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  Abstract 

       In this paper we considered a flow-shop scheduling problem to 

minimize the total weighed late work. Branch and bound method was 

suggested to obtain an optimal solution. Several local search methods: 

descent method, simulated annealing, threshold accepting, genetic 

algorithm and hybrid method were used to obtain near optimal solutions, 

and comparison the results. 
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 1 Introduction 

Jacek et al. (2004) [10] provides the formal definition of the late 

work parameter, especially in the shop environment, together with its 

practical motivation. It contains general complexity studies and the 

results of investigating open-shop scheduling cases, i.e. two polynomial 

time algorithms for problems O / pmtn, ri / Yw and O2 / di = d / Y, as well 

as the binary NP- hardiness proof for  O2 / di = d / Yw,   where the late 

work  Yi = min { Di , Pi },  

Di = max {0, Ci – di} denotes the tardiness for task Ti. 

The late work based criteria belong to the group of performance 

measures involving due dates. However, classical criteria, formulated for 

problems with due dates, such as e.g. the maximum lateness, total 

tardiness, calculate the penalty for solutions where some jobs exceed their 

due dates with respect to the time of their completion. In some 

applications, the penalty should be determined with reference to the 

amount of the late work independently of the completion time of a job. In 

the case of the late work criterion, only the amount of late work is 

important, if the whole job is delayed. 

The late work criterion was first proposed in the context of parallel 

machines by Blazewiez (1984) [3], who showed the strong NP- hardness 

of the problem P/ ri /Yw. The proof concept is based on the complexity 

analysis for the minimal mean tardiness problem [10].The preemptive 

case P/ pmtn, ri /Yw is polynomial solvable by a transformation to a min-



cost flow problem. It results in an algorithm of the overall complexity O 

(n
7 

log n), where n denotes the number of tasks. This approach was 

further extended by Jacek et al.  [10] to the case of a fixed number of 

uniform machines Qk /pmtn, ri / Yw. They proposed an O (k
3
 n

7 
log kn) 

method, where k denotes the number of machines and n equals the 

number of tasks.  

The late work criteria can be analyzed in agriculture, especially in 

all cases concerning perishable goods, as for example harvesting [13]. In 

this case, tasks represent different stretches of land that have to be 

harvested. Because they differ in climate and soil conditions as well as in 

the corn culture, they have differ times at which crops collecting should 

be started and finished. Processing times estimate quantities of crops. 

After a given due date, crops perish causing financial loss. Minimizing 

the total late work is equivalent to minimizing the amount of wasted 

crops. Summing up, the late work criteria apply to all those scheduling 

problems that concentrate on the amount of late work delayed after a 

given due date not on the duration of this delay. 

 We extend comparative work on local search algorithms for 

scheduling problems by presenting a computational study for the problem 

of minimizing the sum of weighted late works of jobs in a permutation 

flow shop. Thus, for each job i (i =1,…,n),  its processing time pij on 

machine j (j=1,…, m) is given,  a non–negative due date di and weight Wi 

are specified. The objective is to find a schedule S,  defined by a 

permutation of the jobs,  which yields a completion time Ci for each job i 

that  minimizes the cost function  where vi = min { Ti , pi2 }, 

m =2 (number of machines ), Ti = max {Ci2 – di ,0 } (the tardiness of job i 

), and the completion times Cij are: 

 C12 = C11 + p12   and Ci2 = max {Ci1, C(i –1)2 } + pi2 , Ci1 =  

Since the total weighted late work on one machine is strongly NP-

hard [4], and 1/ /Σ Wivi is a special case of our problem F2 / / Σ Wivi then, 

we    assume that our problem is strongly NP-hard.   

Our computational comparison involves three neighborhood search 

algorithms; these are multi-start descent, simulated annealing and 

threshold accepting. These methods are compared with our branch and 

bound algorithm when n (number of jobs) less than or equal 30 and are 

compared with genetic algorithm and hybrid method (genetic threshold 

accepting) when n is large (when number of jobs grater than 30 jobs). (i.e. 

the solutions which are obtained from the five methods are compared 

with optimal solution which is obtained from branch and bound 

algorithm). 
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 2 Formulation of the Problem:  

Mathematically, the flow-shop scheduling problem (FSP) can be 

started as follows. Given a set N = {1, 2, …, n} of n simultaneously 

available jobs is to be processed on two machines  where each job  

requires processing on machine 1 first and then on machine 2. A job once 

started on a machine must be completed on that machine without 

interruption (i.e, no preemption is allowed). For each job i, let ai and bi be 

the processing times of job i,  at the first and second machine, 

respectively (i.e., ai=pi1, bi=pi2, i=1,2,…n), di be its due date and Wi be its 

weighted time for job i. The restriction that a machine can process only 

one job at a time, and requiring that once started processing  on job must 

be uninterrupted until its completion, and we assumed that all jobs arrive 

at the same time, ( typically at time 0).  

In this paper we considered two performance measures, a late work 

criterion: total late work (Σvi) and total weighted late work (ΣWivi), our 

scheduling problems can be formulated as follows: 

                 

                         

   

And for F2 / / Σ vi problem  

                                       (B)          

 

where vj  is late work of job j to be minimized . A feasible solution of the 

FSP can be built from a permutation of n jobs on each of the two 

machines. 

 

 

 3 Special Cases  

Since FSP to minimize total weighted late work is NP-hard, it is of 

interest to study special cases in an attempt to locate an optimal solution. 

And we try reducing the size of problem by finding a job which precedes 

or succeeds all other jobs in an optimal schedule. The following cases are 

considered. 
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1. The case of  equal processing times and equal weights is considered for 

which pij =P and  Wi =W for i =1, 2 , …,n   , j =1,2,   where  P  and  W  

are the positive integers. 

 

Theorem (1)  

For the case of common processing time (i.e. ai =bi=P, i=1 , 2, … ,n 

) 

if there is a schedule S such that for each job i,  , then the  

schedule S  is an optimal schedule for  F2/ pij =P /Σ vi problem, i=1, 2, 

…, n and j=1, 2. 

 

 

Proof 

Since   (i=1, 2, …, n), then (i +1) P – di < P for each   ,   

but it is clear that  be the completion time of job i on 

machine 2. Hence, . We know that the late work of job i is 

given by vi=min{Ti,bi}  and Ti = max { , 0},  bi = P  for i =1 , 2 , 

…, n. Then if Ti=0, for each i the theorem is   proved, otherwise if  

Ti= >0, 

vi= = (i+1)P– di .  

 (constant). Then, S be an 

optimal schedule.  

 

Proposition (1)  

If there is a schedule S such that for each  iP > di, then, this 

schedule is an optimal for F2 / pij = P / Σ vi   problem.  

 

Proof  

Since iP>di, then (i+1) P-di>P that is >P, hence vi=P and  

 (constant), then S be an optimal schedule.  

2.   If there exists a schedule S and a job  such that di  Cmax ,  then 

job i early and discarded.  

3.    If there exists a schedule S and a job  such that ai  di, then job i  

is late and discarded . 

The second case is clear. For the third case ai+ bi – di bi but  

ai+ bi   is a  small as possible value of  completion time on machine 2 

with respect to job i. Hence the late work of job i is equal to bi at any 

position for job i in the schedule S. 
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Heuristic H 

  To get an upper bound we modify Jonson’s Algorithm for the F2 / 

/ Fmax  problem to get a heuristic that may  give an optimal or near optimal 

solution for our problem ( A), as follow: 

Step (1):   Set k=1, = n. 

Step (2):   Set current list of unscheduled jobs N = {J1, … , Jn} . 

Step (3):   Set Pi = ai / Wi; qi = bi / Wi . 

Step (4):    Let . 

Step (5):    If Si =Pi,  then 

schedule Ji in kth position of processing sequence  

 N = N – { Ji } 

k = k +1 

Go to step (7). 

Step (6):     If Si = qi,  then: 

 schedule Ji in th  position of processing sequence. 

N = N – { Ji },         = -1 . 

Step (7):     If , go to step (4). Otherwise stop. 

                 The following example illustrate the total weighted late work 

of schedule S which is obtain from heuristic H (i.e. to get an upper bound  

UB = G(s) =   

 Example1.  Consider 6-jobs, 2- machines permutation flow–shop, total 

weighted of late work problem, specified by the date in table (1)  

 

Table 1 Data for example (1) 

I 1 2 3 4 5 6 

ai 

3 7 5 7 1 8 

bi 

2 5 6 3 3 4 

Wi 

3 2 4 5 7 2 

di 

8 15 13 19 8 20 

 

We observe that when applied heuristic (H), we obtain the sequence S: (5, 

3, 2, 6, 1, 4) and the value of flow shop total weighted late work   
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UB = G(s) =  =35. 

4  A Lower Bound  

In this section we derive two lower bounds for F2 / / problem 

that can be used to reduce the size of the search tree generated by a 

branch and bound procedure.  

 

4.1 Single Machine Bounds 

First: To construct a lower bound (LB) on machine M1 denoted by LBM1, 

by using the relaxation techniques. The lower bound LBM1 is obtained as 

follows.  Let bi =0 for each job i and the resulting problem is 1 / /  

where vi =Min {Ci - di, ai}. It is well known that the resulting problem is 

still NP-hard and consider by Hariri et al. (1993), Pinedo (1995) and 

Bryan & Bahram (2002)[4]. Also when Wi =1 for each job i, then the 

problem 1 / /  is NP-hard, and is considered by Potts and Van 

Wassenhove (1991, 1992) [14]. 

To make use of the lower bound presented by Potts and Van 

Wassenhove, we relax the constraint of weighs by assuming that w= 

Min{Wi} and the lower bound of the resulting  problem is    LBM1=wTmax

ΣWi vi. This means we are solving the 1//Tmax problem, which is solving 

by EDD rule (i. e., the job i is sequenced before job j if di  dj (i, j =1, …, 

n). 

Second: To construct the second single machine bound on machine M2 

denoted by LBM2. If we relax the capacity constraints of machine M1,   

that is machine M1 can process more than one job at a time. i.e. the 

processing time of a job i (ai) on machine M1  be as release date of job i  

with respect to machine M2 (i.e. ri = ai ). The resulting problem (1/ 

ri / Σ Wivi) is NP-hard which is considered by Al Zuwaini 2006 [2]. To 

obtain a lower bound LBM2 we will use a lower bound which is stated in 

[2] . Our lower bound LB=Max {LBM1, LBM2}. 

 

Example 2 Consider again the example (1) presented previously. The 

sequence obtained by using EDD rule is (1, 5, 3, 2, 4, 6), where LBM1=22. 

The second lower bound from the second relax is LBM2 = 12.  

 

5 Branch and Bound (BAB) Algorithm 

This section describes a branch and bound algorithm which may 

employ any of the lower bound, LBM1, LBM2   schemes described above.  
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The better of  the two lower bounds is used to provide an initial lower 

bound  ( LB ),  in a root node of search tree,  (i.e. LB = Max{ LBM1 , LBM2 

}. Also at the root node of search tree the heuristic method (H) is used to 

schedule the jobs to provide an initial upper bound UB. If   LB = UB,   

then UB is an optimal value of total weighted late work  flow-shop 

problem,  and we don’t need branching.  

The branch and bound (BAB) algorithms use a forward sequencing 

branching which generates a search tree for which nodes at level 

correspond to initial partial sequences in which jobs are sequenced in the 

first   positions. A newest active node search selects a node from which 

to branch. To eliminate nodes we use the dominance theorem of dynamic 

programming. This test use an adjacent job interchange to compare the 

sum weighted late work of a permutation flow-shop for the two jobs most 

recently added to the initial partial sequence with the corresponding sum 

when these two jobs are interchanged in position:   if the former sum is 

larger than the latter,   then the current node it eliminated, while if both 

sums are same, (as in [4]) some convention is used to decide whether the 

current node should be discarded. 

For all nodes that remain after the dominance test is applied, we 

compute the lower bound LB by using the lower bounds LBM1 or LBM2. If 

the lower bound for any node is greater than or equal to the previously 

generated upper bound UB, then that node is discarded. The BAB 

algorithm continues in a similar way by using a forward branching rule. 

Whenever a complete sequence is obtained, this sequence is evaluated 

and the upper bound (UB) is altered if the new value is less than the old 

one.  The procedure is repeated until all nodes have been considered (i.e. 

lower bounds of all nodes in the scheduling tree are greater than or equal 

to (UB), a feasible solution with this (UB) is an optimal solution. 

  

6 Local Search Heuristics 

Local search heuristics are a collective noun for rather classical 

iterative improvement techniques and more recently, developed 

metaheuristics [9]. The common base of local search methods is that they 

all move iteratively through the set of feasible solutions S. The walk is 

restricted by the restriction on the choice of the next solution. 

Neighborhoods define is dependence on the current solution which is a 

set of candidates to which the walk may continue. The different local 

search methods like e.g. iterative improvement, simulated annealing or 

tabu search differ mainly in the way of a candidate is chosen from the 

neighborhood. In a local search algorithm, we start with an initial solution 

s and generate a neighbor  of s.  In an iterative improvement algorithm, 




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only moves from s to  (the set of neighbors) are accepted which 

improve the value of the two machines flow-shop for total weighted late 

work (the objective function value). 

The local search heuristics give no a-priori guarantees on solution 

quality or computational time; they got very popular in the last two 

decades and are very often used to tackle problems arising from practice 

[11]. The local search algorithms have proved to be useful for finding 

good solutions to various hard optimization problems [6]. In this section 

we consider several methods of local search, descent method, simulated 

annealing, threshold accepting, genetic algorithm and hybrid method. 

  

6.1  Descent Method (DM) 

In descent method, to obtain an initial solution (sequence), we shall 

use heuristic H which is presented in section (3), as a current sequence. 

Let s be denoted to the current solution, and G(s) be the cost of the 

objective function (total weighted late work for permutation flow-shop). 

In any stage two types of neighborhood structures in our computational 

experiments: 

Insert neighborhood. Remove a job from one position in the sequence s 

and insert (shift ) it in another position (either before or after the 

original position). This means that in a permutation

, select an arbitrary job  and shift it to a 

smaller position j, j<i, or to a larger position k, k>i. Thus, we have

. In the same applications this neighborhood is used in 

a specialized version, where only right or left shifts of an arbitrary job 

are allowed for the generation of neighbor. Thus if we consider again 

the example (1) presented previously we see that for example (5, 2, 3, 

6, 1, 4) and (5, 3, 6, 1, 4, 2) each of them represent a sequence 

denoted by s1, which is a neighbors of the current solution defined by 

s = (5, 3, 6, 2, 1, 4). 

(ii) Swap neighborhood. Swap or interchange the jobs from any two 

positions (no necessary are adjacent) in the sequence s. Thus s2= 

(5, 1, 6, 2, 3, 4) is a neighbored of the solution s = (5, 3, 6, 2, 1, 

4).The new solution  was found among these neighborhoods 

such that . By acceptance test, test whether 

to accept the move from  to  If the move is accepted (i.e.

), then   replaces s as the current solution; otherwise, 

s is retained as the current solution. This operation terminates 

when the best solution generated; otherwise, return to the neighbor 

generation step. 

N(s)s 

(n))  ..., 2),  (),1(( )(i

2)1()(  nN 

s

)}),({)( 1 2G(s sGMinsG 

s .s

)()( sGsG  s



6.2 Simulated Annealing (SA) 

Simulated annealing SA was originally proposed by Metroplis et al. 

(1953) was first applied to combinatorial optimization problems by 

Kirkpatrick et al. (1983) and by Cerny (1985) [12]. SA uses a 

probabilistic acceptance test. Starting with an initial sequence s as a 

current solution, another solution is drawn uniformly from the 

neighborhood of s. If  and   are the costs of solutions s and  

respectively, we accept  as the new current solution if , where 

In the case of , sequence  is accepted as a new 

starting solution with probability exp . Where T is a parameter 

known as the temperature, which changes during the course of the 

algorithm. Typically, T is relatively large in the initial stages of the 

algorithm so that many increases in the objective function are accepted, 

and then T decreases until it is close to zero in the final stages. The rule 

that defines T is called a cooling schedule [6]. 

In our application of simulated annealing we used Jonson’s 

algorithm to obtain an initial sequence (current solution) and swap 

neighborhood to generate  a neighbor of s. As in [7] we used Lundy-

Mess cooling scheme to generated a single iteration at each k 

temperatures T1, …, Tk which are related by  

Tk+1 = Tk / (1+ βTk)  

where β is a constant, which is expressed in terms of k, T1 and Tk by  

β = ( T1 – Tk ) / ((k-1)T1Tk ) 

based on initial experiments, we set T1 = 1000 and Tk =30.  

Under the Lundy-Mess cooling scheme, the temperature decreases faster 

than in a geometric scheme, and consequently more iterations are 

performed at lower temperatures. The performance of geometric scheme 

is often more sensitive to the choice of initial temperature T1 [7]. 

  

6.3 Threshold Acceptance (TA) 

Threshold accepting is a similar method to simulated annealing. 

Whereas simulated annealing uses a probabilistic acceptance rule for 

solutions that cause deterioration in the objective function value, 

threshold accepting is deterministic. In threshold accepting, a move is 

accepted provided that it does not increase the objective function value by 

more than t, where t is a threshold value. The threshold value plays a 

similar role to the temperature in simulated annealing. Thus, the common 

practice is to select a decreasing sequence of threshold values, so that t is 

a relatively high value initially, and is fairly low during the final 
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iterations [5]. Celia et al. (1996) [7] obtained the threshold value tk at k 

iteration in the generation and evaluation of one neighbor) by:  

    tk = (t1 - ) (1 - (k-1)/ ( -1 ))
s
 +                                  

where  is the total number of iterations, t1 and  are the initial and final 

threshold values, and s defines the rate of decrease of the threshold 

values. We starting by heuristic H (see section 3) to obtain an initial 

sequence as a current solution s, insert neighborhood using at any stage to 

obtain a neighbor as a new solution. If  and  are denoted to 

costs of s and , respectively, then the moves from s to  are accepted if 

and only if  or , where . To set the threshold 

values tk, for , we use a linear decreasing scheme as in [9]. 

tk  =  tk-1 – ( t1 – ) / ( -1)                                                            

Where t1 and t  are the initial and final threshold values, respectively. 

These threshold values are computed from the objective function value of 

the initial solution  by setting t1=0.2  and t  =0.0001G(S).  

 

7 Genetic Algorithm (GA) 

Genetic algorithms are probabilistic search techniques based on the 

mechanism of evaluation. The solution space is usually represented by a 

population.  In contract to other meta-heuristics such as simulated 

annealing and threshold accepting that operates with one solution, GAs 

start with an initial population randomly generated or obtained by using 

any other heuristic. This population is composed by chromosomes, which 

are sets of genes. GAs tries to make progress in the population until a 

stopping condition is reached. The progressing from one population to 

another is obtained by applying two basic operators called crossover and 

mutation. At each generation, couples of chromosomes are selected from 

the current population, according to a specific criterion of selection. 

Then, the crossover operator that consists in combining these two 

selected chromosomes is applied to obtain two new chromosomes. After 

that, the mutation operator is applied in order to modify slightly the 

characteristics of same chromosomes. Two commonly used approaches 

for chromosome representation are indirect and direct encoding. In direct 

encoding, a chromosome completely represents a solution, while in 

indirect encoding a chromosome only gives parameter for generating a 

solution [15]. i.e. a chromosome is an n-length string representing a 

priority rule between jobs. 

In our application we use a direct encoding with random keys to 

obtain a feasible sequence and evaluate its total weighted late work of the 
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two machines permutation flow-shop. The two points crossover in which 

two randomly selected crossover points are used. Select two positions at 

random as crossover points. For example, suppose that we start with two 

job sequences,  

1-2-3-4-5-6-7 

2-3-1-5-4-7-6 

and we perform crossover at elements two and six, removing jobs 2 and 6 

from the sequence one (parent 1) and replacing them in positions of jobs 

3 and 7 respectively in sequence two (parent 2)and removing jobs 3 and 7 

from sequence two and replacing them with jobs 2 and 6 respectively in 

sequence one, the resulting job sequences will be:  

                1-3-3-4-5-7-7 

                2-2-1-5-4-6-6 

The two new job sequences are obviously not feasible solutions. 

Sequence one has jobs 3 and 7 listed twice and has omitted jobs 2 and 6. 

Sequence two has jobs 2 and 6 listed twice with jobs 3 and 7 omitted 

from the sequence. As in Beacn (1994) and [4], to avoid this possibility 

we used random keys within the vectors to act as surrogates for the final 

job sequence. Vectors of random numbers selected from 0 to1 are 

generated to represent the parents. Consider the following sequences of 

random numbers. 

             0.23 – 0.45 – 0.12 – 1.0 – 0.61 – 0.73 – 0.07 

             0.64 – 0.35 – 0.04 – 0.38 – 0.5 – 0.81 – 0.92 

Now if we perform crossover at elements two and six, we obtain the 

following new vectors of random numbers.    

             0.23 – 0.35 – 0.12 – 1.0 – 0.61 – 0.81 – 0.07 

             0.64 – 0.45 – 0.04 – 0.38 – 0.5 – 0.73 – 0.92 

To transform the offspring above into a feasible job sequence we 

start with the smallest number and place its position number in the first 

position of the job sequence, and so on until all elements are assigned. 

The random number vectors above would represent the following two 

sequences: 

                   3 - 4 -2 -7- 5 - 6 -1 

                    5 -3 -1- 2- 4 - 6 -7 

The total weighted late work of permutation flow-shop evaluated for each 

parent and save the best cost (minimum cost) with its sequence. If it 

happened that at the crossover points the elements in parent one equal to 



elements in parent two, then the swap neighborhood applied on the parent 

one before the crossover operation. The processing continue and its 

stopping after (1000) iteration. 

 

8  Hybrid genetic threshold accepting (GTA) algorithm    

Number of studies concludes that a standard genetic algorithm 

sometime performs poorly and that improvements may be achieved by 

incorporating neighborhood search. Celia et al. (1996) [7] used 

incorporating a descent algorithm into the genetic algorithm for the 

permutation flow shop to minimize the total weighted completion time. 

Allahverdi and Aldowaisan (2004) [1] proposed a hybrid simulated 

annealing and a hybrid genetic heuristic, which can be used for the single 

criterion of makespan or maximum lateness, or the bicriteria problem. 

Goncalves et al. (to appear) [8] proposed a hybrid genetic algorithm for 

the job shop scheduling problem. After a schedule is obtained using the 

priorities defined by the genetic algorithm, a local search heuristic is 

applied to improve the solution. We therefore adopt the following 

hybridization: A genetic threshold accepting (GTA) algorithm was 

developed by incorporating the threshold accepting algorithm which 

described in section (6) into the genetic algorithm of section (7). 

Threshold accepting was applied first to each current solution to obtain 

best parents so that each new parent is a local optimum for our objective 

function, and then applied a crossover and mutation. The structure of our 

GTA algorithm is the same as that of genetic algorithm of section (7) 

except for the threshold accepted used to reduce the population and 

improvements the parents. Nevertheless, to be extent of our knowledge, 

no hybrid metaheuristics was proposed for problem considered in this 

chapter. 

 

9 Computational Experience 

The set of problems tested with ten different numbers of jobs 

(n=10, 20, 30, 35, 50, 100, 500, 1000, 5000 and 10000) are generated as 

follows: For each value of n four integers processing times ai, bi, 

weighted time Wi and due date di (i=1, 2, …, n), ai, bi and Wi were 

generated from the uniform distribution  where  and

, , . Due date for every 

problem were generated as in [2] (section 6.11). For each select value of 

n, two problems were generated for each of ten pairs of  producing 

20 test problems for each value of n. We propose a branch and bound 

algorithm to solve problem (A) with up to 30 jobs. Different local search 
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metaheuristics, for some methods (descent DM, simulated annealing SA, 

threshold accepting TA, genetic algorithm GA and hybrid method 

GTA).The solutions value found by the local search methods and the 

optimal value of BAB algorithm are compared in table (2). Table (3) gives 

the deviation of the average of each local search heuristics from the best 

solution for all local search methods. Figure (1) illustrates average CPU 

(seconds) required by each method 

Table (1): Comparative the results of the local search with the optimal 

solution (n=30) for the problem   

No. DM time GTA time GA time TA time SA time BAB time 

1 486 .006 472 .002 534 0 472 0 472 0 471 45 

2 518 .006 480 0 549 0 483 0 480 0 477 43 

3 619 .011 592 .06 630 0 592 0 598 0 491 50.2 

4 816 .011 816 0 852 0 816 0 816 .05 808 44 

5 892 .11 905 .05 910 0 905 0 464* 0 464 44 

6 561 .17 531 0 514 0 533 0 552 .06 508 50.2 

7 1288 .17 1210* .06 1238 0 1278 0 1278 0 1210 36.5 

8 906 .22 875 .05 880 .06 924 0 909 0 872 50 

9 435 .22 440 0 448 0 450 0 429 0 423 33 

10 448 .28 420* .06 431 0 438 0 447 0 420 28 

11 467 .22 426* 0 430 0 447 0 457 .06 426 28 

12 551 .33 551 .05 561 0 551 0 543 0 525 33 

13 466 .17 438* 0 447 0 448 0 445 .05 438 28 

14 475 .39 456 0 478 0 456 0 456 0 452 28 

15 671 .39 636 .05 634 .05 646 0 646 .06 625 44 

16 613 .44 606* 0 614 0 613 0 613 0 606 50.2 

17 951 .33 945 .06 1000 0 945 0 887 0 854 43 

18 923 .44 890 0 897 0 923 0 915 .05 885 43 

19 908 .50 908 .05 936 0 908 0 886 0 868 43 

20 470 .50 469 0 503 0 469 0 466 .06 466 44 

*: Indicates that the problem has an optimal solution equals to the 

heuristic value. 

 

Table (2): Averages deviations about the best average for the problem 

 

 

n. 

deviations of averages 

DM TA GA SA GTA 

50 163 0 58 0 0 

100 87 0 42 4 0 

200 9130 121 84 0 21 

500 1431 242 188 3 0 

750 1575 4121 149 0 460 

1000 8392 62 45 0 38 

2000 0 190 813 192 90 

3000 1504 0 960 1042 0 

4000 40316 0 2647 15150 0 

5000 43066 6681 6114 13615 0 

7500 199630 4790 22870 4840 0 

15000 1529 1151 1680 146080 0 

25000 - 83300 115970 639600 0 
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Fig.(1): Time averages for the problem   

 

 

10 Conclusion and Future Work 

  In this paper we considered a flow-shop scheduling problem to 

minimize the total weighted late work; we assume that job i  

becomes available for processing at time zero. We suggested two lower 

bounds, and propose branch and bound algorithm to solve the flow-shop 

scheduling problem for small instances. Practical experiments show that 

only instances with up to two machines and 30 jobs can be solved 

optimally. 

 To solve large size problems, we propose five local search 

heuristic. We evaluate its performances by comparison with an optimal 

value for small size and with a best value from all five methods for large 

size. However, we do not considered the case of transportation times of 

the late work, from one machine to another. To be extent of our 

knowledge no studies consider this case, and we shall let the problem

, two machines flow-shop with transportation time between 

the machines, to minimize the late work as a future work.                    
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