanding of the defense 
system. 

2) Financial losses 
stemming from successful 
fraudulent activities or supply 
chain disruptions 

LF [29] 
 

Data sanitization 
based on data 
complexity 

SVM It entails identifying, 

removing, or 

neutralizing complex or 

aberrant data. This 

practice serves to 

uphold the integrity and 

resilience of the 

underlying ML models, 

hence enhancing their 

ability to respond 

effectively to poisoning 

attacks. 

1) The process of 
accurately measuring the 
complexity of data points 
and establishing suitable 
thresholds for sanitization 
can present significant 
challenges, particularly in 
sectors characterized by 
numerous and varied 
sources of data. 
2) In the context of fraud 
detection systems, the 
sanitization techniques 
encounter challenges when 
dealing with big money 
transfers that are 
undertaken as part of 
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legitimate commercial 
activity. The probable 
consequence of this action is 
the premature elimination of 
any such data, resulting in 
their identification as 
potential instances of 
fraudulent activity. 

Injected CL 
[30] 
 

Provenance-
based method 

LR and SVM The method is highly 

flexible as it can be 

combined with 

additional protection 

strategies such as 

anomaly detection or 

extreme value analysis 

to efficiently reduce false 

alarms and accurately 

detect a poisoning 

attack. 

Poisoning of authentic data 
sources occurs through 
internal gathering procedures 
that appear to have a genuine 
origin. Therefore, the presence 
of poison data has the potential 
to circumvent provenance-
based identification systems. 
Healthcare apps utilizing 
medical equipment data can be 
exploited by malicious actors 
to gain unauthorized access 
and introduce poisoning 
attacks. 

CL [31] 
 

KuafuDet RR, KNN and 
SVM 

KuafuDet's adaptive 

learning skills allow it to 

continually improve its 

repository of data and 

models, making the 

system more resistant to 

poisoning attempts. 

The integration of additional 
samples into the training 
procedure, which involves the 
potential exclusion of FN, can 
pose difficulties in ensuring the 
accuracy and origin of the data 
utilized for system updates. 
This absence can make the 
system vulnerable to 
deliberate PA such as Cyber 
Secure Solutions. 

OptP, and 
StatP [32] 
 

TRIM OLS, LASSO, 
ridge, and EN 

The TRIM model's 

inherent adaptability 

allows it to effectively 

identify and adjust to 

changes in the data 

distribution resulting 

from poisoning 

experiments. 

TRIM needs more processing 

power than conventional 

regression techniques. This 

additional processing 

complexity can be a drawback, 

particularly when resources 

are limited or real-time is of 

the essence. 

The inclusion of TRIM in a real-
time fraud detection system 
introduces additional 
complexity that may impede 
the system's ability to 
promptly make choices, 
thereby enabling poisoning 
assaults to evade detection. 

LF [33] 
 

KNN Greedy Reconfiguring KNN 

model by including fresh 

data or retraining it to 

accommodate advanced 

poisoning threats can be 

simpler in comparison to 

1) KNN, when used in 
imbalanced datasets, can 
bias forecasts towards the 
majority class; PAs can take 
advantage of this bias, 
leading to misclassifications 
or biased forecasts. 
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more intricate machine 

learning models. The 

model effectively 

responds to mitigation 

strategies of PAs. 

2) The KNN algorithm is 
susceptible to the curse of 
dimensionality. In feature 
spaces with a large number 
of dimensions, the 
informativeness of distances 
between data points 
decreases, reducing KNN's 
efficacy in PA detection. 
3) In the context of a 
network-based IDS, the 
presence of high-
dimensional network traffic 
data can potentially result in 
misclassification of false 
positive information or the 
failure to identify specific 
forms of false negatives 
generated by inserted 
poisoned data. So, the 
system's reliability and 
trustworthiness may suffer. 

LF [34] 
 

Sniper Method CNN The implementation of a 

proactive strategy can 

effectively identify 

Distributed PAs prior to 

their potential to 

seriously compromise 

the global model, hence 

enhancing the overall 

security of the federated 

learning system. 

The Sniper method monitors 
client behavior and updates it 
to detect DPAs in a federated 
learning system, which 
introduces additional 
computational overhead. Also, 
variations in dataset 
distribution, client 
characteristics, and learning 
settings can impact 
performance. 
Autonomous car 
manufacturers may exhibit 
divergent priorities, safety 
standards, and update 
strategies, thereby introducing 
variances in the federated 
learning process and the 
operational dynamics of the 
Sniper approach. 
Consequently, these 
discrepancies can manifest in 
the detection of PAs. 

SCLF [35] 
 

LSD and CSD CNN The LSD algorithm 
demonstrates superior 
performance in leveraging 
the limited quantity of 
labeled data present in the 
learning system. 
Consequently, LSD exhibits 
enhanced accuracy in 
detecting poisoning attacks 
when compared to 
unsupervised approaches 

The effectiveness of LSD is 
greatly influenced by the 
accessibility and proficiency of 
the labeled data, posing a 
considerable obstacle in the 
identification of label flipping 
and clean label PAs. 
The efficacy of CSD is 
intrinsically linked to the 
quality of the clustering 
algorithm used. Inadequate 
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that simply rely on 
unlabeled data. 

CSD has the capability to 

identify patterns and 

anomalies within client 

data, which could 

potentially serve as 

indicators of poisoning 

attacks. 

clustering might result in 
decreased accuracy in 
detecting poisoning and an 
increased occurrence of false 
positives, since the model may 
have difficulties in 
differentiating between 
harmless and harmful client 
actions as in fraud detection 
application. 
 

Causative LF 
[36] 
 

CAD SVM, and 
ensemble of 
decision trees 

By prioritizing causal 

linkages above mere 

correlations, the CAD 

method can enhance the 

resilience of the defense 

against data distribution 

changes resulting from 

PAs. 

CAD models can generate false 
detections, which can lead to 
system downtime or 
undetected PAs. This is 
particularly true in mission-
critical applications such as 
autonomous vehicles or 
medical systems, where the 
repercussions of false 
detections can be significant, 
potentially resulting in system 
failures. 

Symmetric 
and 
Asymmetric 
Poisonous 
[37] 
 

- CNN CNNs are intrinsically 

engineered to exhibit 

resilience against spatial 

fluctuations in the input 

data, such as shifts, 

rotations, or scaling. This 

characteristic is useful in 

the identification of 

poisoned samples that 

attempt to avoid 

detection. 

For training, CNN-based 
defenses rely on a substantial, 
annotated dataset of both 
clean and poisoned instances. 
However, acquiring such 
datasets can be a challenge in 
IoT devices, which often 
function in distributed and 
dynamic environments. Thus, 
the limited training data 
available for these cases may 
restrict the efficacy of CNN-
based countermeasures, 
possibly resulting in 
heightened susceptibility to 
developing poisoning assaults 
specific to IoT. 

LF-K 
medoids and 
LF-EM [38] 
 

_ NB NB algorithm is 

recognized for its strong 

resilience against noise 

in the input data. This 

characteristic makes it 

valuable for detecting 

PAs that cause noise. 

In cybersecurity applications, 
when the input features 
include numerical values such 
as the number of login 
attempts or file sizes, 
appropriately scaling or 
normalizing these features can 
distort the Naive Bayes 
model's decision-making 
process. This distortion can 
lead to poisoned samples being 
misclassified as benign or vice 
versa. 

COEG, and 
COES [39] 
 

Frequently verify 
the accuracy 

DNN, CNN Validating the accuracy 

of the poisoning 

detection model on a 

Accuracy verification and 
updates of the poisoning 
detection model may 
necessitate temporary system 
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regular basis can 

facilitate early detection 

of any performance  

deterioration, allowing 

for prompt intervention 

and model change. 

downtime or the 
implementation of 
modifications that may affect 
regular operation. This may 
occur in financial systems, 
healthcare monitoring 
systems, or industrial control 
systems that leads to 
significant repercussions, such 
as service failures or delays in 
imperative decision-making 
processes. 

LF [40] 
 

SCOAP features 
with k-NN 

CatBoost SCOAP's outlier 

identification skills, 

when combined with k-

NN's ability to identify 

data points that differ 

from the regular data 

distribution, can 

significantly improve the 

total capacity via 

identifying and 

separating out poisoning 

assaults from data. 

1) SCOAP and k-NN 
algorithm depend on the 
choice of several parameters, 
such as the number of 
closest neighbors (k) or the 
distance metric employed. 
Inadequate parameter 
selection can result in 
decreased detection 
accuracy, heightened 
occurrence of false positives 
or false negatives, and 
overall deterioration in the 
efficacy of the PA detection 
system. 
2) ML models are 
increasingly used in the 
healthcare domain for 
disease detection, 
pharmaceutical research, 
and patient monitoring. 
Implementing the SCOAP-k-
NN method can help reduce 
PAs' impact on these models. 
However, the susceptibility 
to biased parameter 
selection may erode the 
confidence. 

LF [41] 
 

TrAdaBoost AdaBoost, RF, 
SVM, DT, MLP, 
and LR 

The TrAdaBoost 

approach effectively 

uses transfer learning to 

apply acquired 

information from the 

source domain to 

identify poisoning 

assaults. This enables 

the model to adjust to 

changing attack patterns 

or new data 

distributions of PAs. 

The TrAdaBoost method 
entails the repetitive training 
of many weak learners, which 
can exhibit significant 
computational complexity, 
particularly when dealing with 
large-scale or high-
dimensional datasets. In real-
time systems like financial 
transactions or critical 
infrastructure monitoring, the 
computational complexity can 
provide difficulties when the 
detection system must 
promptly react to possible 
poisoning assaults. 
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LF [42] 
 

_ DNN DNNs have the ability to 

autonomously acquire 

hierarchical and 

intricate feature 

representations from 

unprocessed data. This 

feature extraction 

capability can be useful 

in situations where the 

PAs' attributes are not 

clearly defined or may 

change over time. 

The occurrence of poisoning 
attacks is relatively low 
compared to harmless inputs, 
resulting in a notable 
imbalance in the training data 
classification. Consequently, 
the DNN model may be biased 
towards the majority class, 
leading to inadequate 
identification of the minority 
class (i.e., poisoned samples). 
This weakness can affect 
financial fraud detection and 
healthcare data analysis. 

 

     Although several defence mechanisms have been used, they contain weaknesses that make them insufficient to 
overcome this attack, requiring the development of more sophisticated defence strategies to identify and neutralize 
them. As a result, the following proposals will be made to protect and maintain the availability, robustness, and 
integrity of ML models with potential challenges in their implementation: 

1. Deep Reinforcement Learning (DRL): These techniques can detect DPAs by training an agent to interact 
with the model and actively detect adversarial samples. 

Challenge: Developing a reward function that accurately reflects the intended detection of DPA behavior. 

2. Transfer Learning for Attack Detection: It involves utilizing knowledge gained from one domain into a 
different one. DPAs in the desired domain can be identified via a model that involves training on an original 
domain with recognized normal data and then applying the information gained to the interest domain. 

Challenge: Achieving an adequate quantity of authentic poisoned samples for training and evaluation can present 
difficulties, as these samples are necessary for the fine-tuning or adaptation of the pre-trained model. 

3. Evolutionary Computing (EC): The methods of EC (like genetic algorithms and particle swarm optimization) 
can be applied to find optimum or aberrant regions in the input space. EC might detect DPAs by analyzing the 
model's behavior on several samples.  

Challenge: To achieve effective poisoning attack detection, evolutionary computing techniques required diverse 
and representative training datasets. As a result, acquiring an adequate quantity of annotated data for 
poisoning assaults, such as watermarking, can be challenging. 

4. Ensemble methods are used to improve the detection of DPAs using techniques like bagging and boosting. 
By using various approaches or different portions of the data, training numerous models makes it easier to find 
discrepancies or inconsistencies in the predictions. Disagreements or inconsistencies throughout the samples 
of the ensemble may indicate potential assaults. 

Challenge: Effective ensemble methods frequently depend on the significance and pertinence of input features to 
generate precise predictions. In order to achieve effective ensemble-based poisoning attack detection, it is 
critical to develop strong feature selection and significance estimation methods that can withstand clean label 
attacks. 

5. The purpose of out-of-distribution detection (ODD) is to identify instances that significantly deviate from 
the distribution of the data set used for training. OOD instances could be an indication of upcoming 
DPA attempts. Generative models, density estimations, or Bayesian approaches can be employed to find OOD 
examples.  

Challenge: Poisoning techniques, such as clean label assaults, aim to deliberately get the contaminated data 
closer to the original data. Hence, precisely delineating the demarcation between the "in-distribution" (normal) 
data and the "out-of-distribution" (anomalous or poisoned) data can be a challenging endeavor.  

6.  Model watermarking involves adding distinct IDs or signatures to the data used for training using methods 
such as Watermar-kNN or DeepSigns. Suppose the contaminated data was utilized for training or modifying the 
model. If that's the case, it can be discovered by searching for these watermarks when deploying or deriving 
models. 
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Challenge: The development of strong watermark recognition algorithms that can accurately differentiate 
between watermarked and non-watermarked models, especially when faced with noise or distortions, as well 
as model alterations, can be a tough task. 

7. Analysis of Reconstruction Mistakes (RM): If autoencoders were used in the model's training, DPAs could be 
discovered by looking at the REs. REs from harmful examples can be identified as possible assault targets by 
establishing thresholds high enough to distinguish them from harmless examples. 

Challenge: Establishing the appropriate thresholds for reconstruction errors to distinguish between data that 
follows a normal distribution and data that is not (poisoned) can be challenging. 

8. Analyzing the features of the model to ascertain which are altered known as Feature Importance (FI) 
analysis. The model's predictions will be assessed by applying techniques like permutation importance or 
SHAP values to determine the impact of each feature. A DPA attack may be indicated by unusually high or low 
relevance rankings for specific features. 

9. Challenge: Establishing robust feature significance calculation techniques that can withstand adversarial 
perturbations induced by clean labels is crucial.  

10. Conclusion and Future Work 

 Artificial intelligence technologies are developing and flourishing very quickly; simultaneously, hostile attacks 
are increasing, including PAs, considered one of the most dangerous attacks targeting ML. The lack of information 
and the unavailability of attack databases hinder finding more appropriate solutions. This article aimed to give a 
complete and accurate overview of the different types of attacks and how they are used against diverse ML models, 
along with the countermeasures that were carefully studied to find out their determinants. Several solutions have 
also been proposed to maintain the availability, robustness, and integrity of ML models. Increasingly complex 
security risks are expected to emerge regularly, so security concerns related to ML will persist, requiring more 
attention from experts in the field. To strengthen the resilience against poisoning efforts, it is advisable for future 
work to incorporate adversarial training using suggested protective techniques such as deep reinforcement learning 
or ensemble methods. Given the unavailability of poisoned samples, potential methods to improve the effectiveness 
of adversarial training include the clustering techniques that produce inlier samples rather than outliers. Moreover, 
it is recommended that future research should address the application of poisoning attacks to novel areas, such as 
SQL injection and DDOS. 
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