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A B S T R A C T 

This paper introduces and defines subclasses of the function class   of 
analytic and bi-univalent functions associated with the operator 
  

 (     )  ( ) within the open unit disk through quasi-subordination. 
We derive results concerning the corresponding bound estimations of the 
coefficients    and   . 
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1-Introduction: 

      Let   be the class of all normalized analytic functions   in an open unit disk   *      | |   + of the form: 

  ( )        
  (   )                                                                        (   ) 

     

A function   has an inverse     is satisfying    ( ( ))    (   ), and  (   ( ))    .| |    ( )   ( )  
 

 
/  

where  

 ( )     ( )       
  (   

    ) 
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(   
          ) 

    (   )                                              (   ) 

If   and     are univalent functions in  , then   is classified as bi-univalent in  , and the category of bi-univalent 
functions defined in   is represented by  , (see [26]) 

Let   and   are analytic functions in  . Then   is said to be quasi-subordinate to   in   and written as follows: 

 ( )    ( ) (   )   

if there is  ( ) also  ( ) be two analytic functions in  , with  ( )    in such a manner that | ( )|    | ( )|    

also  ( )   ( ) ( ( ))  If  ( )   , then  ( )   ( ( ))  therefore   ( )   ( )  in  . If  ( )   , then 

 ( )   ( ) ( ), also it is said that   is majorized by   and written  ( )   ( ) in   . (see [5], [25]) 

Ma and Manda [21] established a category of starlike and convex functions through the application of subordination 
and studied classes  ∗( ) and  ∗( ) which is defined by  

 ∗( )  2    
   ( )

 ( )
  ( )    3   

and  

 ∗( )  2      
    ( )

  ( )
  ( )    3   

By   
∗( ) and   

∗( ), we denote to bi-starlike and bi-convex functions   is bi-starlike and bi-convex of Ma-Minda 

type respectively [21]. 

In the sequal, it assumed that   of the form : 

                 ( )        
 
    (         )                                                    (   )  

where  ( )    and   ( )   , also  

                                     ( )         
  

                                                                    (   )  

which are analytic and bounded in  . However, there are only a few works determining the general coefficient 
bounds |  | and |  | ([2,7,8,12,13,16,17,18,20,22,23,24,27,30,31,32,33,34] and [20]) for the analytic bi-univalent 
functions in the literature. ([7,9]).  

For a function               and      we define the differential operator, as follows [11]: 

    ( )   ( )  

  
 (     ) ( )  (

       

   
) ( )  (

   

   
)   ( )  

  
 (     ) ( )   .  

 (     ) ( )/  

. 

. 

. 

  
 (     ) ( )   .  

   (     ) ( )/                                            (   ) 

We note that if      is  given by (1.1), then by (1.5), we have 

  
 (     ) ( )    ∑ (       )    
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where 

 (       )  4
  (   )(   )   

   
5

 

  

 
Figure 1 below describe the geometric changes on  ( )        under   

 (     )  and 
  

 (          )             . 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: Complex plot of   

 (     )   ( ) , and   
 (          )  ( ), respectively. 

Remark 1.1. By suitabl    ecializing the parameters, the operator   
 (     ) ( ) in (1.5) reduces to many known 

and new differential operators :  

 When       also      we obtain 

  
 (     ) ( )     ( )     .

   (   )  

   
/
 

    
  

    of Aouf, El-Ashwah and El-Deeb differential 

operator [6].  
 

 When          also      we obtain 

  
 (     ) ( )     ( )     (   (   ))

 
    

  
    of Al-Oboudi differential operator [1]. 

 
 When              also      we obtain 

  
 (     ) ( )     ( )     ( )     

  
    of Sălăgeanʼs differential operator [26]. 

 
 When              also      we obtain 

  
 (     ) ( )     ( )     .

   

 
/
 

    
  

    of Uralegaddi and Somanatha differential operator [28]. 

 
 When          also      we obtain 

  
 (     ) ( )     ( )     .

   

   
/
 

    
  

    of Cho and  Srivastava differential operator [9,10]. 

 

Lemma (1.1) [14]. Let  ( )           
     , where   is the family of al    nctions  , analytic in  , for 

which   * ( )+    (   ), then |  |    for          . 

2-Coefficient Estimates for the Class     
       (         )  



4 M. S. Muhammed, W. G. Atshan, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol.16.(4) 2024,pp.Math 52–63

 

Definition 2.1. A function     is assume   s in  (1.1), then                    
       (         ) if the subsequent two 

quasi-subordinations are satisfied: 

 

 
[(   )4

  
 (     ) ( )

 
5

 

  (  
 (     ) ( ))

 
4
  

 (     ) ( )

 
5

   

  ]

 

  

(   ) [
 (  

 (     ) ( ))  

(  
 (     ) ( )) 

]   ( ( )   ) ,                                           (2.1) 

and 

 

 
[(   )4

  
 (     ) ( )

 
5

 

  (  
 (     ) ( ))

 
4
  

 (     ) ( )

 
5

   

  ]

 

  

(   ) [
 (  

 (     ) ( ))  

(  
 (     ) ( )) 

]   ( ( )   ) ,                                           (2.2) 

for           * +        and       is given by (1.2) . 

Remark (2.1). The class     
       (         )  is a generalization of several known classes considered in earlier 

investigations, which are being recalled below.  

 For      and     , we have  

    
       (         )      

   ( ) 

where the class     
   ( ) introduced by Orhan et al. [22]  

 For          and     , we have  

    
       (         )      

 ( ) (   )  

where the class     
 ( ) introduced by Goyal et al. [17] 

 For          and     , we have  

    
       (         )      

 ( ) (   )  

where the class     
 ( ) introduced by Goyal et al. [18] 

 For              and     , we have  

    
       (         )   ∗( )  

 For               and     , we have  

    
       (         )      ( )  

 

Theorem 2.1. If   is assumed as in (1.1) and        
       (         )   then  

|  |     *     +                                                         (2.5) 

and 
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|  |     *     +                                                       (2.6) 

for 

   
    

|,(   )  (   )-|| |
 , 

     
      √  

| |√|0    
  [(    )( (   ))  (   )(   )   (   )]   (     )((   )  (   ))

 
1|

 ,  

and 

   
   

   
 

((   )  (   ))
 
| | 

 
     

|((    )  (   ))|| |
 , 

   
      

|[(    )( (   ))  (   )(   )   (   )]|| | 
 

     

|((    )  (   ))|| |
 , 

where 

   (       )    (       )  

Proof. Since        
       (         )  and        Then, there are analytic functions         with 

 ( )     ( )    such that 

 

 
[(   )4

  
 (     ) ( )

 
5

 

  (  
 (     ) ( ))

 
4
  

 (     ) ( )

 
5

   

  ]

 

  

(   ) [
 (  

 (     ) ( ))  

(  
 (     ) ( )) 

]   ( ( )   ) ,                                           (2.7) 

and 

 

 
[(   )4

  
 (     ) ( )

 
5

 

  (  
 (     ) ( ))

 
4
  

 (     ) ( )

 
5

   

  ]

 

  

(   ) [
 (  

 (     ) ( ))  

(  
 (     ) ( )) 

]   ( ( )   ) .                                           (2.8) 

Define the functions  ( )      ( ) by 

 ( )  
   ( )

   ( )
       

  
     ( )  

   ( ) 

   ( ) 
       

  (     )  
                                      (2.9) 

Or equivalent,  

 ( )  
 ( )  

 ( )  
 

 

 
,    .   

  
 

 
/      (   )                                  (    )  

and 

 ( )  
 ( )  

 ( )  
 

 

 
,    .   

  
 

 
/     (   )                            (2.11) 

It is clear that  ( )      ( ) are analytic in   with  ( )    ( )     Since          the functions 

 ( )      ( ) have a positive real part in  , and  |  ( )|         |  ( )|    (       )  

Then, by (2.10),(2.11) and (1.3), we have 
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 ( ( ))    
     

 
  0

  

 
.   

  
 

 
/  

    
 

 
1      (   )     

and  

 ( ( ))    
     

 
  0

  

 
.   

  
 

 
/  

    
 

 
1     (   )     

Furthermore, we see that  

 ( ), ( ( )   )-  
      

 
  0

      

 
 

    

 
.   

  
 

 
/  

      
 

 
1                (    ) 

and 

 ( ), ( ( )   )-  
      

 
  6

      
 

 
    
 

4   
  

 

 
5 

      
 

 
7                   (    ) 

Expanding the left hand sides of (2.7) and (2.8), we obtain that  

 

 
[(   )4

  
 (     ) ( )

 
5

 

  (  
 (     ) ( ))

 
4
  

 (     ) ( )

 
5

   

  ]

 

  

(   ) [
 (  

 (     ) ( ))  

(  
 (     ) ( )) 

]  ((   )   (   ))       

0((    )   (   ))    
(    )(   ) (   )(   )   (   )  

 
  

 1         (2.14) 

and 

 

 
[(   )4

  
 (     ) ( )

 
5

 

  (  
 (     ) ( ))

 
4
  

 (     ) ( )

 
5

   

  ]

 

  

(   ) [
 (  

 (     ) ( ))  

(  
 (     ) ( )) 

]    

 ((   )   (   ))     0
(    )(   ) (   )(   )   (   )  

 
  

  ((    )   (   ))   1  
                         

          (2.15)  

Furthermore, from (2.12),(2.13) and (2.14),(2.15), by the coefficient comparison method, we know that  

((   )   (   ))     
      

 
                                                 (2.16) 

((    )   (   ))    
,(    )(   )  (   )(   )   (   )-  

 
  

  

 
      

 
 

    

 
.   

  
 

 
/  

      
 

 
                                                  (2.17) 

and 

                     ((   )   (   ))    
      

 
                                         (    )  

,(    )(   )  (   )(   )    (   )-  

 
  

  ((    )   (   ))    

 
      

 
 

    

 
.   

  
 

 
/  

      
 

 
                                                                    (2.19) 
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From the two equations are equal (2.16) and (2.18), we get 

        

and 

                     ((   )   (   ))
 
    

    
    

  (  
    

 )             (2.20)            

By (2.17) and (2.19), we have that  

[(    )( (   ))   (   )(   )   (   )]    
       (     )     (  

    
 )(     )      

         (2.21)                                                                                            

Therefore, by (2.20) and (2.21), we obtain that 

   
  

    
 (     )    

 

0    
  [(    )( (   ))  (   )(   )   (   )]   (     )((   )  (   ))

 
1  

            (2.22) 

Hence, from (2.20),(2.22) and Lemma 1.1 ,we know that  

|  |  
    

|,(   )  (   )-|| |
   

and 

|  |  
      √  

| |√|0    
  [(    )( (   ))  (   )(   )   (   )]   (     )((   )  (   ))

 
1|

. 

Correspondingly, by detracting (2.19) and (2.17), it infers that  

      ((    )   (   ))(        
 )              (     )           (    )  

Hence, by (2.20) and (2.23), it trails that  

   
  
    

  (  
    

 )

 ((   )  (   ))
 
  

 
            (     )

 ((    )  (   )) 
.  

So, we attain from Lemma 1.1 that  

|  |  
   

   
 

((   )  (   ))
 
| | 

 
     

|((    )  (   ))|| |
 . 

On the other hand, by (2.22) and (2.23) we infer that 

   
      (     )    (  

    
 )(     )

[(    )( (   ))  (   )(   )   (   )]   
            (     )

 ((    )  (   )) 
 . 

Thus, from Lemma1.1 ,we obtain that  

|  |  
      

|[(    )( (   ))  (   )(   )   (   )]|| | 
 

     

|((    )  (   ))|| |
. 

Then, we complete the proof of Theorem 2.1. 

By putting     From Theorem (   ), we get the subsequent Corollary: 
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Corollary 2.1. Consider   defined by (1.1) belongs to the class  

    
       (       ). Then 

|  |     {
    

|,   (   )-|| |
 

      √  

| |√|0    
  [ ( (   ))  (   )    (   )]   (     )(   (   ))

 
1|

}, 

and 

|  |     {
   

   
 

(   (   ))
 
| | 

 
     

|(   (   ))|| |
 

      

|[ ( (   ))  (   )    (   )]|| | 
 

     

|(   (   ))|| |
}. 

Putting     in Theorem (2.1) yields the following Corollary: 

 

Corollary 2.2. Consider   defined by (1.1) belongs to the class     
       (       ). Then 

|  |     {
    

|,   (   )-|| |
 

      √  

| |√|0    
  [  ( (   ))  (   )    (   )]   (     )(   (   ))

 
1|

}, 

and 

|  |     {
   

   
 

(   (   ))
 
| | 

 
     

|(    (   ))|| |
 

      

|,    (   )    (   )-|| | 
 

     

|(    (   ))|| |
}. 

 

3- Coefficients Bounds for the Class     
       (         ) 

Definition 3.1. A function     is assume   s in  (1.1), then       
       (         ) if the subsequent two quasi-

subordinations are satisfied : 

 

 

[
 
 
 
 

4
(   )  

 (     ) ( )   .   
 (     ) ( )/

 

 
   (   

 (     ) ( ))
  
  5  (   )

(

 
 

  
 .   

 (     ) ( )/
  

(   
 (     ) ( ))

 

 (   
 (     ) ( ))

 

  
 (     ) ( )

  

)

 
 

]
 
 
 
 

  ( ( )   )         (   )                    

and 

 

 

[
 
 
 
 
 
 
 4

(   )  
 (     ) ( )   .   

 (     ) ( )/
 

 
   (   

 (     ) ( ))
  
  5    

(   )

(

 
 

  
 .   

 (     ) ( )/
  

(   
 (     ) ( ))

 

 (   
 (     ) ( ))

 

  
 (     ) ( )

  

)

 
 

]
 
 
 
 
 
 
 

  ( ( )   ),                                (3.2) 

              

where                    and (     )   

Remark (3.1). If we take      and     in defined (3.1), the class     
       (         ) diminish to the category 

  
 (     )  which was studied recently by  Yalcin et al. (   ,  -).  
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Remark (3.2). If we take           and     in defined (3.1), the class     
       (         ) reduce to the class 

  
 (   )  which was studied recently by  by Patil  and Naik  (   ,  -).  

Theorem 3.1. If   is assumed as in (1.1) and        
       (         )   then  

|  |     *     +                                                                       (3.3) 

and 

                                      |  |     *     +                                                                     (3.4) 

for 

               
     

|(        )|| |
        

     √
      

|, (       ) (   )(        ) -  |
 ,  

and 

   
      

|,(       )  (   )- |
 

  
   

 

|(        )   |
, 

    
      

|,(       )  (   )- |
 

      

|, (       ) (   )(        ) -  |
  

where 

   (       )    (       )  

Proof. Steps the proof of the theorem is the same in the Theorem (2.1), we can get the relations as follows: 

(        )    
       

 
,                                (3.5) 

6((       )   (   ))    
(   )(        )   (   )

 
    

 7 

 
       

 
 

     

 
.   

  
 

 
/  

       
 

 
                     (3.6) 

and 

 (        )    
       

 
,                        (3.7) 

6
 (       )   (   )  (   )(        ) 

 
    

  ((       )   (   ))   7 

 
       

 
 

     

 
.   

  
 

 
/  

       
 

 
  .             (3.8)                                                               

In view of (3.5) and (3.7), we express that 

                                         
       

(        ) 
  

       

(        ) 
                (3.9) 

such that 
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                                                                        ,                                                                      (3.10) 

and 

                       (        )     
    

    
  (  

    
 )                                         (3.11)                  

By (3.6) and (3.8), we obtain that 

( (       )  (   )(        ) )    
        (     ) 

    .(     )(  
    

 )/.                                                  (3.12)                                                                    

Applying Lemma1.1, for the coefficients                 it is follows from (3.10) and (3.11), we get  

                                     |  |  
     

|(        )|| |
                                                                                                  (3.13)                          

and 

                              |  |  √
      

|( (       ) (   )(        ) )  |
.                                                             (3.14)                      

Similarly, from (3.6),(3.8) and (3.10), it also implies that 

  ,(       )   (   )- (     
 )                (     )           (3.15) 

Upon substituting from (3.11) and (3.12) putting in (3.15) and by Lemma1.1, we get that 

          |  |  
      

|,(       )  (   )- |
 

  
   

 

|(        )   |
                            (3.16) 

and 

    |  |  
      

|,(       )  (   )- |
 

      

|( (       ) (   )(        ) )  |
                    (3.17) 

This complete the proof of Theorem (3.1). 

 

By putting       into Theorem (   ) yields the following Corollary: 

Corollary 3.2.  Consied   defined by (1.1) belongs to the class      
       (       ) . Then 

|  |     {
     

|(     )|| |
 √

      

|( (    ) (   )(     ) )  |
}   

and  

               |  |     {
      

|,(    )  (   )- |
 

  
   

 

|(     )   |
 

      

|,(    )  (   )- |
 

      

|( (    ) (   )(     ) )  |
}   

 

By putting       into Theorem (   ) yields the following Corollary: 

Corollary 3.2.  Consider   defined by (1.1) belongs to the class      
       (       ) . Then 
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|  |     {
     

|(      )|| |
 √

      

|( (    ) (   )(      ) )  |
}   

and  

               |  |     {
      

|,(    )  (   )- |
 

  
   

 

|(      )   |
 

      

|,(    )  (   )- |
 

      

|( (    ) (   )(      ) )  |
}. 

 

Conclusion 

 

We present novel subclasses     
       (         ) and     

       (         ) of bi-univalent functions within the 

open unit disc  , employing quasi-subordination requirements, and ascertain estimates for the coefficients |  | and 
|  | for functions belonging to these subclasses. We derived two new theorems with distinct specific cases for our 
novel subclasses, and these findings differ from prior results presented by other writers. Furthermore, we examine 
the enhanced outcomes for the relevant classes encompassing numerous new and established implications. The 
findings presented in the work may stimulate further research, and we have provided opportunities for authors to 
expand our novel subclasses to obtain other results in bi-univalent function theory. 
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