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1. ABSTRACT 

In this paper ,we examine the similarities and differences between 

RBFNNs and compare the performance of learning, then we applied to the 

interpolation problem by using data of blood pressure disease which taken 

from health office in diwaniya city . 

2. INTRODUCTION  

The approximation of functions is one of the most general uses of 

artificial neural networks. The general framework of the approximation 

problem is the following: one supposes the existence of a relation between 

several input variables and one output variable. This relation being unknown, 

one tries to build an approximator between these inputs and this output. The 

structure of this approximator must be chosen and the approximator must be 

calibrated as to best represent the input-output dependence. To realize these 

different stages, one disposes of a set of inputs-output pairs that constitute the 

learning data of the approximator. 

Radial basis functions were first introduced by Powell to solve the real 

multivariate interpolation problem. This problem is currently one of the 

principal fields of research in numerical analysis. In the field of neural 

networks, radial basis functions were first used by Broomhead and Lowe . 

Other major contributions to the theory, design, and applications of RBFNs 

can be found in papers by Moody and Darken, Renals, and Poggio and Girosi 

. The paper by Poggio and Girosi[4] explains the use of regularization theory 

applied to this class of neural networks as a method for improved 

generalization to new data . 
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        The non linear approximators radial basis function networks 

(RBFN) has the advantage of being much simpler than the other networks 

while keeping the major property of universal approximation of functions [5].  

3. RADIAL FUNCTIONS [2],[3] 

Let X be a normed linear space ,a function f : X → R is said to be radial 

if there exists a function h : R
+
 → R such that f(x) =  h( ║x║)  for all  x ∈ X.                  

 A radial basis function is any translate of f; that is a function of the 

form  g(x) = f(x-θ) = h(║x - θ ║), where θ is any prescribed point of X. In 

other word , Radial functions are a special class of functions show the 

characteristic feature that their response decreases or increases monotonically 

with distance from a central point .  

4. THE NETWORK  ARCHITECTURE  

The design of a RBFN consists of three separate layers: the input layer 

is the set of source nodes ,the second layer is a hidden layer of high dimension 

and the output layer gives the response of the network to the activation 

patterns applied to the input layer. The transformation from the input space to 

the hidden-unit space is nonlinear. On the other hand, the transformation from 

the hidden space to the output space is linear [1].  

 

                  Figure 1: Radial Basis Function Network 
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Since there are varity  radial functions as follows:[1] 

(i) σ(r) = r. 

(ii) σ(r) = r
3
. 

(iii) σ(r) = r
2
log (r) (thin plate splines) (TPS). 

(iv) σ(r) = exp(-r
2
/2)(Gaussian).(G) 

(v) σ(r) = (r
2
 + c

2
)

1/2
 (multiquadric).(MQ) 

(vi) σ(r) = (r
2
 + c

2
)

−1/2
 (inverse multiquadric).(IMR) 

We obtained to varity types of  RBFNNs as follows : 

1- newrbe  ,which  has GRBF as activities function  

2- newlrbe , which has  LRBF as activities function 

3- newrbmqe , which has MQRBF as activities function 

4- newrbimqe , which has  IMQRBF as activities function 

5- newrbpcube , which has  PCUBRBF as activities function 

6- newrbplse , which has  PLSRBF as activities function 

5. TRANING OF RBFNN 

The training of RBFN can be split into an unsupervised part and a 

linear supervised part. Unsupervised updating techniques are straightforward 

and relatively fast. Moreover, the supervised part of the learning consists in 

solving a linear problem. The training procedure for RBFN can be 

decomposed naturally into three distinct stages:  

(i) RBF centers are determined by some unsupervised/clustering 

techniques. 

(ii)  Spread determined by some techniques  
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(iii) The network weights between the radial functions layer and 

the output layer are calculated. 

Several algorithms and heuristics are available in the literature regarding the 

computation of the centers of the radial functions and the weights . However, 

very few papers only are dedicated to the optimization of the spread. 

 

    In this paper we used the simplest and fastest approach which is to 

randomly select centers from the training data set and keep them constant 

throughout the training .This is reasonable provided that the training data are 

well representative of the problem . The widths for all RBFs are also fixed 

and are the same .This width can be taken as the standard deviation of the 

Gaussian function , expressed as : 

                                           σ  =  M

d

2  

   where d is the maximum distance between the selected centers .Such 

a choice for the standard deviation σ  is to ensure that RBF are neither too 

peaked to cover the whole input space nor too flat to distinguish between 

dissimilar input patterns . 

     Then , the only parameters that need to be trained are the weights 

between the hidden and output layer ,which can be computed directly by 

solving linear equations . Usually the number of training patterns is much 

larger than the number of selected centers ,so the resulting linear equations 

are over determined .A straightforward procedure for solving such equations 

is to use the pseudo inverse method to obtain a solution with the minimum 

least square error . 

6. PROPERTIES OF  RBF 

Over the past decades radial basis functions or, more generally, 

(conditionally) positive definite kernels have very successfully been used for 
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reconstructing multivariate functions from scattered data. This success is 

mainly based upon the following facts: 

(i) Radial basis functions can be used in any space dimension. 

(ii) They work for arbitrarily scattered data, bearing no regularity at all. 

(iii) They allow interpolants of arbitrary smoothness. 

(iv) The interpolants have a simple structure, which makes RBF in particular 

interesting to users outside mathematics. 

However, these positive properties do not come for free. For example, 

building a smooth interpolant using a smooth basis function leads also to an 

ill-conditioned linear system that has to be solved. Moreover, since most basis 

functions are globally supported, a large number of interpolation points leads 

to an unacceptable complexity concerning both space and time. 

For these reasons recent research concentrated on resolving these 

problems. Fast methods for evaluating and computing an RBF interpolant 

have been developed and thoroughly investigated. Smoothing techniques have 

been employed to regularize ill-conditioned systems and to smooth out 

measurement errors. 

7. CHANGE OF BASIS  

So far, we have learned that smoothing is an adequate choice in the 

situation of highly non-uniform data sets. It also helps in the case of quasi-

uniform data sets and infinitely smooth basis functions, like Gaussians and 

(inverse) multiquadrics, since their associated interpolation matrices are 

already highly ill-conditioned in that particular situation for moderate 

separation distances. Unfortunately there exists no theoretical coverage of 

error estimates in that situation, even if numerical test show promising results. 

Our final task, for basis functions of finite smoothness, is to deal with 

the case of really dense data sets. PTS is piecewise smooth RBF but G, MQ 

,IMQ are infinitely smooth RBF. We recall that G, IMQ(inverse 

multiquadrics) and W2(wendland compactly supported ,                                   
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i.e. ф(r )= (1-r)
4 

+ (4r+1) are positive definite (PD), i.e. the 

corresponding collocation matrix A is positive definite for every choice of the 

(distinct) interpolation nodes, while TPS and MQ are conditionally positive 

definite (CPD). (note: Where A defined in linear system Ac=f (interpolation 

equations)and is symmetric matrix, usually termed collocation matrix of the 

RBF (see figure 2) several forms of φ  are used for RBF models.   

Amongst these, the Gaussian is probably the most popular basis 

function because it has attractive mathematical properties of universal and 

best approximation and its hill-like shape is easy to control with the parameter 

σ.  

Also Gaussian basis Functions are quasi-orthogonal , the product of 

two basis functions, whose centers far away from each other with respect to 

their spreads , is almost zero. 

 

a) Thin-Plate(2-d)                              b) Thin-Plate (3-d) 

      rlogr)r( 2=φ                                    
3r)r( =φ  

                                                                           

 c) Gaussian                                   d) Compactly Supported                                         

     
22 /re)r( σ=φ                                  φ (r )= (1-r)

4
 + (4r+1) 

  Figure (2): Comparison of different types of radial basis function . 
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While the thin-plate spline embedding function does indeed minimize 

bending energy, it has the following drawbacks in computation and usefulness 

for user interaction : 

1. O(n
٢
) computation in required to build the system of equations . 

2. O(n
2
) storage is required (for the nearly-full matrix) to represent the 

system. 

3. O(n
2
) computation is required to solve the system of equations. 

4. O(n) computation is required per evaluation  

5. Because every known point affects the result, a small change in even 

one constraint is felt throughout the entire resulting interpolated 

surface ,an undesirable property for shape modeling.  

8. APPLICATION AND RESULTS   

We obtained  data about blood pressure disease , divided  according to 

months of year , age and sex as table (1) 

Age  0-4 5-14 15-44 45-65 65- 

    Sex 

Month  

male female male female male female male female male female 

 1 0 0 0 0 16 14 19 17 14 13 

2 0 0 0 0 34 20 42 55 37 43 

3 0 0 0 0 51 49 43 80 102 85 

4 0 0 0 0 38 33 82 82 85 69 

5 0 0 0 0 34 39 75 67 65 60 

6 0 0 0 0 40 36 66 78 82 72 

7 0 0 0 0 36 40 60 60 84 77 

  

              Table (1) : Data of blood pressure disease 
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    In order to obtain the function f (month , age ,sex) = number of sick , we  

split the data set in to two parts according to given ratio 75:25 for training and 

test , respectively and trained all RBFNN as in section 5 . 

     The mean square error (MSE) of RBFNN with different types of RBF , 

introduced in table ( 2),we conclude that RBFNN when we use IMQRBF 

,GRBF and LRBF  give best accurate interpolation among all types of RBF. 

 

Networks 
MSE of 

training set 

MSE of 

testing set 

Newrbe 1.5529e-027 7.1204 

Newlrbe 5.2849e-026 11.1944 

Newrbimqe 4.7073e-027 7.0011 

Newrbmqe 8.8349e-025 14.4156 

Newrbpcube 3.2859e-023 16.4996 

Newrbplse 2.1033e-026 26.1259 

 

                   Table (2): MSE of RBFNN with different types of RBF 

 

9. CONCLUSIONS AND RECOMMENDATIONS 

In this research  We reached  to  that results of theoretical study similarly to 

results of practical  study and from this we Conclusion   , we can say that 

GRBF introduced best results then IMQRBF and then LRBF compared by 

results of other types ,therefore we recommend to :  

1- Using GRBF neural networks  in approximation problems , in particular in 

case  of expectation  . 

2- We can generalize the design of network in solution of expectation 

problems for another  cases of  disease  , and no restrict to blood pressure 
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disease . This useful to ministry of health to ensuring sufficient remedy and 

sufficient medical cadre  beforehand and without  squander. 
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