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A B S T R A C T 

Multimodal fusion in healthcare has emerged as a powerful tool for integrating diverse data 
sources, including medical images, sensor data, and clinical records, to enhance diagnostic 
accuracy, treatment planning, and patient monitoring. However, existing surveys need more 
discussion of the technical details of proposed multimodal fusion approaches and their 
practical applications. Therefore, we propose a comprehensive survey on using multimodal 
fusion in healthcare applications. It provides an in-depth examination of the current 
landscape, discussing key developments that have propelled the field forward as well as 
ongoing challenges that researchers and practitioners continue to overcome in their efforts to 
realize the full potential of this technology. The survey explores the fundamentals and core 
concepts underlying multimodal fusion, explores the methods and techniques that have been 
developed, and examines the broad applications in various healthcare domains. Moreover, it 
provides a detailed discussion of the multimodal deep learning classification pipeline, 
highlighting the critical steps involved in pre-processing, feature extraction, information 
fusion, and model evaluation. Furthermore, the survey critically analyzes the data integration 
challenges that remain significant obstacles and identifies promising future directions that 
hold the potential to shape the future of this rapidly evolving field. 

https://doi.org/10.29304/jqcsm.2024.16.41810 

1. Introduction 

1.1. Overview 

Integration of various data modalities has become an important component of high-tech research in the quickly 
developing field of medical diagnosis and prognosis. Multimodal protrudes as a particularly exciting paradigm, 
harnessing the special capabilities of various data sources to reach higher predictive performance[1], [2]. To deliver 
an in-depth and sophisticated analysis of complex and rare diseases, the latest developments in deep learning have 
enhanced the growth of multimodal techniques. Integration of imaging, genetic, and clinical data has been achieved. 
Most researchers are attracted to discovering new and effective classification models that use multimodal data to 
contribute to increasing classification accuracy. This integration has been demonstrated in the healthcare field. The 
current study focuses on reviewing the latest models for disease prediction and diagnosis to enhance healthcare [3]. 
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One of the most important gains of multimodal classification is its ability to detect complex and unclear 
relationships between the health and disease axis [1], [4]. These models can identify complex patterns hidden by a 
single data type by integrating data from diverse sources, such as genetics, health, imaging, and more [2], [5]. This 
approach also looks very promising, especially in the field of oncology and healthcare. Recent studies have shown 
that integrating diverse data types has the potential to increase the accuracy of tumor detection [1]. Furthermore, 
integrating data from diverse sources will help address the problem of data scarcity in some medical fields, opening 
new paths in healthcare for rare diseases [2], [4]. 

However, despite the positive results of this multi-modal integration, it has some challenges. The process of 
harmonizing data that usually comes from different sources, especially in the medical field, constitutes an important 
and fundamental strategy for developing health models to integrate these different data and to ensure the efficiency, 
effectiveness and accuracy of these models [2], [5], [6]. 

1.2. Motivation 

Over the past decade, numerous studies have shown significant improvements in diagnostic accuracy by integrating 
diverse healthcare data sources such as patient imaging, medical records, and genomic data [7]. This is evident from 
the growing interest and significant growth in studies and research on multimodal medical data classification, as 
shown in Figure 1. This figure indicates a rapidly advancing promising field with enormous potential to 
revolutionize healthcare.  

Despite these significant advances in AI, especially over the past decade, integrating such diverse data sources still 
poses significant challenges, including data heterogeneity, privacy, and other computational requirements [39].  

This study aims to address these shortcomings by providing an in-depth review of the state-of-the-art multimodal 
fusion techniques, including input-level, feature-level, and decision-level fusion, and their applications in healthcare. 
By providing a comprehensive discussion of both the technical foundations and anticipated shortcomings of these 
approaches, this study aims to guide future research to help healthcare researchers significantly improve diagnostic 
accuracy and treatment outcomes. 

 

Figure 1 Multimodal medical data classification per year 

 

1.3. Definitions and Terminology 

 Multimodal Fusion: Mentions the mechanism by which various data sources are combined to improve the 
analysis and clarification of information. Combining genetic, sensor, electronic health records (EHR), medical 
imaging, and other types of medical data [7]. 
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 Deep Learning: In artificial intelligence, deep learning is a newer extension of machine learning that deals with 
neural networks that can learn on their own from unlabeled or unstructured data. It has revolutionized medical 
image processing and has become a powerful and invaluable tool for achieving multimodal fusion. Deep learning 
has evolved into a useful tool for healthcare and other fields. Due to the amount and proliferation of data, some 
new challenges have emerged that deep learning has been able to play a major role in addressing [8], [9], [10]. 

 Early Developments: Baseline approaches to data integration in healthcare were predominantly focused on 
combining simple datasets, primarily structured data from EHRs and basic imaging data[11]. 

 Advancements in Technology: The advent of advanced imaging techniques and the proliferation of wearable 
technology have contributed extensively to the volume and variety of data available. This has necessitated the 
development of more sophisticated data fusion techniques[12]. 

1.4. Key Concepts 

 Data Heterogeneity: The heterogeneity of data, which includes differences in data format, scale, and temporal 
alignment of datasets, is one of the main obstacles to multimodal fusion [13]. 

 Feature Fusion: This involves the integration of features extracted from different modalities, which can occur at 
various levels—early, intermediate, or late—depending on when the integration happens during the data 
processing pipeline [5]. 

 Model Integration: Discusses the various frameworks and algorithms used to integrate the learning models 
tailored for each data type, enhancing the decision-making process in clinical settings[1]. 

 

2. Methods and Applications of Multimodal Fusion in Healthcare 

Traditional fusion methods primarily leverage classical image processing techniques and basic machine 
learning models to integrate data from multiple sources[4]. These methods can be shown in Figure 2  and 
categorized as follows: 

 

Figure 2 Traditional fusion methods 
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 Input Fusion: Also known as early fusion, this method involves combining raw data from different sources 
before any processing or analysis is done. Challenges such as spectral degradation or registration errors often 
accompany input fusion, particularly when merging imaging data from various modalities. 

This technique often requires extensive pre-processing to align and normalize the data to prevent the dominance 
of one type in the analysis. For example, in neuroimaging studies, MRI and PET scans can be combined at the pixel 
level to give a comprehensive view of both anatomical and metabolic information, which can aid in the early 
diagnosis of some neurological diseases. This can be represented as:  

Ffused = ⨁ (F1, F2, …, Fn) Where: 

 Ffused is the fused input data. 

 ⨁ Denotes the fusion operation, which could be concatenation, summation, or another method 
depending on the data characteristics. 

 Fi is the feature vector extracted from the n modality. 

 n is the modality number. 

 Feature-Level Fusion: This type occurs after the initial feature extraction, where features from different media 
are combined before entering the final classification or prediction model. This method, which can be 
implemented through single-level fusion, hierarchical fusion, or attention fusion, has the advantage of preserving 
the unique information of each pattern but requires many resources and sophisticated techniques to deal with 
the high dimensions and fluctuations of the feature space. 

This method is based on preserving the information of each pattern and often uses dimensionality reduction 
techniques to manage the increasing volume of data for processing purposes. The complexity of combining these 
features from multiple sources is a significant challenge. For example, to diagnose some types of cancer, features 
from histopathological images can be combined with genetic markers to identify patterns that are more accurate 
and reliable than those derived from any single pattern. This can be represented as:  

Fhierarchical_level = ⨁ (Fearly_level, Fmid_level, …, Flate_level) Where: 

 Fhierarchical_level represents the fused feature vector. 

 (Fearly_level, Fmid_level, …, Flate_level) represent feature vectors fused at different levels of the processing 
pipeline. 

 Decision-Level Fusion: In this type, separate final decisions are made based on the data decisions derived from 
each method, and the final decision is reached by combining these multiple decisions together to form the final 
decision, often using methods such as majority voting, weighted averaging, or more sophisticated decision-
making models. This technique is particularly useful in reducing the influence of methods that may perform 
poorly or be less reliable in some circumstances.  

The benefit of late integration is most apparent when the modalities are very different or when each modality 
performs well independently but may provide complementary insights when these independent decisions are 
combined. For example, in inpatient monitoring, decisions from separate analyses such as ECG data and blood 
biomarkers may be combined to determine a patient’s heart health, with each modality providing unique but 
complementary information about cardiovascular risk. This can be represented as:  

Dfinal = fusion (D1, D2, …, Dn) Where: 

 Dfinal  represents the fused feature vector. 

 Di represents feature vectors fused at different levels of the processing pipeline. 

 Fusion could be a function like majority voting, averaging, or a learned model combining these decisions. 
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2.1. Recent Approaches 

As deep learning has grown in popularity, sophisticated multimodal fusion techniques have also developed. These 
techniques are resilient and adaptive, providing opportunities for picture categorization and reliably producing 
excellent results by managing intricate and extensive data integrations [15], [16], [17]: 

 Deep Learning Fusion: Utilizes neural networks to perform fusion at various levels. Networks may be designed 
to perform input, feature, or decision-level fusion, employing architectures that can handle vast amounts of data 
while learning representations that are more abstract and robust against overfitting. 

 Hybrid Fusion: Combines traditional and deep learning methods, where initial feature extraction may use 
traditional algorithms followed by a deep learning model that integrates these features for final analysis. This 
approach seeks to leverage the strengths of both methodologies, improving performance in complex diagnostic 
tasks. 

 End-to-End Learning: A cutting-edge approach where raw data from all modalities are input directly into a deep 
learning system that autonomously learns to extract features and perform fusion for final decision-making. This 
method maximizes the potential for uncovering novel insights from data as the model learns which features are 
most predictive and how best to combine them. 

2.2. Applications in Healthcare 

Enhancing the accuracy and range of diagnostic imaging relies heavily on multimodal fusion. Clinicians gain a 
deeper insight into the functional features of the body by combining data from different imaging modalities, such as 
MRI, CT scans, and PET [18]. This integration contributes to: 

 Advanced Disease Diagnosis: Improve clarity and dimension for the purpose of helping to diagnose some 
diseases such as cancer earlier, more accurately and reliably. 

 Precision Healthcare: Updating and modifying the treatment plan based on increasing information about the 
characteristics of the disease in each patient. 

 Enhanced Imaging Techniques: Updating and developing new imaging technologies to collect data from diverse 
sources in order to provide new and informed insights into complex diseases. 

It is worth noting that multimodal fusion has broader applications in healthcare in general. We have expanded our 
discussion beyond oncology and diagnostics to include cardiology, neurology, and rare disease diagnosis, as 
shown below. Each field poses unique challenges, and multimodal fusion has shown promising research in 
improving diagnostic accuracy in most of these areas. 

 Cardiology: In this area, the integration of diverse data can greatly enhance the diagnosis and monitoring of 
heart diseases. For example, some recent studies have shown that the integration of ECG data with MRI has clear 
potential to improve the diagnosis of conditions such as atrial fibrillation. This will greatly contribute to better 
and faster stroke risk assessment and guide physicians to more accurate, appropriate, and reliable anticoagulant 
therapies. This is important for improving the care of cardiovascular patients. 

 Neurology: The benefit of this field lies in the early detection and monitoring of neurological diseases. By 
integrating data from diverse and different sources for the same patient such as MRI, PET scans, and clinical 
assessments, healthcare providers can gain a clearer and more comprehensive view of neurological conditions, 
enhancing early intervention strategies and patient care management. 

 Rare Diseases: This field often lacks comprehensive data, making diagnosis extremely difficult, as we saw in the 
previous COVID-19 pandemic. Multimodal integration can bridge this gap by combining genomic data, clinical 
observations, and diagnostic imaging, facilitating more accurate diagnoses and personalized treatment plans, 
which are often critical for these patients. 
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2.3. Treatment Planning and Management 

Effective treatment planning is a critical contributor to multimodal integration [19]. This integration allows: 

 Optimize Treatment Protocols: Using comprehensive, multiple data sets helps design personalized treatment 
plans that improve outcomes and reduce side effects. 

 Monitor Treatment Efficacy: Track treatment progress over time by comparing diverse data sources, such as 
changes in imaging studies correlated with biomarker levels. 

 Support Surgical Interventions: Enhance surgical precision through advanced visualization techniques that 
combine real-time imaging data with physiological data during procedures. 

 

2.4. Monitoring and Preventive Medicine 

Multimodal fusion can facilitate enhanced patient health status monitoring by merging data from wearables, 
medical records, and other sources. This can help identify possible health problems early on and enable focused 
preventive interventions [14]. Additionally, the incorporation of multimedia data can significantly improve 
healthcare research and development; a few publicly available multimodal datasets are shown in Table 1.  

 

Table 1 - An inventory of multimodal datasets. 

Dataset Body Organ(s) Medical Diagnosis EHR 

OASIS Brain Alzheimer’s Disease Available 

SPC Skin Skin Lesion Available 

TCGA rain, Lung, etc Common Cancer Disease Available 

ABIDE Brain Autism Spectrum Disorder  Available 

ADHD-200 Brain Attention Deficit Hyperactivity Disorder Available 

ADNI Brain Alzheimer’s Disease Available 

TCIA Brain, Breast, Lung, Kidney, etc. Common Cancer Disease Available 

PDBP Brain Parkinson’s disease Available 

 

2.5. Multimodal Deep Learning classification pipeline 

Deep learning combined with multimodal biomedical data fusion is rapidly evolving, with different terminologies 
creating potential ambiguity. As seen in Figure 3, a five-stage pipeline suggested by [21] offers an organized 
framework for multimodal medical classification tasks in order to solve this. 

 Pre-processing is crucial for improving the effectiveness of deep learning. It incorporates methods such as 
cropping, denoising, picture registration, and feature selection. Data augmentation avoids overfitting and 
enhances generalization. 

 Deep learning backbone: The most frequently used pre-trained models were InceptionV3, ResNet50, and 
VGG16. High-performance network architectures, such as VGG and ResNet, extract high-dimensional features. 
The development of GPUs, TPUs, and large datasets like ImageNet has propelled deep learning's adaptability 
across domains[15]. 

 Information fusion: Key for combining data from different modalities. Fusion can be input, intermediate, or 
output level, employing pooling or complex fusion techniques. 

 Final classifier: Generates classification results based on multimodal features. Common classifiers include Fully 
Connected layers, SVM, Random Forest, and Score Merge. 
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Figure 3 Multimodal classification pipeline 

 Evaluation metrics: Accuracy, which is the percentage of correct predictions, is the most used measure in 
classification tasks. Similar to the single-modality tasks, metrics such as accuracy, sensitivity, specificity, 
precision, F1 score, AUC, and kappa are used to evaluate performance, with a set of results summarized in Table 
2. 

2.6. Quantitative Analysis of Multimodal Fusion Technique 

In this section, we discuss the comparative effectiveness of different multimodal fusion techniques in healthcare 
applications. Through a quantitative analysis of different fusion techniques, we aim to identify the techniques that 
provide the most reliable performance metrics across comparable datasets. 

Dataset selection: We selected studies with similar characteristics—with a focus on Alzheimer’s disease—where 
each dataset included similar numbers of subjects and used comparable diagnostic methods, ensuring a balanced 
comparison. 

Fusion techniques: We considered including most fusion techniques, such as input fusion, single-level fusion, 
hierarchical fusion, and output fusion. 

Performance metrics: Key metrics such as accuracy, sensitivity, and specificity were considered. These metrics are 
essential for assessing diagnostic effectiveness in clinical settings. 

Tabulated results: Table 2 below provides a clear comparison of different studies using different fusion techniques. 
This table not only lists the performance metrics, but also puts them in context within a systematic scope where 
each study and its dataset size are summarized as studies were selected from 2014 to 2023. 

 

Table 2 - A comparison between the outcomes of several fusion techniques. 

Research Year Fusion Methods Dataset NC vs. AD 

[17] 2014 Single-level Fusion 398 subjects Accuracy: 95 % 

[18] 2015 Input Fusion 331 subjects 

Accuracy: 91 % 

Sensitivity: 92 % 

Specificity: 90 % 

[19] 2017 Single-level Fusion 202 subjects 

Accuracy: 97 % 

Sensitivity: 95 % 

Specificity: 98 % 

[20] 2019 Single-level Fusion 392 subjects 

Accuracy: 98 % 

Sensitivity: 96 % 

Specificity: 95 % 

[36] 2020 Hierarchical Fusion 500 subjects 
Accuracy: 95 % 

Sensitivity: 94 % 
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Specificity: 97 % 

[37] 2020 Output Fusion 398 subjects 

Accuracy: 99 % 

Sensitivity: 96 % 

Specificity: 99 % 

[21] 2021 Input Fusion 381 subjects 

Accuracy: 94 % 

Sensitivity: 93 % 

Specificity: 94 % 

[22] 2022 Input Fusion 370 subjects 

Accuracy: 93 % 

Sensitivity: 94 % 

Specificity: 82 % 

[23] 2022 Single-level Fusion 959 subjects 

Accuracy: 98 % 

Sensitivity: 99 % 

Specificity: 98 % 

[38] 2023 Hierarchical Fusion 227 subjects 

Accuracy: 97 % 

Sensitivity: 98 % 

Specificity: 98 % 

 

3. Challenges and Future Directions 

3.1. Data Integration Challenges 

Multimodal data fusion faces significant challenges in integrating diverse data types, each with unique formats, 
scales, and quality[24], [25]: 

  Data Compatibility: Data compatibility issues arise due to the diverse formats, scales, and sources of healthcare 
data. One effective solution to this problem is the use of standardized data integration frameworks that can 
automate the transformation and normalization processes. 

○ Example: Implementing the Health Level Seven International (HL7) standards for electronic health data 
facilitates the seamless integration of data from different healthcare systems and devices, ensuring that the 
fused data is homogenous and interoperable. 

  Data Privacy and Security: Data privacy remains a major challenge, especially with the increasing use of 
sensitive medical data [40]. Some advanced encryption methods and privacy-preserving techniques are crucial in 
addressing these concerns. Below are some solutions that can help address these challenges: 

○ Federated Learning: This is a powerful and promising approach in which machine learning models are 
trained across multiple decentralized devices or servers holding local data samples, without sharing them. 
This method ensures that sensitive data remains on local devices, reducing privacy risks while simultaneously 
harnessing the collective power of data. 

○ Differential Privacy: Incorporating differential privacy into data processing ensures that the privacy of 
individual data entries is maintained when aggregated data is used in machine learning models. This method 
adds some noise to the data in a way that prevents the identification of any individual's data while not 
affecting the overall quality of the information. 

○ Homomorphic Encryption: This technology encrypts data and processes it in its encrypted form, allowing 
the data to be used in calculations without revealing it. Healthcare organizations can analyze patient data 
without knowing the encrypted data and use it for research and clinical purposes without compromising 
privacy. 

  Scalability: The massive volume of data generated from various forms of healthcare (imaging, genomic data, 
electronic health records) requires powerful and large computational resources for storage, processing, and 
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analysis [41]. This increases costs and complicates data management. To address these scaling issues, several 
solutions can be implemented as follows: 

○ Cloud Computing: Cloud computing technologies provide scalable resources for data storage and 
computation, allowing healthcare providers to leverage and adjust resources on demand. Cloud services can 
also facilitate the integration of data across different geographic locations, enhancing research and healthcare. 

○ Big Data Technologies: Big data frameworks, such as Hadoop and Spark, can help manage and process large 
data sets more efficiently. These technologies are designed to handle massive amounts of data across multiple 
computing nodes, providing the infrastructure needed to perform large-scale data analytics. 

○ Edge Computing: In this area, data is processed close to the data source rather than in a central data center. 
This approach allows for reduced latency, reduced bandwidth usage, and improved real-time processing 
capabilities of health monitoring systems, which is critical for applications such as real-time patient 
monitoring and telemedicine. 

 

3.2. Technical and Computational Limitations 

The depth of multimodal data requires advanced computational techniques that often come with a set of challenges 
[33], [34]: 

 High Resource Consumption: The processing power needed to analyze large datasets can be costly. 

 Algorithmic Efficiency: Creating algorithms capable of managing the fusion of heterogeneous data with high 
accuracy and speed. 

 Scarcity of Uniform Benchmarks: The lack of universal standards for evaluating multimodal fusion techniques 
makes it challenging to evaluate development and contrast methodologies. 

 

4. Future Directions 

In view of these issues, Upcoming innovation in the field of multimodal fusion will focus on the following 
areas: 

 Improved Algorithms: Develop advanced algorithms that are able to process data complexity, with a focus on 
minimizing processing demands. 

 Integration of Emerging Technologies: Exploring the use of evolving technologies such as quantum computing 
and blockchain to securely and efficiently process and store data. 

 Multidisciplinary Cooperation: advance innovative solutions spanning data science, medicine, etc. 

 Framework and standard development: Establishing wide-ranging frameworks and standards for data 
integration, processing, and analysis to simplify wider implementation and interoperability Standards. 

 • Patient-First Methods: Focusing on patient-centered designs that prioritize usability, accessibility, and 
personalized healthcare deliver. 

 



10     Riyadh H. AL-Mosawi, Ahmed Al-Shammari, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol.16.(4) 2024,pp.Comp 318–328

 

5.  Discussion 

Studies that used the integration of diverse data have shown high results compared to the results of a single data 
type, as the accuracy and efficiency of diagnosis for the same disease in complex or rare diseases due to the scarcity 
of data specific to the type of disease. Furthermore, the development in the field of deep learning has also 
contributed to a qualitative shift in the diagnosis and classification of diseases. Therefore, the inclusion of deep 
learning with multimodal data will deal with diversity for the patient data and thus will give greater certainty in the 
diagnosis and prediction of such diseases in the healthcare sector.  

Data integration has a pivotal role in medical diagnosis. For example, the integration of clinical data and patient 
imaging is necessary in oncology. This has contributed to improving tumor characterization and prognosis 
predictions. This approach not only enhances the precision of diagnostics but also contributes significantly to the 
integration of advanced imaging techniques and modern healthcare. 

Despite the promising developments mentioned above in the field of multimedia data, this study presents some 
challenges facing the integration of diverse data. The issues of integrating diverse data, in addition to the huge 
computational costs that require high computational resources and the complexity of the algorithm, pose significant 
obstacles to the effective integration of multimedia data. Looking forward, the researchers suggest developing more 
algorithms that are capable of dealing with the diversity of data sources. The possibility of integrating emerging 
technologies such as quantum computing may also contribute to reducing this complexity. It will provide greater 
and faster opportunities to deal with diverse information, especially in the field of healthcare, making it a very 
important and promising area of research in the coming years. 

6. Conclusion 

Our survey underscores the pivotal and promising role of multimodal fusion technologies in revolutionizing 
healthcare, particularly by enhancing the accuracy of disease diagnosis. We explored innovative models that 
skillfully manage and integrate diverse and disparate data sources, including genomic data, medical imaging, and 
electronic health records. These models have also proven to outperform traditional approaches not only by 
improving diagnostic accuracy but also by uncovering complex patterns in some rare diseases and providing 
predictive insights. Such developments contribute to the provision of broad healthcare solutions that leverage the 
unique strengths of each type of data being captured. 

The great advances in the field of deep learning have stimulated the development of advanced algorithms capable of 
dealing with the complexities associated with diverse data. This paves the way for promising, more reliable, and 
accurate medical practices and motivates researchers to develop personalized treatment strategies that promise 
greater effectiveness. 

However, the process of integrating multimodal data into healthcare presents several challenges, including data 
compatibility and integration issues and the large computational resources required. This requires significant 
investments in technological infrastructure and improvements in computational methods to improve the 
operational efficiency and speed of these advanced models. 

However, the potential of multimodal integration in healthcare is still very promising. It continues to inspire many 
researchers to enter this field, which requires collaborative efforts across disciplines to overcome the current 
limitations. Continuous research and technological advancements in this field are greatly contributing to exploiting 
the great potential offered by multimodal integration, ultimately paving the way for more accurate, efficient, and 
personalized healthcare solutions. 
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