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A B S T R A C T 

With the rapid development that the world has witnessed in all scientific fields, data analysis 
has become more complex due to the large size of collected data that needs to be analyzed. 
Because of that the data analyst needs a powerful tool to deal with such that kind of data and 
this is why the dimension reduction methods have developed. In this paper, we focuses on 
minimum average variance estimation as powerful dimension reduction tools to analysis of 
ischemic stroke for sample of patients under some covariates. The aim of this paper is to 
determine the most important covariates that affect the size of ischemic stroke as response 
variable. 

And the results indicated that the SMAVE method is the best method for prediction of the 
future ischemic stoke volume. 

https://doi.org/10.29304/jqcsm.2024.16.41801 

1. Introduction 

      The curse of dimensionality is very popular situation which captured the attention of many data analyst in 

various fields of sciences, such as, genetics, biology, finance, biomedicine, and the social sciences. Recently, with the 

development in computational procedures, very large datasets are conventionally collected in different fields of 

sciences. These datasets usually are with high dimension. So, the dataset with more variables is classified as high 

dimension dataset, which is usually more than the observations. Because of high dimensionality problem, the 

traditional and classical statistical methods are no longer applicable to analyze these high dimensional dataset by 

reason of the complicated structure of high dimensional dataset which is yields poor fitted model in regression 

analysis, Sheng and Yin (2006), Cook and Ni (2005) . 



2     Mohammed .H.AL-Sharoot, Sanaa.J.Tuama, Journal of Al-Qadisiyah  for Computer Science and Mathematics VOL.16.(4) 2024,PP. STATIC 11–17

 

 So, to reduce the high dimension of the underlying dataset, the sufficient dimension reduction procedure is the 

solution. The key idea of the sufficient dimension reduction is made to reduce the high dimension of covariates 

while keeping all the important information in the fitted regression model, Li and Wang, (2007).  

As long as we focus in this paper on the regression model analysis, we will review the sufficient dimension reduction 

topic within the context of regression analysis; it is well-known that any violated of Gauss-Markov assumptions, the 

ordinary least square method will yields high variance estimators in case of presence the high dimensionality 

problem. To overcome the problem of high dimension, subset selection procedure to the underlying datasets has 

applied in many studies. So, the feature extraction method that represented by sufficient dimension reduction will 

be used in this paper. Other variable selection methods have studied as dimension reduction methods, such as, lasso 

method, Tibshirani (1996). the adaptive lasso method, Zou, H. (2006), elastic net method, and so on. Also, ridge 

method by Hoerl and Kennard (1970).  has studied by many authors to address the problem of linearly dependence 

between the covariates (multicollinearty) that caused by the high dimensionality in the underlying datasets. 

Consider the following multiple linear regression model, 

   (          )      …(1) 

Model (1) used to extract the information from the underlying dataset based on the dependence (   ) of     , the 

response variable, on  -dimension   (       )
  vector of covariates, where ϵ is the error term satisfy, 

 (   )   . 

So, our goal in using the sufficient dimension reduction technique in regression model (1) is to reduce on the  -

dimension covariates into  -dimension, where    , without losing any important information from the underlying 

dataset. In this paper, we consider the central mean subspace method of feature extraction which is named, 

Minimum Average Variance Estimator (MAVE), and Sparse Minimum Average Variance Estimator (SMAVE).  

Xia et al. in 2002, proposed MAVE method as adaptive method in semiparametric regression model to reduce the 

space of dimension in high dimension dataset. Also, Hastie and Tibshirani in 1986(3) and Friedman and Stuetzle in 

1981 studied how the functional approximation of the underlying regression dimension model can reduce the high 

dimension of  . In 1991, Li proposed the sliced inverse regression as reduction of   without any assumption about 

the regression function  (   ). Principle component analysis is one of the most popular dimension reduction 

method, see Jolliffe in 2002 more information. Alkenani and Rahman in 2021 introduced (SMAV-EN) as dimension 

reduction method, this proposed method employed the penalized variable selection elastic net method. Also, in 

2020 Rahman and Alkenani proposed the SMAVE penalized with adaptive elastic net as dimension reduction 

method. Moreover, in 2013, Alkenani and Yu studied the curse of dimensionality through employing some of 

variable selection methods, such as, adaptive lasso, Lasso, SCAD, and MCP with MAVE method. 

Cook and Li in 2002 studied the dimension reduction problem in mean regression analysis  (   ) based on the 

theory of central mean subspace, see Li in 2007 about the sparse sufficient dimension reduction estimator in 

regression model with starinkage method.  
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Motivated by the recent literature review and development of dimension reduction methods MAVE and SMAVE, we 

analyzed the regression model for ischemic stroke data to identify the important Covariates that effect the volume of 

ischemic stroke in a sample of patients. 

2. MAVE Method 

MAVE method essentially proposed to solve the high dimension problem in model (1) under the condition  

       . In model (1) the regression function  ( ) is unknown function defined on  -dimension covariates space. 

Based on the notion of sufficient dimension reduction, we interested in finding           
  such that   regress 

on    in linear combination   
       

  . Here, the dimension reduction matrix is      , where the matrix   

represents the linear combinations   
        

   of predictor variables which are orthogonal. So, based on the 

definition of central Subspace, the column space of matrix   is dimension reduction space for the conditional mean 

 (   ). Consequently, the smallest such that column space is named central mean space, denoted by   (   )   Here, 

we will focus on MAVE method to estimate   (   )   

Again, in model (1) if there is no pre-asumptions about the form of the regression function  ( )   (     ), then 

the suitable  choice to handle with the function  ( ) is the nonparametric technique. Now, we can rewrite the model 

(1) and in dimension reduction perspective as follows, 

   (   )   ……..(0) 

Where  ( ) is the unknown link function, and      orthogonal matrix with     under  (   )   . 

 If the conditions of model (2) are met, the projection of  -dimension   onto  -dimensional subspace     takes all 

the informatio which provided by  , see Xia et al. (2002) for more information. The   estimation is the solution that 

can be define by, 

 min , *     (     )+ -       ( ) 

With 

   (   )  , *     (     )+     -. 

 

So, we can rewrite the minimization problem in (3) as follows, 

      ,   (   )-,        …(2)  

Subject to constraint the     = I. The minimization problem in (4) is called MAVE. 

Based on nonparametric methodology, one can use the local linear expansion to approximate the function 

 ( )   (    
  ) for the observations of sample (   ). 

For a specific value of an observation,    , the local linear expansion value of      can be define as follows, 

 (    
   )     

   (     ), ... (5) 
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where     (    ) and    = ( ( )      ( )),  such that  ( )  is the partial derivative of    (         ) with  respect 

to   , where   
         

  =    ,        .  

Therefore, the minimization problem in (3) can be found based on (4) and (5) as follows, 

 

  =           {∑     
 ̂ 

   (    ) + 

= min {∑ ∑ (    ̂
 
   

 
   )     +          ( ) 

 

where ŷ =      
   (  

    ),      
  (        ), and  

      
  ( 

 (      ))

∑   ( 
 (     )

 
   

 

Here,  ( ) is the product kernel function under       vector of bandwidth. See Xin et al. in 2002 and Shi, in 2009 for 

more information. Finally, the minimization problem in (6) represents the MAVE method. 

3. SMAVE method  

Sparse MAVE method is another dimension reduction method that adds the penalized lasso method to the 

minimization problem in (6). This method developed by Wang and Yin in 2008 to overcome the difficulty of 

interpretability in MAVE method. The Sparse MAVE minimization problem can be written as follows, 

 

          (∑∑ (   *  ̂    ̂( ̂     ̂      )
 (     ) + -

     
 

   

 

   

     )                                                ( ) 

 

Where       ⌈ ̂
 (     )⌉ ∑   ⌈ ̂

 (     ) -⌉
 
   and λ > 2  is the shrinkage parameter which can be estimated 

by the gentralized cross validation. See Wang and Yin in 2008 for details about the sparse MAVE algorithm. 

Moreover, to estimate  -dimensiona) of   , the Bayesian information criterion has been used, 

BI     .
    

 
/  

 

   
  ( )   

Where,  

    ∑ ∑ (   *  ̂    ̂( ̂     ̂      )
 (     ) + -

    
 
   

 
    , is the residual sum of squares. 

4. Real data analysis 

A simple random sample of 235 observations was taken from the laboratory   division at the Al-Diwaniyah teaching 

Hospital. This sample contained the important information about the patients of ischemic stroke which identified 

according to the vision of doctors specializing in neurological specialization. From statistics point of the view, we 

can study the relationship between the size of ischemic stroke as dependent variable and some covariates (smoking, 
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gender, age, weight, blood pressure, D-dimer analysis, cholesterol, Covid-19 infection, hospitalizations, place of 

residence, marital status, and educational attainment) and the goal is to identify the most influential covariates on 

the changing in dependent variable. The following tables and figure are obtained by implementing the MAVE and 

SMAVE algorithm through the R-packages. Table (1) summarized the results o parameters estimates that obtained 

by using MAVE and SMAVE methods.  

Table 1 : Parameters estimates by ( MAVE , SMAVE ) 

Variable MAVE SMAVE 

Age 0.4558 0.3847 

Gender 0.1023 0.0003 

Weight 0.2089 0.1852 

Marital Status 0.0078 0.0014 

Smoking Status 0.3574 0.3011 

Blood Pressure 0.5023 0.4537 

Diabetes 0.2561 0.0005 

Educational Attainment 0.0005 0.0024 

Cholesterol 0.4057 0.3228 

Location 0.0003 0.0006 

D_DIMER 0.5582 0.5016 

Hospitalizations 0.0008 0.0007 

 

The age estimate is (0.4558) using the MAVE method, while SMAVE gave a slightly lower value (0.3847), both 

indicating a positive association with the response variable. For the gender, in MAVE method the estimated value 

was in average difference (0.1023), while in SMAVE nearly zero this variable (0.0003), which indicates that SMAVE 

considers the gender variable to be less influential. For weight variable, both methods gave positive values, with 

MAVE (0.2089) and SMAVE (0.1852), indicating a positive effect. For marital status, it was close to zero in both 

methods and that indicating a non-significant effect. Smoking status maintained relatively high values in both 

methods, showing a positive effect on the outcome, with MAVE (0.3574) and SMAVE (0.3011).  

In contrast, blood pressure also had a positive effect, achieving the highest value (0.5023) using MAVE, while SMAVE 

gave a slightly lower but positive value (0.4537). For the diabetes variable, the two methods showed noticeable 

differences. MAVE gave a positive estimate (0.2561), while SMAVE almost eliminated its effect (0.0000), which 

reflects SMAVE's tendency to exclude this factor. Academic achievement was considered similarly ineffective, with 

values close to zero for both methods (0.0005 for MAVE and 0.0000 for SMAVE). Cholesterol showed a consistent 

positive effect, with MAVE providing a higher estimate (0.4057) compared to SMAVE (0.3228). For the place of 

residence variable, both methods yields estimates close to zero (0.0000 for both MAVE and SMAVE), indicating no 

significant effects on the response variable. D_DIMER was one of the most influential variables, showing high 

positive values in both methods (0.5582 for MAVE and 0.5016 for SMAVE), showing a strong association with the 

response variable. Finally, the number of hospitalizations yielded low values in both methods (0.0008 for MAVE and 

0.0000 for SMAVE), suggesting a limited effect.  
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Figure 1 : Shows estimated parameters of variables using methods (MAVE , SMAVE) 

 

From Figure 1, we notice that the MAVE and SMAVE methods behave similarly. MAVE tends to maintain a small 

effect across a larger number of variables, while SMAVE shows a stronger tendency to zero out or reduce the effect 

of less important variables, which characterizes it with a greater ability to select influencing factors with greater 

emphasis. In table 2, we summarized the values of adjusted R-squared or different fit models.   

Table 2 : Adjusted R-squared values or different models 

Model MAVE Adjusted R² SMAVE Adjusted R² 

Linear 0.725 0.785 

Quadratic 0.845 0.895 

Cubic 0.810 0.870 

Quartic 0.820 0.880 

 

From the table above, we note that the SMAVE method consistently outperforms the MAVE method across all 

models: linear, quadratic, cubic, and quaternary. In the quadratic model, SMAVE achieves a higher Adjusted R² value 

(0.895) compared to MAVE (0.845), indicating a better ability in explaining nonlinear structure of the relationship 

between the response variable and function form of the covariates in terms of SMAVE method. The 

prediction error values have listed in following table. 

Table 3 : Prediction error of estimated models 

Method Prediction Error 

MAVE 0.1075 

SMAVE 0.0775 
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As we know the prediction error is a measure used to assess the predictive ability of the estimated model. Table 3, 

above shows the prediction error values for both the MAVE and SMAVE methods, where the SMAVE method shows a 

lower error of 0.0775 compared to the MAVE method which achieves a higher value of 0.1075. This reduction in 

prediction error reflects the efficiency of SMAVE in providing more accurate and reliable estimates with  ̂( )   ( ), 

this making SMAVE the preferred method in this analysis.  

  5. Conclusions 

In this paper, we investigated the problem of high dimensionality that occurs in covariates. The MAVE and SMAVE 

have studied in some details as methods for sufficient dimension reduction. The goal of this study was to apply the 

sufficient dimension reduction methods (MAVE and SMAVE) on the relationship of ischemic stroke dataset, where 

the volume of the ischemic stroke is the response variable on some covariates to identify the most important 

predictor variables that effect the response variable. The results of parameters estimates under MAVE and SMAVE 

show sparse solutions and great interpretability of these methods for the underlying dataset. Also, the models 

(linear, quadratic, cubic, quartic) have employed to demonstrate the ability of MAVE and SMAVE in representing 

true model and therefore the quadratic model gives the highest adjusted R-squared measure. Finally, the prediction 

error measure has used to assess the prediction ability of the response variable, and the results indicated that the 

SMAVE method is the best method for prediction of the future ischemic stoke volume. 
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