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Abstract: This paper introduces and studies a generalization of Baskakov-Beta

operators, denotes it by 5, ., (f;x), where p € N° (N® the set of nonnegative integers).
First, we show that S“_, (f:x) is an approximate process for f ':"'-"[xj as n — o0 where

¥ & N° Next, we discuss a Voronovaskaja-type asymptotic formula for E“_, (fix).
Finally, we present a theorem which gives us an estimate of the degree of approximation

by the operator B, , (f: x].
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1. Introduction

In the resent paper, we assume that M is a constant not necessarily the same in
different cases.
For f € C_[0,®) = {f € C[0,00): [f(x)| = M(1=+t)" for some M =0, a = 0}, Gupta
[2, 3] defined the Baskakov-Beta operator &, (f(t);x) as:

(= oo

B.(0:2) = ) pes®) | RualOF @t

k=0 o
where
ik
(k+1,7n) (1+ )+l

P = ("TET ) 0T, fu(0 =3

rior(n) _(k—1)! (n—1)!

and Blken) = ey T T k-0

Recently, many researchers defined and studied deferent sequences of linear
positive operators. The results were found for these operators (i.e. order of
approximation, Voronovaskaja formula and the estimate of the degree of approximation)
are similar. For some important contributions in this directions, we refer here to [1, 4, 5].

In this paper, we define and study the following family of of Baskakov—Beta

operators:
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Clearly B, ,(f(t);x) = B, (f(t);x) whenever p = 0.

Actually, the operator B, ,(f(t];x) can be written as:

==

B, (f(t);ix) = J W, (tx)f(t)de,

]
where the kernel W,  (t,x) = X7 p,,  (x) B, o, (£).

The norm [I. || ; on the space €..[0.52) is defined as:

I7 Ol = sup 17D A+D7"

First, we give a theorem shows that EL_, (f:x) is an approximate process for
F "/(x) as n — <. Then, we discuss a Voronovaskaja-type asymptotic formula for the
operator EL_, (f:x). Finally, we present a theorem which gives us an estimate of the
degree of approximation by the operator 5, ,(f; x].
2. Basic Results

For m € N?, the m-th order moment of the Baskakov operators is defined by the

function



k ™M
A () = ziﬂn.;{[l) (; - 1‘)
F=0
Lemma 1.1 [6].
For the function 4,,,, (x), we have 4, ,(x) = 1, 4, ;(x) = 0 and there holds the
recurrence relation
nAy i1 (X) = x(1+ x) (/'t,'lm (x) + mAy i (x)), for m>1.

Consequently, we have

(i) A, (x) isapolynomial in x of degree at most 7;

(i) for every xe[0,o), 4,,(x)= O(n71m D21y where [(m+1)/2] denotes the
integer part of (m+1)/2.

For me N°, we define the m-th order moment of the operator B, , (f(t);x)as:

Ty () =B, ((1=2)"32) = 3 Py () [ Bygap () (1=x)™ dit.
k=0 0

Lemma 1.2:

For the function T, ,, (x) define above, we have:

x+p+1

Tn’p’o(x)zl. Tn,p’l(x)z and

n—1

2nx? + 2nx + 2x° +4x+2+p2 +B+4x)p
(n=-1)(n-2)

Tn,p,z(X) =

and there holds the recurrence relation
(L) (n=m=DT, , (X)) = x(1+x){ Ty pm(X)+2mT, , . (X>}

+((2m+1)x+m+ p+1) Tn,p,m(x).

Consequently, we have

@) Ty pm(X) is a polynomial in x of degree m;

(ii) for every xe[0,00), T, (x)=0(n_[(”’“)/ 2]) where [(m+1)/2] denotes the

n,p,m
integer part of (m+1)/2.

Proof: By direct computation, we get the values of T, ,,(x), T, ,;(x) and

Ty po(x).
To prove the recurrence relation (1.1), we have:
For x =0, the recurrence relation clearly holds.

For x€ (0,o0), we have



T, ()= Zp;l’k(x)v[ﬂn,kw(t)(t—x)mdt—an,m_l(x).
k=0 0

By using the following two relations:
x(1+x)py, 1 (x) = (k—nx)p, 4 (x)
tA+ 0B ki p D= P s p O ((k+ p) = (n+1D1)
we get:
x (1 +x){T,;,p,m(x) +mT, (X)) = z Ppi(X) I (k=nx) By ksp (D) (t—=x)" dt.
k=0 0

Now, using the equality k—nx =(k+p)—(n+1)t +(n+1)(t—x)+( x—p), we have
x (1+x)[ T,:’p’m(x) +mT, (X)) = z Pui(X) J- ,6’,'Lk+p(t)t(1+t)(t—x)m dt
k=0 0

+(I’L+1)Tn,p,m+1(x) + (x_p)Tn,p,m(x)'

Using the equality #(1+1) = (¢ — x)2 +(1+2x)( —x)+ x(1+ x), we have

x(1+0)[T, ,u(x)+mT, , . ()]=(n+DT, , 0 (x) = (x=p)T, , , (x)

:an’k(x)jﬂ;l’kﬂ,(t) (1=0)"2dt +(1+2x) Y. p, () Iﬂ,’l,kw(t)(t—x)m”dt
k=0 0 k=0 0

+3(1+2) Y Py (0 [ B g p (D =2)" dlt
k=0 0

Integrating by parts, the recurrence relation (1.1) is immediate.

From the values of T, £,0(X) and T, 21 (%), it is clear that the consequences (i) and (ii)

hold for m =0 and m=1. The consequence (i) can be proved easily by using (1.1) and
the induction on m.
We sketch below the proof of the consequence (ii).

Suppose that the consequence (ii) be true for m, then by (1.1), we have

n-m-1)T

n

’p”n+1 (x) — O(n—[(m+l)/2])+ O(n—[(m+1)/2])+ O(n—[m/Z])
| om™ D2y i mis odd
On™™?Y), if miseven
Then,

O(n~"'2y i m is odd
O(n_(m+2)/2), if mis even

Tn,p,m+l ()C) = {



Hence, for every xe[0,0), T, , 41 (x) = O(n~1m*2)/21y "Thus, consequence (ii) holds

for m+1. Consequently, by mathematical induction, it holds for all me N 0. ]

Lemma 1.3:

For ne N° and xe[0,>), we have:

B, ,(t";x) is a polynomial in x of degree m. Further, we can write it as:
B (") =TT DU o (mt ) (nem=2)1 X" ]+ 0 (D)
BPET (n=D (1)) ' '

Making used Lemmas 1.1, 1.2 and the direct computation, the proof of this lemma
easily follows, hence the details are omitted.

Corollary. Let 0 and ¥ be any two positive real numbers and [a,b] < (0,%) . Then, for

any s >0 we have,
Sup zpnk(x) J.:Bnk-&-p(t)tydt _O(n_s)
xela,bl| k=0 ‘t x‘>5

Making use of Schwarz inequality for integration and then for summation and
Lemma 1.2, the proof of the corollary easily follows, hence the details are omitted.

Lemma 1.4: [6] For xe(0,0) and re N, there exist the polynomials g; ;. (x)

independent of 7 and k such that

P @) =xT"A+x)7" D' (k—nx)! g, (X) py (2,
2i+ j<r
i,j=0

3. Main Results
First, we prove that for re N, B,(l’ ;, (f;x) 1is approximation process for
F(x)as n — oo.
Theorem 3.1: Let fe C,[0,>) and f(r), re N exists at a point xe(0,00).
Then, we have
B{) (fix) > fP(x)as n— oo,

Proof: By Taylor expansion of f , we have

(i)
f =371 l() (t1—x) +etx) (-2,

i=0

where £(t,x) — 0 as t — x . Hence,



B (f; x)—jW“)(r x) f () di

r (@) 0 _ oo
= Zf i'(-x) J.Wn(’rIZ(I,X)(t—x)l dr + J.Wn(,r;(t’x) E(t,x)(t—x)r dt
_ ! 0 0

First, we estimate R;, using the binomial expansion of (t—x)i and Lemma 1.3, we have

Zr:f(z)(x) Z( J(_

i=0 v=0

(t,x)tvdt

:fm(x) d’ {(n—r—l)!(n+r—1)!

x" + terms containing lower powers of x
rl dx” (n=D!(n-1)!

(r) —r— -
_ S [ (n=r=Dl(n+r-nH! = f(r)(x) as n — oo,
r! (n=D!(m-1!

Next , applying Lemma 1.4, we obtain

IRyI< Y n'—22—— 9i.jor* ZIk nxl! p, (%) I,Bn’kﬂ,(t) le(t,x)llt—xI" dr. Since
rivi<r {x(1+x)} > 0
i,j>0

g(t,x) =0 as t —> x, for a givene>0 there exists a Jd such that le(t,x)l < &

whenever 0 <lt —xI<d.If y > max{«a ,r}, where y is any integer, then we can find a

constant M >0, le(t,x)(t—x)" 1 <MIt—xI"  for |t —x|> . Therefore

IR, | <M Z n' Zlk—nxlj Pni(X)
2i+j<r k=0
i,j20

X{ gj;t—x|<§'8n’k+p(t) lt—xI"dt + J;t—xlzéﬁn’k'i'p(t) It —xl dt }

Applying the Cauchy—Schwarz inequality for integration and then for summation, we
obtain
1
R3SM8 zn { :UnZJ(x)} {anr(x)}z'
2i+j<r
i,j20
Using Lemmas 1.1 and 1.2, we get
Ry=£0(n""?) 0(n""*)=e0) =0(1).
Again using the Cauchy—Schwarz inequality for integration and then for summation,

Lemmas 1.1 and Corollary, we get



R, < Z lk—nxld p, (x )j s By @ Ni=x17 di

21+_1S
i,j20
1
<M Y A S (k=nx)¥ p, ()
2i+er k=0
i,j20

1

> 2
X{ zpn’k(X) J‘lt—x|25ﬂn’k+p(t) (l—x)z}/ dt}

k=0

Sni o’y o m™'?) =0y =o(1) for s>r.
2i+j<r
i,j=0
Collecting the estimates of R; — R, , we obtain the required result. m

Our next result is a Voronovaskaja-type asymptotic formula for the operators
B\ (f.x),r=1.2,.
Theorem 3.2:

Let fe C,[0,0) for a>o0and f(m+2) exists at apoint x € (0, ). Then

lim 0 4B (Fox)— £ J=m? £ ()

n— oo

+@mx+xtm+ p+D )+ x(+2) £ ()
Proof: Using Taylor's expansion of f , we have

m+2 f (i) (

fo=>

i=0

m+2

(t— x) +e(t,x)(t—x)

where £(t,x) > 0 as t— x and £(t,x)=0((t—x)7), t = o for y >0 .
Then, we get

m+2

)
By (f@.0= " = X %f W (1,0 (=)' dt — £ (x)
i=0 !

+j W (2,x) €(t,x) (1—x)™* dt

Using Lammas 1.2 and 1.3 , we have

Z @ (=) B Vi) - £ (x)

v=m

m+2 f(l)(

2




fwkm[3m> ) —m]

(m+1)
f( 1()|) [(m+1)( X)B(m)(t x)+B(m)(tm+1 )]

P AGIE)
(m+2)!

x{% 2B " x) +(m+2)(—x) B (") +B,(l’,’;,)(tm+2;x)}

£ (x) {(n—m—l)!(n+m—1)! | ,}
= m.— m.
m! (n=D!l(n-1)!

(m+1D'x

. £ () {(mﬂ)(_x) (n=m=Dl(n+m=D! (n=m=2)(n+m)!
(m+1)! (n=Dl(n—-1)! (n—=Dl(n—-1!

+WH4Nm+p+D(n_m_mK”+m—U%4

(n=-Dl(n-1)!

F2D 0 [(m+2)(m+1) 2 (m=m=D\(n+m-1)
(m+2)! 2 (n—=D!(n—-1)!

+(m+2)(—x)

X{(n—m—2)!(n+m)!(m+1)!x+(m+1)(m+p+1) (n—m—2)!(n+m—1)!m!}
(n=D!(n-1)! (n=D!(n-1)!

puzmzNtm i DImEDN 2 o0y oms p a2y m_3)!("+m)!(m+1)!x}

(n—=D!(n-1)! 2 (n—=D!(n-1)!
+0(n™?)
Hence in order to prove the theorem it suffices to show that nE, — 0 as n — o, which

follows on proceeding along the lines of proof of R, — 0 as n — o in Theorem 3.1. =

Now, we present a theorem, which gives an estimate of the degree of
approximation by Ln(r) (.;x) for smooth functions.
Theorem 3.3.

Let fe C,[0,0) forsome & >0 and r<g<r+2.1f @ exists and is

continuous on (a —7,b+1n) < (0,00), n > 0, then for sufficiently large n,

q .
Bn,p(r) (f(t),X) — f(r) (X)H < Cl n_l zuf(l) + C2 n_l/zwf(r-H) (n_l/z) + 0(n_2 )9
i=r



where Cy,C, are both independent of f and n, @, (J) is the modulus of continuity of

f on (a—n,b+n),and || . || means the sup-norm on [a, b].

Proof: By our hypothesis

g ¢ , @ gy £@

—x)? x (@) + h(t,x)(1— x(1)),

where & lies between ¢, x, and y(t) is the characteristic function of the interval
(a—n,b+1n).

For te (a—n,b+n) and xe€ [a,b], we get

q @ . (@) _ r(@
f(t) :Zf "(X) (t—x)’ + f (é:) 'f ()C) (t_x)q )

i=0 b q
For te [0,00)\(a—n,b+n)and xe€ [a,b], we define
q ¢ .
e = fO-Y -,
i=0 :

Now,

i=0

g D)2 .
B, (F@x) - F () = {z% (W, )= de— O (x)}
’ 0

° @ gy _ @) °
+[w,,"” (t,x){f &) ' ST e Z(t)}dt +[w, )t 0k, )1 - g(0)) dt
0 T 0

= El + E2 + E3 .
By using Lemmas 1.2 and 1.3, we get

q

(i) i : o r | )
5=y " Z(?.](—x)"f ;‘i { [ Wn,,,(t,x)tfdr}—fm ()
0

i=0 " j=0
g ¢ i (i .
S LW e

i=r : j=r

(n+j-=2)!(n-j-D!

r i—Dn—j-1! . .
x dr (ntj=Din - DL . T rom™)
dx (n=D?) (n=D!)
ANCE
9 .
Consequently, ||E, || <C,n™! (Z Hf(’) HJ +0(n"?), uniformly in x€ [a,b].

To estimate £, we proceed as follows:



F @ -1
: t=x? x(t) pat
q

< | ‘ w, ", x)‘
0

f<q> (0)=

HW ", x)‘[ |j|t x| dt

(0 )
Erat® jﬁnk+p(t)(|t—x|q+§l|t x|q+1)dt5>0

'
q: kO

Now, for s=0,1,2, ..., we have

D Pux )]k - nX|j I,B,,,,Hp O = dt
k=1 0

1/2

oo 2,
< an,k (X) |k_nx|j {J-ﬁn,k+p(t)dt} {Iﬁn,k+p(t)(t_x)zsdl}
k=1 0 0

- 1/2 1/2
< [Z Py 0k = nx)>/ } {Z Prk (x)jbn kip (D= x)zsdt]
k=1

k=1
uniformly in x € [a,b], in view of Lammas 1.1 and 1.2.

Therefore by Lemma 1.4, we get

>

k=1

Pﬁ’i(x)‘ [ Bk ar
0

<Y Tl oo S q‘“”
k=1 2i+j<r
i,j20

pnk( )J-/Bn k+p(t)|t_x| dt

<C Y |3 puaolk-ni’ jﬁnk+p<t>|t A'di|=C Yl 0wt

2i+j<r | k=1 2i+ j<r
i,j=0 i,j=0

— O(n(r—s)/Z) ,

4i,j
uniformly in x € [a,b], where C = sup sup il

2i+ j<r xela,b] X (1 + x)
i,j20

Choosing 0 = n"? and applying the above results, we are led to

@ g (n?)
| Eo s —L——

. O(n(r—q)/2)+n1/20(n(r—q—1)/2)]’



SC2 n—(r—q)/2 —1/2).

D o (n

Since t€ [0,)\ (a —1n,b+17), we can choose ¢ >0 in such a way that | t— x| >0 for all

x€la,b].
Thus, by Lemma 1.4, we obtain
q;
|E3|<nz Zn | nx|] ‘ i,j.r pnk(x) I:Bnk+p(t)|h(f x)|dt
k=12i+ j<r x"(1+x)" 1-x|>6

i,j20
For | r— x| > ¢, we can find a constant M >0 such that | h(t, x)| <M t% . Finally using
Schwarz inequality for integration and then for summation, Lemma 1.1, and Corollary, it
easily follows that E; =O(n™") for any s >0, uniformly on [a,b].

Combining the estimates of £y, E,, E3, the required result is immediate. |
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