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ABSTRACT:
In 1969 S.K.Skaff introduced the generalized mean function
In this work we present the theory of an integral mean for generalized

GN#*-function .We will show under what conditions the mean function is
a GN*-function and satisfies a A—condition. Moreover, we examine how
the minimizing points in the definition of the mean function affect a basic
property of the ordinary integral mean.

1.Introduction and Basic Concept:

From the functional analysis as a function space, Orlicz spaces

appeared in the first of the 30" by W.R. Orlicz in Orlicz paper [1].

Many theorems and properties about generalized mean function for GN-

function is introduced in [5].

we have consolidated the investigation of a new definition generalized

mean function for GN*-functions and discussed their properties.
Definition 1.1: [5]

Let M(¢,x)be a real valued non-negative function defined on 7'X E"
such that:
(1) M (t,x)=0if and only if x=0 where for all reT , xe E"
(i1) M (t,x)1s a continuous convex function of x for each 7 and a

measurable function of t for each x,

(ii1) For each re T , lim M@ x) =oo , and

== P

(iv)There is a constant d >0 such that



1r}f10r21£k(t,c))0 (1.1.1)

where K(t,c)= A:“t’ ¢)

M,c)

s M(I’C) :SUPM(I’X) P

|x|=c

M(t,c)=ipt M (t,x)

| xj=c
and if d >0, then M (t,d)is an integrable function of £.We call a
function satisfying the properties (i)-(iv) a generalized N-function or a
GN-function.
Definition 1.2:
Let M(t,x,y)be a real valued non-negative function defined on
TXE"XE" such that:
(i) M(t,x,y)=0if and only if x,y are the zero vectors x,ye E n.
VteT

(11) M (¢,x,y)1is a continuous convex function of x, y for each # and

a measurable function of 7 for each x, y,

(ii1) For each re T , lim W =oo, and
y

L

—oo

y

(iv)There are constants d 20 and d, =0 such that

ir}f igdf k(t,c,c’)>0 (1.2.1)
c'_Zdl
Where
k(t,c,c) =1\:4(t,—c,c,),
M(t,c,c’)

M(t,c,c’y=supM(t,x,y),M(t,c,c’)= igf M(t,x,y)

x|=c

= =

and if d)0 and d, >0, then M(r,d ,d,)1s an integrable function of . We



call the function satisfying the properties (i)-(iv) a generalized N*-

function or a GN*-function.

Definition 1.3: [5]
For each rin 7 and A>0 let
M, (@, x)= [M(t,x+2)J,(2)dz
En

where J,(z) is nonnegative, ¢ function with compact

support in a ball of a radius h such that [J,(2)dt=1.
En

Moreover, let x, is any point (depending on A, t) which satisfies the
inequality

M,(t,x,))<M,(t,x)

for all x in E" . Then the function M ,(t,x) defined for each ¢ in T and
h>0 by

M,(t,x)=M,(t,x+x,)—M,(t,x,)
is called a mean function for M (¢, x) relative to the minimizing point x,.
Definition 1.4:

For each ¢ in T and h>0 let
M, (t,x,y)= | [M(t,x+z,y+w)J,(2)J, (w)dzdw

E" E"
where J,(z) and J, (w) are nonnegative, ¢ function with compact

support in a ball of a radius A such that [ [J,(2)J,(w)dtdt=1.

o pn
Moreover, let x,and y, are any point (depending on A, t) which satisfies
the inequality

M,(t,x,,y,)<M,(t,x,y)
forall x and y in E" . Then the function M ,(t,x,y) defined for each ¢
inTand h>0 by



Mh(t,x,y)th(t,x+xO,y+ Vo) =M, (t,xy,¥,)
is called a mean function for M (¢, x, y)relative to the minimizing point
x,and y, .
The next theorem shows under what condition M Lt x,y) 1s a GN*-

function.

Definition 1.5:[2]
We say that a GN-function M (¢, x) satisfies a A —condition if there

exist a constant K >2 and a non-negative measurable function O(¢) such
that the function M (£,20(7)) is integrable over the domain 7 and such that
for almost all 7 in 7" we have
M (t,2x) < KM (t, %) (1.5.1)

for all xsatisfying |x| > d(7).

We say that a GN-function satisfies a A, —condition if it satisfies a
A—condition with 6(¢) =0 for almost all #in 7.

In definition 1.5 we could have used any constant

7>1 in place of the scalar 2 in (1.5.1).

Definition 1.6:

We say that a GN*-function M(t,x,y)satisfies a A —condition if there
exists a constant K =2 and non-negative measurable functions 51 (t)and
0, (t)such that the function M (¢,20,(t),20,(t)) is integrable over the
domain 7 and such that for almost all # in 7' we have

M(t,2x,2y)< KM (t,x,y) (1.6.1)
for all x and y satisfying |x| > d (Hand Y2 0,(1) .
We say a GN*-function satisfies a Aj—condition if it satisfies a

A —condition with &,(f)=0and 0, (t)=0 for almost all ¢ in T.



In definition (1.6) we could have used any constant 7 >1 in place of the
scalar 21in (1.6.1).
Theorem 1.7:[3]
A necessary and sufficient condition that (1.5.1) holds is that if

[x|<|z|, then there exists constants K=>1,d>0 such that

<

M((t,x)<KM(t,z) foreachrin T,

x=>d.
Theorem 1.8:

A necessary and sufficient condition that (1.6.1) holds is that if

[x|<|z| and|y|<|w|, then there exists constants K>1,d >0 and d’>0

such that M (¢,x,y) < KM (t,z,w) for each ¢ in T,

x>d and |y|>d".
Theorem 1.9:[2]

A GN*-function M (t, x) satisfies a A —condition if and only if
given any 7 >1there exists a constant K, =2 and a non-negative
measurable functions d, (z) such that M(t,251 (1)) 1is integrable over T and
such that for almost all # in 7' we have

M(t,zx) < K M (t,x), (1.9.1)
whenever |x| >, (7).
Theorem 1.10:

A GN*-function M (t, x, y)satisfies a A —condition if and only if
given any 7 >1there exists a constant K, =2 and a non-negative
measurable functions &, (t) and &, (r) such that M (¢,28,(z),25, (7)) is
integrable over T and such that for almost all 7 in 7" we have

M(t,zx,7ty) < K M(t,x,y), (1.10.1)
whenever |x| >, (¢) and |y|>6,(t).
Theorem 1.11:[5]

If M(t,x)is a GN*-function for which M (¢,¢) is integrable in ¢ for each



¢, then M ,(t,x) is a GN*-function.

Proof:

We will show this result by justifying conditions (1)-(iv) of the
definition 1.1. By hypothesis and the choice of x,, we have for each A,
M ,&,x)=0 and M ,@0)=0. On the other hand, if x=#0, then
M (t,x) >0, and hence there are constants 5, such that

a:‘i‘rlgoM(t,x+w)>0

However, since M (t,x)=0 if and only if x=0, the minimizing points x,
tends to zero as A tends to zero. Therefore, we can choose g, <#h, such
that if 2< g,,then M (t,x, +r)<afor all r for which |x, +r|<h, For this

g, we obtain the inequality

M(t,x+ x, +r)2‘i‘13f M((t,x+w)=>
wi<gg

a>M(t,x,+1)
whenever | x, + rI< g,.This means for some 2< g, we have
M, x+x,+r)>M(t,x,+7r)
jnM (t,x+x,+r)J,(r)dr>
EjM(t,x0 +r)J, (r)dr
o
M, (t,x+x,)>M,(t,x,)
or M ,(&,x)>0 1f x#0 which proves property (1).
Properties (i1) and (ii1) for M ,(t, x)follow easily from the same

properties for M (t,x). Let us now show (iv). By assumption, there are

constants 4 >0 such that
(M (t,¢) S M (t,¢) (1.11.1)

for all ¢ > d .Furthermore, it is not difficult to show that for all ¢ we have



M (t,c) > sup M (t,x) (1.11.2)

‘X‘SC
and for some fixed w,
‘ir‘1>fM(t,x+w)S‘ir‘1:fM(t,x+w) (1.11.3)

By using (1.11.2), we obtain (for each ¢ in T)that
T®)supM (t,w)<7(t) sup M(t,r) (1.11.4)

|w=c || <cHxo+x]

<z(t) sup M@,r)

‘r"=c+‘ Xo+xy]

where w=x+Xx,+7.0n the other hand, by (1.11.1) and
(1.11.3), we achieve

() sup M@Ew)<  inf  M(@t,w) (1.11.5)

[wl=c+xp+x| [W=c+xo+

<inf M (t,x+ x, +r).
|x|=c

<inf M(t,x+x, +r).

)C‘:C

If we combine (1.11.4) and (1.11.5), then for all ¢ >d we arrive at

T(t)supM (t,x+x,+r)<inf M(t,x+ x, +r).

‘x‘:c X‘ZC

From this inequality, we obtain

‘ir‘lzf Mh (t,x)= [ Inf{M(t,x+x,+1r)—M(t,x, +r}J,(r)dr

EN ‘x‘:C
> [ {z(t)supM (t,x+x,+r)—M(t,x,+r)}J, (r)dr, (1.11.6)
G
and
suth(t,x) < jsupM(z‘,x+x0 +r)J, (r)dr. (1.11.7)

x‘:c £ x‘zc



Moreover, since hm sup M(t,x+x,+r)=oo
=c

for fixed x,,r such that |[r|<h ,given

K, (t)=2supM(t,x, + r)/1nf 7(1)

|r|sh

there are d, >0 such thatif c=d, ,then

supM (t,x+x,+r)=K,.

[/=c

Therefore, by using (1.11.6) and (1.11.7), we achieve the inequalities

inf M, (t,x)

A—Zf(t)_
supM , (¢, x)

|x|=c

supM (t,x,+r)
Irish (1.11.8)

1.
27T()—— t
1nfsupM(t X+Xx,+7r) 27(0) 2mtff()

|r|<h |x|=

for all c2d0=max(d,dl,x0

‘). Taking the infimum of both sides of

(1.11.8) over t, shows the first part of the property (iv). To show the latter

part, assume d, >0. Then sup M ,(t,x) 1s integrable over ¢ in T since it is
|x=dy

bounded by the integrable function M (1,d, )where d, =d, +|x,|+ h

.This proves property (iv) and the theorem.m

In the next theorem we show wunder what condition
M ,(t,x)satisfies a A— condition.

Theorem 1.12:[5]
If M (t,x) is a GN*-function satisfying a A—condition and for which

M (t,c¢) is integrable in ¢ for each c , then M L, %)



satisfies a A-condition.

Proof:

It suffices to show that M, (¢, x) satisfies a A-condition.
For, M ,(t,x) is the sum of a constant and a translation of M, (¢, x)and
neither of these operations affects the growth condition. Let us observe
first that if M 22, |z|<h<1 then |2x+z|<3x +z|.

Hence, by Theorem (1.7), there are constants K 21 and d, =20 such that
M,(t2x)<k [M@3(x+2))J,(2)dz
En

for all x such that |x>d, and d, =max(d,,2).0On the other hand ,by
theorem (1.9), there is a constant K, >2, 6,(t) >0 such that for almost all
tinT

IM(Z‘,3(X + ), (2)dz< K;M |, (1, %)

En
for all x,zsuch that |x+z|>,(r) where |7/<h By combining the above

two inequalities, we achieve

M, (t2x)<KK,M,(t,x)
for all [x|>max(d,,d,(1) +h)=9,(t).
Since M (1,26,(r)) is integrable over T ,this yields the integrability of
M, (t,28/(t)) which proves the theorem.m

For each 7in T and x in E" it is known that

limM, (t,x)=M (¢, x).

h=0
However, the same property does not hold in general for M LX) .

This is the point of the next theorem.
Theorem 1.13:[5]

For each h>0let x/ be the minimizing point of M, (z, x)



defining M ,(,x). Then for each t in T and each xin E" there exists

K(t,x) such that

limM , (t,x)=M (1, x) + K (¢, x) 1251@{;\

h=0
Proof:

By the definition of M, (z,x) we can write
‘Mh(t,x) M, x)‘ <

(1.13.1) |

En

M (t,x+x{ +2) =M (1, x +2) =M (6, )], (2)dz
However, we know that
\M(z,x+xg+z)—M(z,xg+z)—M(r,x)\ (1.13.2)
<|M (1, x+x; +2) =M (2, x)

+ ‘M (t,x0 +z)—M(t,z, w)‘ +|M (1, 2)|
Moreover , since M (¢,x) is a convex function, it satisfies a Lipshitz

condition on compact subsets of E” (see[4Th.5.1]).Therefore ,there

exists K, (¢,x) and K, (t,x) such that
M (1, x+ x§ +2) = M (6, )| < K, (1, x)|x} + ] (1.13.3)
and

M (&, +2) =M (1,2)| < K, (2, %) (1.13.4)

h
xo .

If we combine (1.13.3) and (1.13.4) with (1.13.2) and if we substitute the
resulting expression into (1.13.1), we achieve the inequality
V1,100 = M (0,0 S|t (K 0,6 30+ K (1,0 30) +
| K (. 0)|2J,(2)dz + | |M(t,2)|],(2)dz.
E" E"

Since the last two integrals on the right side tend to zero as & tends to
zero, we prove the theorem by setting

K(t,x)=K,(t,x)+ K, (t,x).



Corollary 1.14: [5]
Suppose M (t,x)1s a GN*-function such that M (¢,x) =M (¢t,—x).
Then for each rin 7 and x1in E" ,we have

lim M, (1,x) = M (¢, x)

Proof:

This result is clear since lim‘x(’}‘ =0
h=0

if M ((t, x) = M (t,—x) In fact, if M (¢, x)is even in x then the x! =0 for all
h.m
For each 7 in T let A, denote the set of minimizing points of
M , (t,x) and let B represent the null space of M (¢, x) relative to points in
E" ,ie.,
B={x in E":M(t,x)=0}.

If M(z,x)is a GN*-function, then B={0}. For the sake of argument, let us
suppose that M (¢,x) has all the properties of a GN*-function except that
M (t,x)=0 need not imply x=0. We will show the relationships that

exist between A, and B. This is the content of the next few theorems.
Theorem 1.15:[5]

The sets B and A, are closed convex sets.

Proof:

This result follows from the convexity and continuity of M (¢,x)in x for

eachrin 7.m
Theorem 1.16:[5]
Let B, ={x: M (t,x)<e}for each tin T. Then given any >0,

there is a constant A, >0. such that A, € B, foreach h < h, .

Proof:

Since B ¢ B,, we can choose £, sufficiently small so that if xis



in B then x+ z isin B,for all zsuch that [zI</A, and |wI<h,. Let
z, be arbitrary but fixed points in A,,h<h, . Then
M, (it z))<M,(t,x)
for all x . Therefore, if x in B, we have M, (t,z,) <e by our choice of A, .
Letting h tend to zero yieldsM (t,z,)<e,1.e.,z,, In B,.
We have commented above that A, ={0} if
M(t,x)=M (t,—x).
It is also true if M(t,x) is strictly convex in x for each 7 in 7.
Theorem 1.17:[5]

Suppose M(t,x) is a GN*-function which is strictly convex in x
for each . Then h, A, ={0}for each h.
Proof:

Suppose that there exists z, # x, such thatx,, z,

_ (X, + 2¢)
2

strictly convex, M, (¢, x) is strictly convex in x, therefore,

are in 4, . Let z, ,. Then, since M (t,x) is

we have
Mh(t,z1)<%Mh(t,x0)+%Mh(t,z0). (1.17.1)
However, x,,z, are in A, reduces (1.17.1) to the inequality

M, (t,z,)<M,(t,x)for all x. This means z, is in A, and x,,z,are not in
A, which is a contradiction. Hence,x,=z,.Since M (t,x)is a
GN*function, B={0} . In this case x,=z,=0 .

¥Y.Generalized mean function
Theorem 2.1:

If M(t,x,y)is a GN*-function for which M (t,c,c’) is integrable in ¢

for each c and ¢’, then M , (&, x,y) 1s a GN*-function.



Proof:

We will show this result by justifying conditions (i)-(iv) of the
definition Y.1.1. By hypothesis and the choice of x, and y, , we have for
each h, M, (t,x,y)>0 and M, (t,0,0)=0. On the other hand, if x#0and
y#0, then M (¢,x,y)>0, and hence there are constants h, and h(; such
that

a=31£1}£/M(t,x+w,y+w')>0
[w[sho
However, since M(t,x,y)=0 if and only if x=0 and y=0, the
minimizing points x, tends to zero and y, tends to zero as & tends to zero.
Therefore, we can choose g,<h, and g, <h, such that if h<g,and
h<ggthen M(t,x,+r,y,+s)<afor all rs for which |x,+r|<h,

|yo +s|<h Forthis g, and g7 we obtain the inequality

M(t,x+x,+r,y+y, +s)2‘i‘r<1f M@, x+w,y+w)=
w<g
[w|<go

a>M(t,x,+1,y,+S5)
whenever |x,+rl<g, and |y, +sI< g(’).This means for some h<g,

and h<g, we have
M, x+x,+r,y+y, +8s)>M (@, x,+71,y,+S5)
jn jnM(t,x+x0 +r,y+y,+5)J,(r)J,(s)drds >
Ej EjM(t, Xo + 1,9, +8)J,(r)J, (s)drds

E" E"

M, (t,x+x,,y+y,)>M,(t, xy,Y,)

or M L(,x,y)>01f x+#0 and y#0which proves property (i).



Properties (ii) and (iii) for M ,(t,x,y) follow easily from the same
properties for M (¢, x, y). Let us now show (iv). By assumption, there are
constants d >0 and d">0 such that

T(OM (t,c,cYSM(t,c,¢)) 2.1.1)
for all ¢>d and ¢’ >d’ Furthermore, it is not difficult to show that for all

c and ¢’ we have

M (t,c,c’)> 81‘1p M (t,x,y) (2.1.2)
y‘;i"

and for some fixed w and w',

irlfM(t,x+w,y+w’)£iqu(t,x+w,y+w’) (2.1.3)
Ve y\;i'

By using (3.3.4), we obtain (for each ¢ in T)that

t(t)sup M (t,w,w)<7(t) sup M(t,r’,s) (2.1.4)
w‘,=_c i ‘r"<c+‘xo +xl‘
wl=c |s|<c’+ y0+yl

<t(t) sup M@,r’,s)

F|l=c+ xp+x|
,

s'|=c"+ yo+ |

where w=x+x,+r and w'=y+y,+s.0n the other hand, by (2.1.1) and
(2.1.3), we achieve

7(t) sup M((t,w,w)< inf  M(t,w,w) (2.1.5)
\w\:cﬂ xy+x \w\}:cﬂxo+xl‘
mege =
<\§%€ M@, x+x,+r,y+y,+s).
|y|2¢’

< il"lf M, x+x,+r,y+y,+5s).
yl=¢

If we combine (2.1.4) and (2.1.5), then for all c>d and ¢’ >d’ we arrive

at



T(tysupM(t,x+x,+r,y+y, +s)<inf M(t,x+x,+r,y+y, +5).
yl=¢

From this inequality, we obtain

y=¢

1nfM WX, )2 | jmf{M(t X+x,+7r,y+y,+5)

E" E"‘ =
>\—c y=¢

-M(t,x,+r,y,+5)}J,(r)J,(s)drds

> [ [{z(®)supM(t,x+x, +7r,y+y, +5)
EUET (2.1.6)
—M(t,x,+1,y, +85)J,(r)J,(s)drds,

and

suth(t,x, y)
y\:i'

< IjsupM(t x+x,+r,y+y, +s)J,(r)J,(s)drds.

X‘—C
Elyl=e

(2.1.7)

Moreover, since hm sup M(t,x+x,+r,y+y,+s5)=00
ool

= *ly=c’

for fixed x,,y,,7,s such that [r|<h and |s|<h ,given

K, (t)=2supM (t,x,+r,y,+ s)/ir}f 7(1)
<h

s;h

there are d, >0 and d; >0 suchthatif ¢>d, and ¢’>d; ,then

supM (t,x+x,+r,y+y,+s)2K,.
x|=c
y\—c

Therefore, by using (2.1.6) and (2.1.7), we achieve the inequalities

mf Mh(t x,y)

s > (1) —
suth(t,x, y)

x|=c
>\—c




supM (t,x, +r,y, +5)
r|<h
<h

N

(2.1.8)

l.
: >7(t)——= 7(t
inf supM (1, x+x, + 1,y +y, +5) () 2l”tf )
s<h

x|=c
y=¢’

for all ¢>d,=max(d,d,,

xo‘) and ¢'>d] =max(d’,d],

o). Taking the

infimum of both sides of (2.1.8) over t, shows the first part of the

property (iv). To show the latter part, assume d, >0 and d;>0. Then

sup M ,(t,x,y) 1s integrable over ¢ in T since it is bounded by the
x\:do
yl=dy

integrable function M (,d,,d;) where d, =d, +|x,|+h and

d; =d; +|y,|+ h .This proves property (iv) and the theorem.m
In the next theorem we show under what condition
M ,(t,x, y)satisfies a A — condition.

Theorem 2.2:

If M(t,x,y) is a GN*-function satisfying a A-condition and for
which M (z,¢,c”) is integrable in ¢ for each ¢ and ¢’ , then M (1, y)
satisfies a A-—condition.

Proof:

It suffices to show that M, (¢, x, y) satisfies a A-condition.

For, M ,(t,x,y) 1s the sum of a constant and a translation of
M, (t,x,y)and neither of these operations affects the growth condition.
Let us observe first that if ‘)422, ¥22, |g<h<I and IwI<h<1 then
2x+ 2/ <3x+z]and [2y + w|{ <3|y + w|. Hence, by Theorem (1.8), there are

constants K 21 and d, =20 such that

M,(t2x2y)<k | [M(t3(x+2)3(y+w)J,(2)J,(w)dzdw

E" EN



for all x and y such that |x|>d, ,

y|=d, and d, =max(d,,2).On the other
hand ,by theorem (1.10), there is a constant K,>2, o,(t)>0and
0, (t) 2 0such that for almost all ¢ in T

[ [M@3(x+2)3(y+w)J,(2)J,(w)dzdw< K ;M , (t,x,y)

on gn
for all x,y,z,wsuch that |x+z>,(r) and|y + w| > 5, (r) where |z|<h and
W/ <h By combining the above two inequalities, we achieve

M, (t2x2y) < KK M ,(t,x,y)
for all x| >max(d,,d,(t)+ h)=5,(t) and |y|>max(d,,d,(t)+h)=35,(t).
Since M (¢,26,(1),26,(t)) is integrable over T ,this yields the integrability
of M,(t,28/(t),258,(t)) which proves the theorem.m

For each ¢ in T and x,y in E" it is known that
IimM , (t,x,y)=M(t,x,y).

h=0
However, the same property does not hold in general for
M ,(,x,y) . This is the point of the next theorem.
Theorem 2.3:

For each h>0let x; and y; be the minimizing point of M, (¢, x, y)
defining M ,(t,x,y). Then for each ¢ in T and each x, yin E" there exists
K(t,x,y) such that

limM , (¢, x, y) =M (t,x, y) + K(1, x, ) limlx

h=0

liml g
Proof:
By the definition of M ,(,x,y) we can write
Mh(t,x,y)—M(t,x, V)<

(2.2.1)



M, x+x}+z,y+yt +w)—M(t,x! +2,, +w)—M(t,x,y)‘

I

E" E"

J, (2)J, (w)ydzdw
However, we know that
\M(z,x+ X!z, y YA w) =M@, X!+ 2,y +w) =M (¢, x, y)\ (2.2.2)
S‘M(r,x+x(’; +z,y+ye+w) —M(,x, y)‘
+[M (1, x] + 2,y + W)= M (2, w)| +|M (1,2, )|
Moreover , since M (t,x,y) is a convex function, it satisfies a Lipshitz

condition on compact subsets of E” (see[4,Th.5.1]).Therefore ,there

exists K, (t,x,y) and K,(¢,x,y) such that

‘M(t,x+x(’} +Z,y+ yo +w)—M(t,x, y)‘SKl(t,x, y)‘xé’ +z‘

yi+ w\. (2.2.3)

and
M (t,x5 + 2, 5 +w) = M (t,2,w)| < K, (&, %, y)|xs |6 |- (2.2.4)
If we combine (2.2.3) and (2.2.4) with (2.2.3) and if we substitute the

resulting expression into (2.2.1), we achieve the inequality

‘Mh(t,x,y)—M(t,x,y)‘S‘x{{‘

y:; (Kl(taxa }’)+K2(t,x,)’))+

[T xe|K @ a2 (wydzdw+ [ [ |ve| K (x, p)eld ()T, (w)dzdw+
E" E" E" E"

[ [K@tx 2w ()] (wydzdw+ [ [M(t,z,w)J,(2)], (w)dzdw

EME"
Since the last four integrals on the right side tend to zero as A tends

to zero, we prove the theorem by setting

Kt x,y)=K,(t,x,y)+K,(t,x,y)

Corollary 2.3:



Suppose M(t,x,y)is a GN*-function such that
M(t,x,y)=M (t,—x,—y).
Then for each #in T and x, yin E” ,we have
lgg)th(t,x, y)= M(r, X,y)

Proof:

This result is clear since lim‘x(’}‘ =0 and lim‘y(’;‘ =0
h=0 h=0

ifM((t,x,y)=M (t,—x,—y) .In fact, if M (¢,x, y)is even in x and y then the
x¢ =0and y! =0 for all /.m
For each 7 in T let A, denote the set of minimizing points of
M, (t,x,y) and let B represent the null space of M (z,x,y)relative to
pointsin E"XE" ,i.e.,
B={(x,y) in E"XE":M(t,x,y)=0}.

If M(t,x,y)is a GN*-function, then B={(0,0)}. For the sake of argument,
let us suppose that M (¢,x,y) has all the properties of a GN*-function
except that M (¢,x,y)=0 need not imply x=0and y=0. We will show

the relationships that exist between A, and B. This is the content of the
next few theorems.

Theorem 2.4:

The sets B and A, are closed convex sets.

Proof:

This result follows from the convexity and continuity of M (¢,x,y)in x

and y foreach tin 7.m
Theorem 2.5:
Let B, ={(x,y): M (t,x,y)<e}for each tin T. Then given any >0,

there is a constant /s, >0. such that A, € B, foreach h < h, .

Proof:



Since B ¢ B,, we can choose &, sufficiently small so that if (x,y)is
in B then (x+z,y+w) is in B,for all (z,w)such that IzI<h, and

lwl<h,. Let z, and w, be arbitrary but fixed points in A,,h<h, . Then

M,(t,z,,w)SM,(t,x,y)
for all x and y . Therefore, if (x,y) in B, we have M, (t,z,,w,)<eby our
choice of h,. Letting A tend to zero yieldsM (¢, z,,w,)<e, 1.e.,(z;,w,) 1In
B,.
We have commented above that A, ={(0,0)} if
M, x,y)=M (t,—x,—y).
It is also true if M(t,x,y) is strictly convex in x for each 7 in 7.
Theorem 2.5:
Suppose M(t,x,y) is a GN*-function which is strictly convex in x and y

for each t. Then h, A, ={(0,0)}for each .

Proof:

Suppose that there exists z, #x, and w, # Y, such thatx,, y,, z,andw,

:(xo +2) W :(yo +wp)

are in4,. Let z, > , W 7

. Then, since M (t,x,y) is

strictly convex, M, (t,x, y) 1s strictly convex in x and y, therefore,

we have
1 1
Mh(t’zl’wl)<§Mh(t’x0’y0)+§Mh(t’ZO’WO)' (2.5.1)

However, (x,,y,),(z,,w,) are in A, reduces (2.5.1) to the
inequality M, (t,z,,w,) <M, (t,x,y)for all x and y. This means z,
and wyare in A, and (x,,y,),(z,,w,)are not in A, which is a
contradiction. ~ Hence,x, =z,,y, =w,.Since ~ M(t,x,y)is a

GN*function, B=1{(0,0)} . In this case x,=y,=0, z,=w, =0 .
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