

Flow- Shop scheduling Problem to Minimize

 Total Weighted Late Work

Al Zuwaini M. K. Abdul Razaq T. S. Al Saidy S. K.
Thi-qar University University of Al Mustansiriyah

Collage of Mathematics College of Science/Math. Dep.
 and Computer science

 Abstract

 In this paper we considered a flow-shop scheduling problem to

minimize the total weighed late work. Branch and bound method was

suggested to obtain an optimal solution. Several local search methods:

descent method, simulated annealing, threshold accepting, genetic

algorithm and hybrid method were used to obtain near optimal solutions,

and comparison the results.

 Keywords. Flow-shop, Late work, Schedule.

 1 Introduction

Jacek et al. (2004) [10] provides the formal definition of the late

work parameter, especially in the shop environment, together with its

practical motivation. It contains general complexity studies and the

results of investigating open-shop scheduling cases, i.e. two polynomial

time algorithms for problems O / pmtn, ri / Yw and O2 / di = d / Y, as well

as the binary NP- hardiness proof for O2 / di = d / Yw, where the late

work Yi = min { Di , Pi },

Di = max {0, Ci – di} denotes the tardiness for task Ti.

The late work based criteria belong to the group of performance

measures involving due dates. However, classical criteria, formulated for

problems with due dates, such as e.g. the maximum lateness, total

tardiness, calculate the penalty for solutions where some jobs exceed their

due dates with respect to the time of their completion. In some

applications, the penalty should be determined with reference to the

amount of the late work independently of the completion time of a job. In

the case of the late work criterion, only the amount of late work is

important, if the whole job is delayed.

The late work criterion was first proposed in the context of parallel

machines by Blazewiez (1984) [3], who showed the strong NP- hardness

of the problem P/ ri /Yw. The proof concept is based on the complexity

analysis for the minimal mean tardiness problem [10].The preemptive

case P/ pmtn, ri /Yw is polynomial solvable by a transformation to a min-

cost flow problem. It results in an algorithm of the overall complexity O

(n
7

log n), where n denotes the number of tasks. This approach was

further extended by Jacek et al. [10] to the case of a fixed number of

uniform machines Qk /pmtn, ri / Yw. They proposed an O (k
3
 n

7
log kn)

method, where k denotes the number of machines and n equals the

number of tasks.

The late work criteria can be analyzed in agriculture, especially in

all cases concerning perishable goods, as for example harvesting [13]. In

this case, tasks represent different stretches of land that have to be

harvested. Because they differ in climate and soil conditions as well as in

the corn culture, they have differ times at which crops collecting should

be started and finished. Processing times estimate quantities of crops.

After a given due date, crops perish causing financial loss. Minimizing

the total late work is equivalent to minimizing the amount of wasted

crops. Summing up, the late work criteria apply to all those scheduling

problems that concentrate on the amount of late work delayed after a

given due date not on the duration of this delay.

 We extend comparative work on local search algorithms for

scheduling problems by presenting a computational study for the problem

of minimizing the sum of weighted late works of jobs in a permutation

flow shop. Thus, for each job i (i =1,…,n), its processing time pij on

machine j (j=1,…, m) is given, a non–negative due date di and weight Wi

are specified. The objective is to find a schedule S, defined by a

permutation of the jobs, which yields a completion time Ci for each job i

that minimizes the cost function where vi = min { Ti , pi2 },

m =2 (number of machines), Ti = max {Ci2 – di ,0 } (the tardiness of job i

), and the completion times Cij are:

 C12 = C11 + p12 and Ci2 = max {Ci1, C(i –1)2 } + pi2 , Ci1 =

Since the total weighted late work on one machine is strongly NP-

hard [4], and 1/ /Σ Wivi is a special case of our problem F2 / / Σ Wivi then,

we assume that our problem is strongly NP-hard.

Our computational comparison involves three neighborhood search

algorithms; these are multi-start descent, simulated annealing and

threshold accepting. These methods are compared with our branch and

bound algorithm when n (number of jobs) less than or equal 30 and are

compared with genetic algorithm and hybrid method (genetic threshold

accepting) when n is large (when number of jobs grater than 30 jobs). (i.e.

the solutions which are obtained from the five methods are compared

with optimal solution which is obtained from branch and bound

algorithm).

i

n

i

ivW G(S) 



1




i

k

kP
1

1

 2 Formulation of the Problem:

Mathematically, the flow-shop scheduling problem (FSP) can be

started as follows. Given a set N = {1, 2, …, n} of n simultaneously

available jobs is to be processed on two machines where each job

requires processing on machine 1 first and then on machine 2. A job once

started on a machine must be completed on that machine without

interruption (i.e, no preemption is allowed). For each job i, let ai and bi be

the processing times of job i, at the first and second machine,

respectively (i.e., ai=pi1, bi=pi2, i=1,2,…n), di be its due date and Wi be its

weighted time for job i. The restriction that a machine can process only

one job at a time, and requiring that once started processing on job must

be uninterrupted until its completion, and we assumed that all jobs arrive

at the same time, (typically at time 0).

In this paper we considered two performance measures, a late work

criterion: total late work (Σvi) and total weighted late work (ΣWivi), our

scheduling problems can be formulated as follows:

And for F2 / / Σ vi problem

 (B)

where vj is late work of job j to be minimized . A feasible solution of the

FSP can be built from a permutation of n jobs on each of the two

machines.

 3 Special Cases

Since FSP to minimize total weighted late work is NP-hard, it is of

interest to study special cases in an attempt to locate an optimal solution.

And we try reducing the size of problem by finding a job which precedes

or succeeds all other jobs in an optimal schedule. The following cases are

considered.

Ni

Ni

)...(

)1(

21,0

21,0

21,0

21,

21,

A

 , ... , n, j w

 , ... , n, j , ba

 , ... , n, j T

 , ... , n, j b v

 , ... , n, j T v

 : subject to

vWMin G(s)

j

jj

j

jj

jj

jj

















































) (1 : to

 s) (G1Min

subject

v j

1. The case of equal processing times and equal weights is considered for

which pij =P and Wi =W for i =1, 2 , …,n , j =1,2, where P and W

are the positive integers.

Theorem (1)

For the case of common processing time (i.e. ai =bi=P, i=1 , 2, … ,n

)

if there is a schedule S such that for each job i, , then the

schedule S is an optimal schedule for F2/ pij =P /Σ vi problem, i=1, 2,

…, n and j=1, 2.

Proof

Since (i=1, 2, …, n), then (i +1) P – di < P for each ,

but it is clear that be the completion time of job i on

machine 2. Hence, . We know that the late work of job i is

given by vi=min{Ti,bi} and Ti = max { , 0}, bi = P for i =1 , 2 ,

…, n. Then if Ti=0, for each i the theorem is proved, otherwise if

Ti= >0,

vi= = (i+1)P– di .

 (constant). Then, S be an

optimal schedule.

Proposition (1)

If there is a schedule S such that for each iP > di, then, this

schedule is an optimal for F2 / pij = P / Σ vi problem.

Proof

Since iP>di, then (i+1) P-di>P that is >P, hence vi=P and

 (constant), then S be an optimal schedule.

2. If there exists a schedule S and a job such that di Cmax , then

job i early and discarded.

3. If there exists a schedule S and a job such that ai di, then job i

is late and discarded .

The second case is clear. For the third case ai+ bi – di bi but

ai+ bi is a small as possible value of completion time on machine 2

with respect to job i. Hence the late work of job i is equal to bi at any

position for job i in the schedule S.

Si
i

iP d 

idiP  Si

21 i C)P (i 

PdC ii 2 

ii dC 2

ii dC 2

ii dC 2 ibP 

   



n

i i

n

i

i

n

i

i dn)P- (n)P - d(i v
1

2

11

3
2

1
1

Si

ii dC 2

 nP P
n

1


i

iv

Si 

Si 



Heuristic H

 To get an upper bound we modify Jonson’s Algorithm for the F2 /

/ Fmax problem to get a heuristic that may give an optimal or near optimal

solution for our problem (A), as follow:

Step (1): Set k=1, = n.

Step (2): Set current list of unscheduled jobs N = {J1, … , Jn} .

Step (3): Set Pi = ai / Wi; qi = bi / Wi .

Step (4): Let .

Step (5): If Si =Pi, then

schedule Ji in kth position of processing sequence

 N = N – { Ji }

k = k +1

Go to step (7).

Step (6): If Si = qi, then:

 schedule Ji in th position of processing sequence.

N = N – { Ji }, = -1 .

Step (7): If , go to step (4). Otherwise stop.

 The following example illustrate the total weighted late work

of schedule S which is obtain from heuristic H (i.e. to get an upper bound

UB = G(s) =

 Example1. Consider 6-jobs, 2- machines permutation flow–shop, total

weighted of late work problem, specified by the date in table (1)

Table 1 Data for example (1)

I 1 2 3 4 5 6

ai

3 7 5 7 1 8

bi

2 5 6 3 3 4

Wi

3 2 4 5 7 2

di

8 15 13 19 8 20

We observe that when applied heuristic (H), we obtain the sequence S: (5,

3, 2, 6, 1, 4) and the value of flow shop total weighted late work



}ii

Ni

i , q { PMin S




Ni

Ni



 

N

i v
si

iW

UB = G(s) = =35.

4 A Lower Bound

In this section we derive two lower bounds for F2 / / problem

that can be used to reduce the size of the search tree generated by a

branch and bound procedure.

4.1 Single Machine Bounds

First: To construct a lower bound (LB) on machine M1 denoted by LBM1,

by using the relaxation techniques. The lower bound LBM1 is obtained as

follows. Let bi =0 for each job i and the resulting problem is 1 / /

where vi =Min {Ci - di, ai}. It is well known that the resulting problem is

still NP-hard and consider by Hariri et al. (1993), Pinedo (1995) and

Bryan & Bahram (2002)[4]. Also when Wi =1 for each job i, then the

problem 1 / / is NP-hard, and is considered by Potts and Van

Wassenhove (1991, 1992) [14].

To make use of the lower bound presented by Potts and Van

Wassenhove, we relax the constraint of weighs by assuming that w=

Min{Wi} and the lower bound of the resulting problem is LBM1=wTmax

ΣWi vi. This means we are solving the 1//Tmax problem, which is solving

by EDD rule (i. e., the job i is sequenced before job j if di dj (i, j =1, …,

n).

Second: To construct the second single machine bound on machine M2

denoted by LBM2. If we relax the capacity constraints of machine M1,

that is machine M1 can process more than one job at a time. i.e. the

processing time of a job i (ai) on machine M1 be as release date of job i

with respect to machine M2 (i.e. ri = ai). The resulting problem (1/

ri / Σ Wivi) is NP-hard which is considered by Al Zuwaini 2006 [2]. To

obtain a lower bound LBM2 we will use a lower bound which is stated in

[2] . Our lower bound LB=Max {LBM1, LBM2}.

Example 2 Consider again the example (1) presented previously. The

sequence obtained by using EDD rule is (1, 5, 3, 2, 4, 6), where LBM1=22.

The second lower bound from the second relax is LBM2 = 12.

5 Branch and Bound (BAB) Algorithm

This section describes a branch and bound algorithm which may

employ any of the lower bound, LBM1, LBM2 schemes described above.

i

si

i vW


 iivW

 iivW

 iv





Ni

The better of the two lower bounds is used to provide an initial lower

bound (LB), in a root node of search tree, (i.e. LB = Max{ LBM1 , LBM2

}. Also at the root node of search tree the heuristic method (H) is used to

schedule the jobs to provide an initial upper bound UB. If LB = UB,

then UB is an optimal value of total weighted late work flow-shop

problem, and we don’t need branching.

The branch and bound (BAB) algorithms use a forward sequencing

branching which generates a search tree for which nodes at level

correspond to initial partial sequences in which jobs are sequenced in the

first positions. A newest active node search selects a node from which

to branch. To eliminate nodes we use the dominance theorem of dynamic

programming. This test use an adjacent job interchange to compare the

sum weighted late work of a permutation flow-shop for the two jobs most

recently added to the initial partial sequence with the corresponding sum

when these two jobs are interchanged in position: if the former sum is

larger than the latter, then the current node it eliminated, while if both

sums are same, (as in [4]) some convention is used to decide whether the

current node should be discarded.

For all nodes that remain after the dominance test is applied, we

compute the lower bound LB by using the lower bounds LBM1 or LBM2. If

the lower bound for any node is greater than or equal to the previously

generated upper bound UB, then that node is discarded. The BAB

algorithm continues in a similar way by using a forward branching rule.

Whenever a complete sequence is obtained, this sequence is evaluated

and the upper bound (UB) is altered if the new value is less than the old

one. The procedure is repeated until all nodes have been considered (i.e.

lower bounds of all nodes in the scheduling tree are greater than or equal

to (UB), a feasible solution with this (UB) is an optimal solution.

6 Local Search Heuristics

Local search heuristics are a collective noun for rather classical

iterative improvement techniques and more recently, developed

metaheuristics [9]. The common base of local search methods is that they

all move iteratively through the set of feasible solutions S. The walk is

restricted by the restriction on the choice of the next solution.

Neighborhoods define is dependence on the current solution which is a

set of candidates to which the walk may continue. The different local

search methods like e.g. iterative improvement, simulated annealing or

tabu search differ mainly in the way of a candidate is chosen from the

neighborhood. In a local search algorithm, we start with an initial solution

s and generate a neighbor of s. In an iterative improvement algorithm,





s

only moves from s to (the set of neighbors) are accepted which

improve the value of the two machines flow-shop for total weighted late

work (the objective function value).

The local search heuristics give no a-priori guarantees on solution

quality or computational time; they got very popular in the last two

decades and are very often used to tackle problems arising from practice

[11]. The local search algorithms have proved to be useful for finding

good solutions to various hard optimization problems [6]. In this section

we consider several methods of local search, descent method, simulated

annealing, threshold accepting, genetic algorithm and hybrid method.

6.1 Descent Method (DM)

In descent method, to obtain an initial solution (sequence), we shall

use heuristic H which is presented in section (3), as a current sequence.

Let s be denoted to the current solution, and G(s) be the cost of the

objective function (total weighted late work for permutation flow-shop).

In any stage two types of neighborhood structures in our computational

experiments:

Insert neighborhood. Remove a job from one position in the sequence s

and insert (shift) it in another position (either before or after the

original position). This means that in a permutation

, select an arbitrary job and shift it to a

smaller position j, j<i, or to a larger position k, k>i. Thus, we have

. In the same applications this neighborhood is used in

a specialized version, where only right or left shifts of an arbitrary job

are allowed for the generation of neighbor. Thus if we consider again

the example (1) presented previously we see that for example (5, 2, 3,

6, 1, 4) and (5, 3, 6, 1, 4, 2) each of them represent a sequence

denoted by s1, which is a neighbors of the current solution defined by

s = (5, 3, 6, 2, 1, 4).

(ii) Swap neighborhood. Swap or interchange the jobs from any two

positions (no necessary are adjacent) in the sequence s. Thus s2=

(5, 1, 6, 2, 3, 4) is a neighbored of the solution s = (5, 3, 6, 2, 1,

4).The new solution was found among these neighborhoods

such that . By acceptance test, test whether

to accept the move from to If the move is accepted (i.e.

), then replaces s as the current solution; otherwise,

s is retained as the current solution. This operation terminates

when the best solution generated; otherwise, return to the neighbor

generation step.

N(s)s 

(n)) ..., 2),  (),1(()(i

2)1()( nN 

s

)}),({)(1 2G(s sGMinsG 

s .s

)()(sGsG  s

6.2 Simulated Annealing (SA)

Simulated annealing SA was originally proposed by Metroplis et al.

(1953) was first applied to combinatorial optimization problems by

Kirkpatrick et al. (1983) and by Cerny (1985) [12]. SA uses a

probabilistic acceptance test. Starting with an initial sequence s as a

current solution, another solution is drawn uniformly from the

neighborhood of s. If and are the costs of solutions s and

respectively, we accept as the new current solution if , where

In the case of , sequence is accepted as a new

starting solution with probability exp . Where T is a parameter

known as the temperature, which changes during the course of the

algorithm. Typically, T is relatively large in the initial stages of the

algorithm so that many increases in the objective function are accepted,

and then T decreases until it is close to zero in the final stages. The rule

that defines T is called a cooling schedule [6].

In our application of simulated annealing we used Jonson’s

algorithm to obtain an initial sequence (current solution) and swap

neighborhood to generate a neighbor of s. As in [7] we used Lundy-

Mess cooling scheme to generated a single iteration at each k

temperatures T1, …, Tk which are related by

Tk+1 = Tk / (1+ βTk)

where β is a constant, which is expressed in terms of k, T1 and Tk by

β = (T1 – Tk) / ((k-1)T1Tk)

based on initial experiments, we set T1 = 1000 and Tk =30.

Under the Lundy-Mess cooling scheme, the temperature decreases faster

than in a geometric scheme, and consequently more iterations are

performed at lower temperatures. The performance of geometric scheme

is often more sensitive to the choice of initial temperature T1 [7].

6.3 Threshold Acceptance (TA)

Threshold accepting is a similar method to simulated annealing.

Whereas simulated annealing uses a probabilistic acceptance rule for

solutions that cause deterioration in the objective function value,

threshold accepting is deterministic. In threshold accepting, a move is

accepted provided that it does not increase the objective function value by

more than t, where t is a threshold value. The threshold value plays a

similar role to the temperature in simulated annealing. Thus, the common

practice is to select a decreasing sequence of threshold values, so that t is

a relatively high value initially, and is fairly low during the final

s

)(sG)(sG  s

s 0 

).()(sGsG  0 s

)/(T

s

iterations [5]. Celia et al. (1996) [7] obtained the threshold value tk at k

iteration in the generation and evaluation of one neighbor) by:

 tk = (t1 -) (1 - (k-1)/ (-1))
s
 +

where is the total number of iterations, t1 and are the initial and final

threshold values, and s defines the rate of decrease of the threshold

values. We starting by heuristic H (see section 3) to obtain an initial

sequence as a current solution s, insert neighborhood using at any stage to

obtain a neighbor as a new solution. If and are denoted to

costs of s and , respectively, then the moves from s to are accepted if

and only if or , where . To set the threshold

values tk, for , we use a linear decreasing scheme as in [9].

tk = tk-1 – (t1 –) / (-1)

Where t1 and t are the initial and final threshold values, respectively.

These threshold values are computed from the objective function value of

the initial solution by setting t1=0.2 and t =0.0001G(S).

7 Genetic Algorithm (GA)

Genetic algorithms are probabilistic search techniques based on the

mechanism of evaluation. The solution space is usually represented by a

population. In contract to other meta-heuristics such as simulated

annealing and threshold accepting that operates with one solution, GAs

start with an initial population randomly generated or obtained by using

any other heuristic. This population is composed by chromosomes, which

are sets of genes. GAs tries to make progress in the population until a

stopping condition is reached. The progressing from one population to

another is obtained by applying two basic operators called crossover and

mutation. At each generation, couples of chromosomes are selected from

the current population, according to a specific criterion of selection.

Then, the crossover operator that consists in combining these two

selected chromosomes is applied to obtain two new chromosomes. After

that, the mutation operator is applied in order to modify slightly the

characteristics of same chromosomes. Two commonly used approaches

for chromosome representation are indirect and direct encoding. In direct

encoding, a chromosome completely represents a solution, while in

indirect encoding a chromosome only gives parameter for generating a

solution [15]. i.e. a chromosome is an n-length string representing a

priority rule between jobs.

In our application we use a direct encoding with random keys to

obtain a feasible sequence and evaluate its total weighted late work of the

t  v

 t

s)(sG)(sG 

s s

0 t) ()( sGsG

 k1

t 



)(sG)(sG 

two machines permutation flow-shop. The two points crossover in which

two randomly selected crossover points are used. Select two positions at

random as crossover points. For example, suppose that we start with two

job sequences,

1-2-3-4-5-6-7

2-3-1-5-4-7-6

and we perform crossover at elements two and six, removing jobs 2 and 6

from the sequence one (parent 1) and replacing them in positions of jobs

3 and 7 respectively in sequence two (parent 2)and removing jobs 3 and 7

from sequence two and replacing them with jobs 2 and 6 respectively in

sequence one, the resulting job sequences will be:

 1-3-3-4-5-7-7

 2-2-1-5-4-6-6

The two new job sequences are obviously not feasible solutions.

Sequence one has jobs 3 and 7 listed twice and has omitted jobs 2 and 6.

Sequence two has jobs 2 and 6 listed twice with jobs 3 and 7 omitted

from the sequence. As in Beacn (1994) and [4], to avoid this possibility

we used random keys within the vectors to act as surrogates for the final

job sequence. Vectors of random numbers selected from 0 to1 are

generated to represent the parents. Consider the following sequences of

random numbers.

 0.23 – 0.45 – 0.12 – 1.0 – 0.61 – 0.73 – 0.07

 0.64 – 0.35 – 0.04 – 0.38 – 0.5 – 0.81 – 0.92

Now if we perform crossover at elements two and six, we obtain the

following new vectors of random numbers.

 0.23 – 0.35 – 0.12 – 1.0 – 0.61 – 0.81 – 0.07

 0.64 – 0.45 – 0.04 – 0.38 – 0.5 – 0.73 – 0.92

To transform the offspring above into a feasible job sequence we

start with the smallest number and place its position number in the first

position of the job sequence, and so on until all elements are assigned.

The random number vectors above would represent the following two

sequences:

 3 - 4 -2 -7- 5 - 6 -1

 5 -3 -1- 2- 4 - 6 -7

The total weighted late work of permutation flow-shop evaluated for each

parent and save the best cost (minimum cost) with its sequence. If it

happened that at the crossover points the elements in parent one equal to

elements in parent two, then the swap neighborhood applied on the parent

one before the crossover operation. The processing continue and its

stopping after (1000) iteration.

8 Hybrid genetic threshold accepting (GTA) algorithm

Number of studies concludes that a standard genetic algorithm

sometime performs poorly and that improvements may be achieved by

incorporating neighborhood search. Celia et al. (1996) [7] used

incorporating a descent algorithm into the genetic algorithm for the

permutation flow shop to minimize the total weighted completion time.

Allahverdi and Aldowaisan (2004) [1] proposed a hybrid simulated

annealing and a hybrid genetic heuristic, which can be used for the single

criterion of makespan or maximum lateness, or the bicriteria problem.

Goncalves et al. (to appear) [8] proposed a hybrid genetic algorithm for

the job shop scheduling problem. After a schedule is obtained using the

priorities defined by the genetic algorithm, a local search heuristic is

applied to improve the solution. We therefore adopt the following

hybridization: A genetic threshold accepting (GTA) algorithm was

developed by incorporating the threshold accepting algorithm which

described in section (6) into the genetic algorithm of section (7).

Threshold accepting was applied first to each current solution to obtain

best parents so that each new parent is a local optimum for our objective

function, and then applied a crossover and mutation. The structure of our

GTA algorithm is the same as that of genetic algorithm of section (7)

except for the threshold accepted used to reduce the population and

improvements the parents. Nevertheless, to be extent of our knowledge,

no hybrid metaheuristics was proposed for problem considered in this

chapter.

9 Computational Experience

The set of problems tested with ten different numbers of jobs

(n=10, 20, 30, 35, 50, 100, 500, 1000, 5000 and 10000) are generated as

follows: For each value of n four integers processing times ai, bi,

weighted time Wi and due date di (i=1, 2, …, n), ai, bi and Wi were

generated from the uniform distribution where and

, , . Due date for every

problem were generated as in [2] (section 6.11). For each select value of

n, two problems were generated for each of ten pairs of producing

20 test problems for each value of n. We propose a branch and bound

algorithm to solve problem (A) with up to 30 jobs. Different local search

],[21 T T   


n

i ipT
1

0.8} 0.6, 0.4, ,2.0{1  1.0} 0.8, 0.6, ,4.0{2  21  
id

2  ,1

metaheuristics, for some methods (descent DM, simulated annealing SA,

threshold accepting TA, genetic algorithm GA and hybrid method

GTA).The solutions value found by the local search methods and the

optimal value of BAB algorithm are compared in table (2). Table (3) gives

the deviation of the average of each local search heuristics from the best

solution for all local search methods. Figure (1) illustrates average CPU

(seconds) required by each method

Table (1): Comparative the results of the local search with the optimal

solution (n=30) for the problem

No. DM time GTA time GA time TA time SA time BAB time

1 486 .006 472 .002 534 0 472 0 472 0 471 45

2 518 .006 480 0 549 0 483 0 480 0 477 43

3 619 .011 592 .06 630 0 592 0 598 0 491 50.2

4 816 .011 816 0 852 0 816 0 816 .05 808 44

5 892 .11 905 .05 910 0 905 0 464* 0 464 44

6 561 .17 531 0 514 0 533 0 552 .06 508 50.2

7 1288 .17 1210* .06 1238 0 1278 0 1278 0 1210 36.5

8 906 .22 875 .05 880 .06 924 0 909 0 872 50

9 435 .22 440 0 448 0 450 0 429 0 423 33

10 448 .28 420* .06 431 0 438 0 447 0 420 28

11 467 .22 426* 0 430 0 447 0 457 .06 426 28

12 551 .33 551 .05 561 0 551 0 543 0 525 33

13 466 .17 438* 0 447 0 448 0 445 .05 438 28

14 475 .39 456 0 478 0 456 0 456 0 452 28

15 671 .39 636 .05 634 .05 646 0 646 .06 625 44

16 613 .44 606* 0 614 0 613 0 613 0 606 50.2

17 951 .33 945 .06 1000 0 945 0 887 0 854 43

18 923 .44 890 0 897 0 923 0 915 .05 885 43

19 908 .50 908 .05 936 0 908 0 886 0 868 43

20 470 .50 469 0 503 0 469 0 466 .06 466 44

*: Indicates that the problem has an optimal solution equals to the

heuristic value.

Table (2): Averages deviations about the best average for the problem

n.

deviations of averages

DM TA GA SA GTA

50 163 0 58 0 0

100 87 0 42 4 0

200 9130 121 84 0 21

500 1431 242 188 3 0

750 1575 4121 149 0 460

1000 8392 62 45 0 38

2000 0 190 813 192 90

3000 1504 0 960 1042 0

4000 40316 0 2647 15150 0

5000 43066 6681 6114 13615 0

7500 199630 4790 22870 4840 0

15000 1529 1151 1680 146080 0

25000 - 83300 115970 639600 0

 iivWF //2

 iivWF //2

Fig.(1): Time averages for the problem

10 Conclusion and Future Work

 In this paper we considered a flow-shop scheduling problem to

minimize the total weighted late work; we assume that job i

becomes available for processing at time zero. We suggested two lower

bounds, and propose branch and bound algorithm to solve the flow-shop

scheduling problem for small instances. Practical experiments show that

only instances with up to two machines and 30 jobs can be solved

optimally.

 To solve large size problems, we propose five local search

heuristic. We evaluate its performances by comparison with an optimal

value for small size and with a best value from all five methods for large

size. However, we do not considered the case of transportation times of

the late work, from one machine to another. To be extent of our

knowledge no studies consider this case, and we shall let the problem

, two machines flow-shop with transportation time between

the machines, to minimize the late work as a future work.

 iivWF //2

0

20

40

60

80

100

120

10 50 100 200 500 750 1000 2000 3000 4000 5000 7500 15000 25000

Number of jobs

ti
m

e
(C

U
P

 i
n

 s
e

c
o

n
d

s
)

ATA ASA AGA AGTA ADM

) Ni(

 iii vWF //2 

References:

[1] Allahverdi, A. and Aldowaisan, T. “No-Wait Flow Shops with Bicriteria

of Makespan and Maximum Lateness”, European Journal of Operational

Research 152 (2004) 132-147.

[2] Al-Zuwaini M. K. "A Comparative Study of Local Search Methods for

Some Machine Scheduling Problems With Usage of Hybridization As A

Tool", Ph. D. Thesis, Math. Dep. College of Education, Ibn Al Haitham,

Baghdad University, April, 2006

 [3] Blazewies, J. “Scheduling Preemptible Tasks on Parallel Processors

swith Information Loss”, Research Technique ET Science Informatiques

3 (1984) 415-420.

[4] Bryan, R. k. and Bahran Alidaee, “Single Machine Scheduling to

Minimize Total Weighted Late Work: a Comparison of Scheduling Rules

and Search Algorithm”, Computers and Industrial Engineering 43

(2002)509-528.

 [5] Crauwels, H. A. J. “Local search heuristics for single machine

scheduling with batch set-up times to minimize total weighted completion

time”, Annals of Operations Research 70 (1997) 261-279.

[6] Ebbe G. Negenman, “Local Search Algorithms for the Multiprocessor

Flow Shop Scheduling Problem”, European Journal of Operational

Research 128 (2001) 147-158

[7] Celia A. Glass and Chris N. Potts, “A Comparison of local search

methods for flow shop scheduling”, Annals operations Research 63 (1996)

489-509.

[8] Goncalves, J. F., Mendes, J. J. M. and Resende, M. G. C., “A Hybrid

Genetic Algorithm for the Job Shop Scheduling Problem”, European

Journal of Operational research, To Appear

 [9] Herman Grauwels, “A Comparative Study of Local search Methods for

One-Machine Sequencing Problems”, Ph. D. Thesis, Katholieke

Universities Leuven Faculteit Toegepaste Wetenschappen Department

Werktuigkunde Centrum voor Industried Beleid Celestijnenlaan 300A-

300L Leuven, Mei 1998.

[10] Jacek Blazewiez, Erwin Pesch, Malgorzata Sterna and Frank Werner,

“Open Shop Scheduling Problems with Late work Criteria”, Discrete

Applied Mathematics V.134. Issue 1.3 (January 2004), 1-24.

[11] Jahaun Hurink, “Solving Complex Optimization problem by Local

Search”, Fachbereich Mathematikl Informatik der Universitat Osnabriick

(1998).

[12] Jatinder N. D. Gupta, Karsten Hennig, Frank Werner, “Local Search

Heuristics for Two-Stage Flow Shop Problems with Secondary Criterion”

Computers and Operations Research 29(2002) 123-149.

 [13] Potts, C. N. and L. N. Van Wassenhove, “Single Machine Scheduling

to Minimize Total Late Work”, Operations Research 40-3(1991)586-595

[14] Potts, C. N. and L. N. Van Wassenhove, “Approximation Algorithms

for Scheduling a Single Machine to Minimize Total Late Work”,

Operations Research Letters 11(1992)261-266.

[15] Riad Aggoune “Minimizing the Makespan for the Flow Shop

Scheduling Problem with availability Constraints”, European Journal of

Operational Research 153 (2004) 534-543.

