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A B S T R A C T 

As cyber threats continue to escalate with the rapid growth of internet usage, robust intrusion 
detection systems (IDSs) are essential for safeguarding network infrastructures. This study 
proposes an enhanced intrusion detection approach using the NSL-KDD dataset, where 
particle swarm optimization (PSO) is employed for feature selection to optimize machine 
learning classifier performance. PSO effectively reduces data dimensionality by identifying 
the most relevant features, improving computational efficiency and detection accuracy. Four 
machine learning classifiers, such as support vector machine (SVM), decision tree (DT), extra 
trees (ET), and random forest (RF), are evaluated with and without PSO to assess its impact. 
Experimental results demonstrate that PSO-based feature selection significantly improves 
performance, with RF achieving the highest accuracy of 98.33%. Comparative analysis with 
recent studies highlights the competitive advantage of the proposed method. The study 
concludes by identifying limitations and proposing future work, including exploring 
alternative feature selection techniques such as Genetic Algorithm (GA), Bat Algorithm (BA), 
and Cuckoo Search (CS) to further enhance IDS effectiveness. 

 

MSC. 

https://doi.org/10.29304/jqcsm.2024.16.41787 

1.Introduction 

The rapid growth of the internet has led to an alarming increase in cyberattacks targeting networks and computer 
systems, posing significant challenges to cybersecurity. To safeguard network infrastructures, Intrusion Detection 
Systems (IDSs) have become indispensable tools for detecting and preventing hostile activities. Ensuring that 
software frameworks and network environments remain secure and reliable is one of the most pressing challenges 
in today’s technological landscape [1]. Intrusion detection involves identifying and responding to activities that 
exploit computing and network resources. However, increasing network traffic and the evolving sophistication of 
cyber threats have made it difficult for IDSs to accurately detect malicious activities. Traditional IDS methods often 
struggle to keep up with emerging attacks, leading to inefficiencies in detection and high false alarm rates. To 
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address these challenges, machine learning (ML)-based IDS models have emerged as promising solutions. These 
models offer high detection accuracy through the ability to learn patterns from historical data, computational 
efficiency through optimized feature selection, and adaptability to emerging and evolving threats [2]. This paper 
provides a comprehensive review of current advancements in machine learning-based intrusion detection systems. 
It explores lightweight ML models, which have been shown to efficiently address detection accuracy, feature 
redundancy, and computational overhead in IDS. By laying a state-of-the-art foundation, this work aims to assist 
future researchers in further improving IDS methodologies and addressing ongoing cybersecurity challenges [3]. 

Machine learning-based IDSs provide an approach that is driven by learning to identify attack types through 
modeled behavior of normal and malicious activities. Most of these systems rely on a supervised learning method 
for effective and comprehensive representations of known threats, though periodic maintenance of the signature 
database is still required and adds to the workload of users [4]. Development in the field of intrusion detection 
techniques is achieved by improving machine learning models, which introduce a different degree of accuracy and 
efficiency across different systems. All in all, this is a very good trend in IDS technology because the difference in 
technological aspects is so vast: machine-learning-based robust and resilient systems against evolving threats. 
Advanced hardware architectures further allowed more integrated models that were complex and deployed, hence 
boosting the ability of the system in anomaly detection across datasets for proper identification of security threats. 

Basically, striking the effectiveness of detection with the efficiency of resources is the key driver of using lightweight 
machine learning. Multilayer Perceptron (MLP), Support Vector Machines (SVM), Logistic Regression (LR), K-
nearest neighbor (KNN), and Random Forest (RF) are major models that would assure high detection accuracy with 
least computational overhead and, as such, would be ideal for intrusion detection in real time. Another fast-growing 
field is machine learning for IoT security. So far, the combination of machine learning-based methods with big data 
analytics has led to certain successful performances in cybersecurity applications. For this reason, machine learning 
algorithms are under the spotlight due to their outstanding pattern-extraction capability, often superior to other 
approaches in several studies [5,6]. The following are the research's primary contributions: 

• This study applies Particle Swarm Optimization (PSO) for feature selection on the NSL-KDD dataset, 
demonstrating significant enhancements in classifier accuracy and robustness. PSO effectively minimizes 
dataset dimensionality while retaining critical features, improving the performance and efficiency of 
intrusion detection systems. 

• A comprehensive analysis was conducted on classifiers including Support Vector Machine (SVM), Decision 
Tree (DT), Extra Trees (ET), and Random Forest (RF), comparing performance with and without PSO-based 
feature selection. The findings highlight the advantage of using PSO for feature selection, particularly for ET 
and RF, which achieved high accuracy levels of 97.38% and 98.33%, respectively. 

• This work includes a detailed comparison with recent studies using the NSL-KDD dataset, showcasing the 
effectiveness of PSO-based feature selection. The analysis demonstrates that the proposed approach sets a 
new standard for accuracy and reliability in detecting intrusions, providing a competitive edge over existing 
methods in the field. 

2. Related Works 

In recent years, various machine learning and ensemble approaches have been researched in order to provide an 
effective intrusion detection performance and overcome issues such as class imbalance and dimensionality in 
network traffic datasets. For instance, Maryam Samadi Bonab et al. [7] performed feature selection on NSL-KDD 
dataset. Their work employed the ant lion, fruit fly optimization algorithm, and a hybrid that combined the two 
methods in feature selection. Some of the classification algorithms used with the selected features are the KNN, NB, 
SVM, and DT. The best results were for the k-nearest neighbor classifier, yielding the highest accuracy of 89.0% on 
the NSL-KDD dataset. However, feature selection improved performance, the final accuracy remained limited. Due 
to the reliance on KNN, which is sensitive to feature space and data size, its scalability has been limited. Thavavel 
Vaiyapuri and Adel Binbusayyis [8] have applied five varieties of auto-encoders to network traffic anomaly 
detection in the NSL-KDD datasets. Following an unsupervised deep learning approach, they employed the strength 
of autoencoders in learning the representation of data in a compressed format. The best accuracy that they 
obtained on the NSL-KDD dataset was 87.9% using a contractive autoencoder. Feature selection methods other 
than those proposed further enhance performance by filtering less relevant features before feeding them into the 
model of the deep learning. However, the reported accuracy still shows difficulties in handling feature redundancy 
and rare attack classes. 
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Byeongjun Min et al. [9] They proposed using a memory-augmented deep autoencoder to solve the 
overgeneralization problem that often occurs when using an autoencoder. Their solution achieved an accuracy of 
89.5% on the NSL-KDD dataset. The paper applied the capability of only a deep learning model for feature 
compression without using any statistical/ machine learning methods for reducing the number of input features in 
advance. However, their approach used DL-based feature compression; no statistical or machine learning feature 
reduction methods were employed to ensure interpretability and efficiency. The experiments were carried out by 
AK Pandey et al. [10] on UNSWNB-15 and NSL-KDD datasets. GAN was applied to generate synthetic records before 
the classification in order to handle class imbalance. Then, a multiclass SVM classifier was conducted based on a 
fine-tuning of parameters performed by Bayesian hyperparameter optimization in their proposed approach. The 
achieved classification accuracy using this approach is equal to 99.5% over the NSL-KDD dataset. This far exceeded 
our results derived from the NSL-KDD dataset and may be related to the effective handling of class imbalance 
within this dataset. However, the results are impressive, their dependency on GAN-generated data begs the 
question of how well this model generalizes to more real-life datasets with different distributions. 

Kumar and Sinha [11] introduced a model combining a XGBoost classifier with Wasserstein Conditional GAN to 
generate synthetic IDS datasets, incorporating feature reduction through a deep autoencoder. This model achieved 
an F1-score of 0.96 when evaluated on the NSL-KDD dataset. However, the WCGAN’s testing for effectiveness on 
machine learning classifiers involved both real and synthetic data rather than solely synthetic samples. 
Additionally, there was inconsistency in feature alignment across datasets, and the high detection rate was mainly 
observed with the NSL-KDD dataset. However, the method was very dependent on synthetically generated data, 
and any inconsistency in the feature alignment across these datasets would defeat the purpose of their model's 
robustness. The works in [12] have used linear discriminant analysis, KNN certainty factor voting classifiers, and 
two-class machine learning classification models for feature dimensionality reduction. In handling class imbalance 
for anomaly datasets, the SMOTE technique is applied. This model, when trained with two newly created training 
datasets, showed an accuracy of 83.24% on the NSL-KDD dataset for 16 selected features. However, though these 
are two promising works using LDA for feature selection and SMOTE for class imbalance, the achieved accuracy is 
somewhat low. 

A model for intrusion detection in cloud environments, including deep and machine learning, was proposed by 
Mourade Azrour and Abdulatif Alabdultif [13]. They used the RF classifier for filtering the features and then used 
RBFNN for intrusion detection. The best features were selected by the RF classifier, where the detection of 
intrusion in cloud computing was done by the RBFNN algorithm. Their approach, on NSL-KDD dataset, resulted in 
an accuracy of 94.16%, which was efficient for intrusion detection. Besides, feature selection techniques were 
proved very useful and important in enhancing general efficiency in the IDS. However,  the reliance on RF for 
feature selection overlooks subtle correlations in features, and RBFNN models tend to be computationally costly. In 
[14] is proposed an ensemble-based machine learning approach for intrusion detection, incorporating a part of the 
techniques of Simple Stacking, Adaboost, RF, XGBoost, Bagging and Gradient Boosting. Their approach employed 
mutual information, PCA, and correlation analysis feature selections and reported accuracy above 99% on various 
publicly available datasets. Their method enhanced the security further against the cyber-attacks arising day by 
day. However, the computational cost of ensemble methods may also limit their applicability in real-time intrusion 
detection scenarios. 

Ayuba John et al. [15] introduced a variable ensemble machine learning approach for intrusion detection, 
combining PCA with AdaBoost, LogitBoost, and RandomForest to address low accuracy and high false alarms in IDS 
models. For the NSL-KDD dataset, the AdaBoost with PCA approach achieved an accuracy of 89.0%, PCA with 
RandomForest reached 100% accuracy, and PCA with LogitBoost also attained a perfect accuracy of 100%, 
demonstrating the effectiveness of these combinations in improving detection performance. However, the 
generalizability of their approach to more complex or imbalanced datasets remains unaddressed, which is critical 
for real-world applicability.  Yu Yang et al. [16] developed a method to enhance rare-class attack detection by using 
an optimized kernel density estimation with geometric synthetic minority oversampling technique. Balanced data 
was processed through denoising autoencoders to reduce redundancy and improve detection accuracy. A soft-
voting ensemble method was then applied for multi-class anomaly detection, resulting in 86.39% accuracy on NSL-
KDD dataset. The proposed strategy achieved improved performance in identifying unknown and rare attack types. 
The reviewed studies demonstrate that advanced machine learning methods, particularly ensemble and feature 
selection techniques, significantly improve intrusion detection performance, especially for rare and complex attack 
types. However, their approach improved rare-class detection, but the overall accuracy remained low due to 
redundancy and noise in the dataset, which could have been addressed through more effective feature selection.   
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3. Methodology 

The methodology adopted in this study is designed to enhance the performance of intrusion detection systems using 
the NSL-KDD dataset. The approach is presented as a structured pipeline in Fig. 1, encompassing data 
preprocessing, feature selection, model training, and evaluation. The ultimate goal is to achieve a robust 
classification of network traffic into normal and abnormal categories, leveraging machine learning models 
optimized through effective feature selection. The pipeline begins with data preprocessing, where Min-Max 
normalization is applied to the raw dataset. This step standardizes the feature values, ensuring they fall within a 
specific range, which aids in improving the convergence and performance of machine learning models. Next, the 
preprocessed data undergoes feature selection using PSO. PSO identifies an optimal subset of features that balances 
model accuracy and computational efficiency by removing redundant or irrelevant features. The selected feature 
subset is then divided into training and testing datasets, with 80% allocated for training and 20% reserved for 
testing. This ensures that the models are trained effectively while maintaining a separate dataset for unbiased 
evaluation. Following the data preparation, multiple machine learning models, including SVM, ET, DT, and RF, are 
applied to the preprocessed and optimized dataset. Each model is trained and fine-tuned to maximize its predictive 
performance. Finally, the models are rigorously evaluated using standard performance metrics: F1-score, accuracy, 
precision, recall, and a confusion matrix. These metrics provide a detailed assessment of the models' effectiveness in 
detecting normal and abnormal network traffic, offering insights into their strengths and limitations. 

Fig. 1- Proposed IDS approach based on classifiers and PSO. 

3.1. NSL-KDD Dataset Description   

The selection of appropriate datasets is due to the fact that intrusion detection model evaluation requires 
appropriate benchmarking. This is why we employed the NSL-KDD dataset, an improved version of KDDCup'99, 
overcoming difficulties like redundancy and biased distribution of classes, features giving wrong indications of the 
model performance [17]. NSL-KDD provides 41 characteristics in basic, content, time-based, and host-based, with 
each record labeled as normal or one of the four attack categories: Probe, U2R, R2L, and DoS. It was divided into 
the NSL-KDD-Train for training and the NSL-KDD-Test for testing, thus giving a very structured basis on which 
model performance could be measured. Although NSL-KDD is not capable of representing the modern nature of 
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network traffic, it is one of the most utilized benchmarks for evaluating intrusion detection techniques. The details 
in the dataset are represented in Table 1. 

Table 1 - Description of NSL-KDD dataset. 

Type of Traffic 
Class 

NSL-KDD-
Test 

NSL-KDD-
Train 

Normal  

 
Normal 9711 67,343 

Abnormal  Probe 2421 11,656 

R2L 2885 995 

U2R 67 52 

DOS 7460 45,927 

          Total records                         5 classes 22,544 125,973 

 

3.2. Preprocessing NSL-KDD Dataset    

Preprocessing in this regard is the most important step to prepare the NSL-KDD dataset for training, as it greatly 
improves the accuracy and performance of machine and deep learning models when combined [18]. Preprocessing 
indeed is helpful to remove noise, balance data, and scale features consistently-all elements that will enhance good 
generalization and reduce overfitting of a model. Preprocessing also helps the models learn the patterns better by 
standardizing the data, which means better detection rates for both frequent and infrequent attack types. This is an 
essential phase in intrusion detection because of the high dimensions and diversity in data types that can degrade 
model performance if not treated. 

One of the common practical preprocessing techniques is called Min-Max Normalization, in which each feature 
should scale in a certain range, usually within the range of [0, 1]. This kind of normalization is very helpful for any 
model of machine learning or deep learning because it avoids dominant features while normalizing all features on a 
comparable scale. Min-Max Normalization is given by the following transformation formula: 

𝒁𝒏𝒐𝒓𝒎 =
𝑦 − 𝑦𝑚𝑖𝑛

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

                                                                                                                                  (1) 

Where 𝒚 represents the original feature value, 𝒚𝒎𝒂𝒙 and 𝒚𝒎𝒊𝒏 are the minimum and maximum values of the feature, 
respectively, and 𝒁𝒏𝒐𝒓𝒎 is the normalized value. It normalizes all the feature values in a uniform range so that 
models converge better during the training process, which enhances the efficiency in intrusion detection. 

3.3. Feature selection on the NSL-KDD Dataset based on PSO 

Feature selection is one of the most important steps for fine-tuning both machine and deep learning models. For 
example, in cases of high-dimensional datasets like the NSL-KDD, feature selection keeps only the relevant features 
and reduces the noise of the data [19,20]. This reduces computational complexity because now the models will 
focus on the most informative attributes. It impacts directly the accuracy and efficiency of the model by reducing 
overfitting and speeding up the convergence of training. That is to say, intrusion detection systems with feature 
selection will enhance their detection capability by focusing on patterns that are very important in the given data. 

Feature selection is done on the NSL-KDD dataset using PSO in this paper. PSO is a population-based optimization 
algorithm inspired by the collective behavior of swarms, for instance, the flocking of birds or schooling of fish. A 
particle in PSO corresponds to one candidate solution-a subset of the features in this case-and navigates through 
the search space in search of an optimal solution for the predefined objective, normally maximizing the accuracy of 
the model [21]. Each particle updates its position based on two important components: a personal best position 
and a global best position in the swarm. The position and the velocity of each particle are updated in every 
iteration using the following formulae: 

𝒗𝒊
(𝒕+𝟏)

= 𝑤 𝑣𝑖
(𝑡)

 + 𝑐1 𝑟1(𝑝𝑖
𝑏𝑒𝑠𝑡 − 𝑥𝑖

(𝑡)
) + 𝑐2 𝑟2 (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖

(𝑡)
)                                                                                     (2) 

𝒙𝒊
(𝒕+𝟏)

= 𝒙𝒊
(𝒕)

+  𝒗𝒊
(𝒕+𝟏)

                                                                                                                         (3) 
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Where  𝒗𝒊
(𝒕)

 and 𝒙𝒊
(𝒕)

 represent the velocity and position of particle 𝒊 at iteration 𝒕 , respectively. Parameters 𝒘, 𝒄𝟏, 
𝒄𝟐 influence the particle’s movement, while random values  𝒓𝟏 and 𝒓𝟐 add variability. By applying PSO to identify a 
subset of critical features, we achieve improved model accuracy and efficiency, enabling more focused and effective 
intrusion detection on the NSL-KDD dataset. 

3.4. Assessment Criteria    

In this respect, intrusion detection models' performance will be compared in our study concerning some metrics 
that will assess their performance of correctly classifying normal network traffic as a positive class and abnormal 
network traffic as a negative class, which will give an indication of the integral performance of the model in 
identifying benign network activities from malicious ones [22]. 

The confusion matrix will be very useful in this evaluation, describing the results in terms of four categories: True 
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) [23,24]. Here, TP means that the 
normal traffic has been identified, TN indicates the abnormal traffic that was correctly classified; FP refers to the 
abnormal traffic misclassified as normal, and FN is the normal traffic which has been misclassified as abnormal. 

• Accuracy gives the proportion of all correctly classified instances (both normal and abnormal) out of the 

total predictions, providing an overall measure of the model's effectiveness [25]: 
 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 + 𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑢𝑟𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                        (4) 

 

• Recall (Sensitivity, for normal traffic) assesses the model’s ability to detect all actual normal instances, 

showing the proportion of correctly identified normal traffic out of all actual normal cases [26]: 

 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                                                                                                (5) 

 

• Precision (for normal traffic) calculates the proportion of correctly classified normal instances out of all 

instances predicted as normal [27]: 

 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                                                                                         (6) 

 

• F1-Score balances Precision and Recall, providing an overall measure that is useful for evaluating model 

performance when there is a need to consider both correct detections and false classifications [28]:  

 

𝑭𝟏 − 𝑺𝒄𝒐𝒓𝒆 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                                                          (7) 

This set of metrics will, therefore, enable the estimation of the strength of the model in differentiating between 
normal and abnormal traffic, further into how it will behave in real network scenarios. It therefore follows that 
abnormal and normal traffic classification provides some reasonable balance in analysis. 

4. Results and Discussion 

Experiments were conducted on an Intel-based Windows system based on the specifications shown in Table 2. For 
the programming part, Python was used, with most of the code being written and executed in the Visual Studio 
Code. 

This section presents the performance evaluation of the considered classifiers in this study, such as SVM, DT, ET, 
and RF, with and without PSO for feature selection. There are five important metrics that have been employed in 
this study for the performance evaluation of each of these classifiers, including confusion matrix, recall, precision, 
F1-score, and accuracy. These experiments have been carried out in two different scenarios: first, by applying PSO 
for feature selection, and second, without using PSO-to clearly observe the performance differences of the 
classifiers with and without the optimized subset of features. 
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Table 2 - System Configuration. 

Specification Description 

Processor Intel Core i7, 6th Generation 

Graphics 8 GB VRAM 

Memory Capacity 16 GB RAM 

Programming Language Python 

OS Environment Windows 10 Home 

 

These reflect respective performances for each classifier with regard to the detection of normal and abnormal 
traffic. The results confirm that through the application of PSO for feature selection, improvement is given to the 
models by letting the classifier focus on the most relevant features, hence increasing its accuracies and efficiency 
with regard to different metrics under consideration. 

4.1. Evaluation of machine learning classifier without PSO 

This subsection evaluates the performance of various ML classifiers on the NSL-KDD dataset without applying PSO 
for feature selection. The classifiers assessed include SVM, DT, ET, and RF. Table 3 summarizes the results based on 
key metrics: Precision, Accuracy, Recall, and F1-Score. Without PSO, all features are included in training, potentially 
impacting both computational efficiency and model accuracy. As shown, RF achieved the highest accuracy at 
92.04% and an F1-Score of 92.27, demonstrating robustness even without feature optimization. ET also performed 
well, with an accuracy of 90.48% and an F1-Score of 91.05. In comparison, DT and SVM exhibited slightly lower 
accuracy and F1-Scores, suggesting some sensitivity to feature redundancy. 

Table 3 - Classifiers performance without using PSO. 

Model Precision Accuracy Recall F1-Score 

SVM 95.56 85.24 78.98 86.48 

DT 96.27 87.81 82.14 88.65 

ET 98.05 90.48 84.99 91.05 

RF 96.18 92.04 88.67 92.27 

 

The confusion matrices for each classifier (SVM, DT, ET, and RF) are shown in Fig. 2, providing a detailed view of 
their performance in classifying normal and abnormal traffic within the NSL-KDD dataset without PSO for feature 
selection. Each matrix includes four key outcomes: TP (normal traffic correctly classified as normal), TN (abnormal 
traffic correctly classified as abnormal), FP (normal traffic misclassified as abnormal), and FN (abnormal traffic 
misclassified as normal). Analyzing these matrices highlights each classifier's strengths and limitations, particularly 
in accurately identifying abnormal instances, which is crucial for effective IDS. 

In Fig. 2, the SVM classifier correctly identified 3,228 normal instances and 2,599 abnormal instances, with 150 FP 
and 859 FN, indicating a moderate tendency to misclassify abnormal traffic as normal. This result reflects SVM's 
moderate effectiveness in detecting attacks, as a substantial number of abnormal instances were not detected. DT 
classifier shows some improvement over SVM, with 3,252 TP and 2,751 TN, and fewer FP (126) and FN (707). This 
suggests that DT is slightly more effective at identifying abnormal traffic compared to SVM, as seen in Figure 1. The 
improvement in abnormal detection demonstrates DT’s enhanced capability in handling complex traffic patterns, 
though some misclassification still occurs. 

ET demonstrates the highest accuracy among the classifiers, as shown in Fig. 2, with 3312 TP and 2873 TN, along 
with minimal FP (66) and FN (585). This matrix underscores ET’s strength in distinguishing between normal and 
abnormal traffic, making it highly reliable for IDS with balanced classification results. ET's low misclassification rate 
is particularly suitable for scenarios where accuracy is critical. RF also performs well, as illustrated in Figure 1, with 
3,249 TP and 3,043 TN, along with 129 FP and 415 FN. Although RF exhibits slightly more misclassification of 
abnormal traffic as normal compared to ET, it still maintains high accuracy, showing its effectiveness in intrusion 
detection. These results establish a baseline, showing that while feature selection can further enhance performance, 
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RF and ET classifiers already demonstrate strong accuracy and reliability without PSO. This baseline provides a 
point of comparison for models with PSO in subsequent sections. 

 

Fig 2- Confusion matrices of classifiers (SVM, DT, ET, RF) without PSO feature selection on NSL-KDD dataset. 

4.2. Evaluation of machine learning classifier with PSO  

In this subsection, we assess the performance of various ML classifiers on the NSL-KDD dataset after applying PSO 
for feature selection. The classifiers evaluated include SVM, DT, ET, and RF. Table 3 summarizes each classifier's 
performance using key metrics: Precision, Accuracy, Recall, and F1-Score. 

The application of PSO significantly enhances the classifiers' effectiveness by selecting the most relevant features, 
which helps in reducing noise and focusing the models on critical attributes. As observed in Table 4, RF achieves 
the highest accuracy, reaching 98.33%, with an F1-Score of 98.32, indicating robust performance in detecting both 
normal and abnormal traffic. ET also performs exceptionally well, with an accuracy of 97.38% and an F1-Score of 
97.35, showing strong reliability post-feature selection. DT and SVM also exhibit improved metrics, achieving 
accuracies of 96.91% and 92.12%, respectively, demonstrating that PSO enhances the model's ability to classify 
abnormal instances accurately. 

Table 4 - Classifiers performance with PSO. 

Classifier Precision Accuracy Recall F1-Score 

SVM 96.54 92.12 88.54 92.37 

DT 95.47 96.91 98.23 96.83 
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ET 97.22 97.38 97.48 97.35 

RF 98.93 98.33 97.72 98.32 

The confusion matrices in Fig. 3 display the performance of each classifier (SVM, DT, ET, and RF) on the NSL-KDD 
dataset after applying PSO for feature selection. These matrices provide insights into each classifier’s effectiveness 
in distinguishing between normal and abnormal traffic following feature optimization. Each matrix includes key 
elements: TP (correctly identified normal traffic), TN (correctly identified abnormal traffic), FP (normal traffic 
misclassified as abnormal), and FN (abnormal traffic misclassified as normal). For SVM, the matrix shows 3,261 TP 
and 3,036 TN, with 117 FP and 422 FN. This reflects an improvement in abnormal traffic classification compared to 
the results without PSO, as there are fewer FP and FN. DT's confusion matrix indicates strong performance with 
3,225 TP and 3,400 TN, along with 153 FP and 58 FN. This substantial reduction in FN after PSO application 
enhances DT’s reliability in intrusion detection. 

ET demonstrates high accuracy, with 3,284 TP and 3,373 TN, while recording only 94 FP and 85 FN. This outcome 
underscores ET's robustness in accurately classifying both normal and abnormal traffic, further strengthened by 
PSO’s feature selection, which minimizes misclassification. RF achieves the highest accuracy among the classifiers in 
Figure 2, with 3,342 TP and 3,380 TN. It has the fewest misclassifications, with only 36 FP and 78 FN, showing that 
PSO has significantly enhanced RF’s ability to identify both types of traffic accurately. Figure 2 highlights how PSO-
driven feature selection improves each classifier’s performance, with RF and ET emerging as the most effective 
models due to their low FN and FP counts. These matrices underscore the impact of feature selection on model 
accuracy, particularly in identifying abnormal instances, which is essential for intrusion detection systems. 
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Fig 3- Confusion matrices of classifiers (SVM, DT, ET, RF) with PSO feature selection on NSL-KDD dataset. 

4.3. Comparison of proposed approach with recent studies 

This proposed approach offers an innovative method for intrusion detection, utilizing PSO for feature selection and 
leveraging various ML classifiers such as SVM, DT, ET, and RF. PSO significantly enhances feature selection by 
identifying the most relevant attributes, which directly contributes to the high classification accuracy observed in 
these models. Among the classifiers tested, RF, combined with PSO-selected features, achieved a remarkable 
accuracy of 98.33%, demonstrating the effectiveness of this methodology over other recent techniques. 

Table 5 - Comparison with recent studies on the UNSW-NB15 dataset. 

Author/year Feature selection 
technique 

Classifier Recall Precision F1-
Score 

Best accuracy 
(%) 

Amol D. Vibhute et al. 
[29] (2023) Random forest KNN 97.91 97.99 98.00 98.24 

Shiravani et al. [30] 
(2023) 

Fuzzy-based 
approach SVM 97.4 97.5 97.44 96.89 

Kasongo. [31] (2023) XGBoost LSTM N/A N/A 99.58 88.13 

Fuat Türk. [32] (2023) Ensemble learning RF + MLP 98 97 98 97.8 

Proposed PSO RF 97.72 98.93 98.32 98.33 

 

As shown in Table 5, several feature selection techniques have been utilized in recent studies, including methods 
such as Random Forest, Fuzzy-based approaches, and XGBoost. Random Forest has been a common choice for 
feature selection across studies, achieving an accuracy of 98.24% when paired with KNN. Additionally, DL methods 
such as LSTM (88.13%) and ML methods like KNN and SVM (reaching up to 96.89% with Fuzzy-based selection) 
have also been used for classification. Ensemble models, like RF combined with MLP, have shown competitive 
performance, achieving an accuracy of 97.8%. However, the proposed approach, utilizing PSO for feature selection, 
outperforms these recent techniques, achieving the highest accuracy of 98.33% with the RF classifier and 97.38% 
with ET. The application of PSO significantly enhances the classifiers' effectiveness by selecting the most relevant 
features, which helps in reducing noise and focusing the models on critical attributes. Unlike traditional methods 
such as RF, which retain redundant features, PSO minimizes noise and ensures a compact feature subset. The above 
result depicts the efficiency of the proposed approach in eliciting better accuracy for intrusion detection on the 
NSL-KDD dataset..  

5. Conclusion 
This work proposes a new paradigm of intrusion detection, which is based on PSO-driven feature selection 
combined with different machine learning classifiers-SVM, DT, ET, and RF-to make the performance optimal. The 
obtained results indicate an improved model accuracy from PSO-driven feature selection since it selects only 
relevant features, reduces noise, and enhances computational efficiency. Among the classifiers tested, RF and ET 
achieved the highest accuracy, with RF reaching 98.33% and ET achieving 97.38%, highlighting the effectiveness of 
the proposed method compared to recent approaches in intrusion detection. Despite the promising results, this 
study has some limitations. The current approach relies solely on PSO for feature selection, which may limit the 
exploration of other potential feature subsets. Additionally, while the NSL-KDD dataset provides a solid 
benchmark, it does not fully capture the complexity of modern network environments, potentially affecting the 
generalizability of the model. For future work, it would be valuable to explore other feature selection techniques, 
such as Bat Algorithm (BA), Genetic Algorithm (GA), and Cuckoo Search (CS), to potentially enhance feature 
selection and further improve model accuracy. Integrating these techniques could provide a more comprehensive 
comparison and potentially uncover even more effective feature subsets. Furthermore, testing the proposed 
method on newer, more complex datasets could offer insights into its applicability in real-world, dynamic network 
environments, ensuring the robustness and adaptability of the intrusion detection system. 
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