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Abstract: 
          

                Under the multivariate linear model{ },,, ∑ ⊗ VXY β  equality of 

MINQUE and so called "simple" estimator ( ) ,1 MYYf
T with 

TXXXXIM +′−= )( , )():( XrankVXrankf −=  for Σ is considered. It is 

revealed that this equality holds if and only if the quadratic form 

MYY ′∑ -1
 admits a Wishart-distribution under multivariate normality of 

Y. Also comparison of MINQUE and simple estimator of Σ in the 

multivariate normal linear model under the risk of entropy loss function 

criterion where the design matrix X need not have full rank and the 

dispersion matrix V can be singular A is considered . It is interested to 

prove that MINQUE is superior to simple estimator OLSE 

Keywords: multivariate linear model, MINQUE, BLUE, OLSE, Wishart -

distribution 

Introduction: 

            We consider the multivariate linear model  

                                VEXY ⊗Σ==+= )cov(,0)(, εεεβ   

where y is an pn × observable random matrix, an qn × matrix X and  nn ×  

nonnegative definite matrix V are known, while β is pq ×  matrix of 
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unknown  parameter, the pp ×  positive definite matrix Σ is also 

unknown. The error matrix ε has the normal distribution ),0( VN ⊗Σ .  

The matrices X and V are both allowed to be of arbitrary rank. But it is 

assumed, throughout this paper, that the model is consistent, 

 ( Rao (1973),p. 297), i.e. )( VXRY M∈ , where R(A)  stands for the range of 

a matrix A and (AMB)  denotes the partitioned matrix with A and B placed 

next to each other. Suppose we wish to estimate the unknown positive 

definite Σ by using the competing estimators 

( ) ( ) )1(1 MYMVMMYf +′                 

And  

                 ( ) )2(1 MYYf ′                                 

 

Where XXXXIM ′′−= +)( ,  +A stands for the Moore-Penrose inverse of a 

matrix A, f=rank(XMV)-rank(X). According  to theorem 3.4 in Rao 

(1974), and A′  denotes the transpose of A. 

    Formula (1) provides the MINQUE (Minimum Norm Quadrate 

Unbiased Estimator) for Σ, cf. Theorem 3.4(a) in Rao (1974). It can also 

be written as 

  ( ) ( ) )3(,1 YMVMYf +′                

since we have ( ) ( )++
= MVMMMVM  in view of ( ) ( )MRMVMR ⊆

+
][ , 

and then ( ) ( ) MMVMMVM
++

=  in view of the symmetry of +)(MVM . 

According to Theorem 3.4 in Rao (1974), the MINQUE can be 

represented in further different forms. For example under the weakly 
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singular multivariate linear model, i.e. in case ( ) ( )VRXR ⊆ , the 

estimator (2) can be written as 

( ) ( ) )4()(1 YVXXVXXVVYf
TTT +++++ −                              

Where )()( XrankVrankf −= . This may also be derived from the 

results in Baksalary et al. (1990). 

      Formula (2) will be called "simple" estimator and of course coincides 

with (1) when V=I. However , in the general case the simple estimator (2) 

need not even be unbiased since we do not necessarily have trace(MV)=f. 

On the other hand, we always have trace ])[( VMVM + fMVrank == )( , 

which ensures unbiasedness of (3). (see e.g. Theorem 5 in Marsaglia and 

Styan (1974) for rank(MV)=f, and note that trace 

( ) ( ) ][][ VMVMrankVMVM
++

=  since ( ) ][ VMVM
+

 is idempotent. Needless 

to say that the MINQUE is unbiased by definition. 

   In the first section we investigate equality of MINQUE and simple 

estimator when X and V can be deficient in rank. and in the second 

section. The object of the present note is to make comparison of these two 

estimators , the criterion we used in this comparison is the risk of the 

entropy loss function , in which entropy loss function defined by 

               )5(log)(),( 11 ptrGGtrGL −Σ−Σ=Σ −−                                     

where G is a positive definite matrix. 

1. Equality of the estimators: 

     By using the above mentioned identity 

                      ,)()()( MMVMMVMMMVM +++ ==  
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it is easy to see that (1), which equals (3), and (2) coincide for all values 

( )VXRY :∈  if and only if  

( ) )6(VMVZZVZMVMVZ
TT =

+
                               

for all 1×n  vectors z. This is known to be satisfied if and only if the 

matrix ( ) VMVVMVMV −
+

 is skew-symmetric. But since the matrix is 

also symmetric it must be zero. Hence (6) is equivalent to  

                               ( ) )7(,VMVVMVMV =
+                                        

Let L denote the unique non-negative definite square root of V. Then (7) 

can be written as  

                                          )8(,LLZZLLZZ ++ =                                              

with LMZ = , by using TT
ZZZZ

++ = )(  and VMLZ = . Since 

+++++++ === LLZZZZLZZLLLLL ,  and
++ == LLZZZZLZZL

TTT
, it is 

easily seen that (9) is equivalent to  

                                           )9(TZZZZ =+                                           

Obviously (9) is satisfied if and only if TZZ  is idempotent, which reads 

                      ,LMLLMVML =  

or equivalently 

                                       )10(VMVVMVMV =                                                

Further, in the special case rank(X:V)=n we obtain rank(MV)=n-rank(X), 

cf. Theorem 5 in Marsaglia and Styan (1974). Since always n-

rank(X)=rank(M) we have rank(MV)=rank(M), which means 

R(MV)=R(M). with K=VM, Eq. (10) reads 

                               

                     )11(TT
KMKKMVMK =                                 

 

Since we have MVKMVK =+ and MKMK =+  when )()( MRKR T = ,(11)is 

equivalent to                MVM=M                                         (12) 
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when V)rank(XM = n. Observe that (13) may also be obtained directly from 

the equality of (4) and (3), which holds for all 1×n vectors if and only if 

(MVM)
+
=M. But since M= M

+
, this gives (12). Observe on the other 

hand that (12) implies V)rank(XM = n in view of  rank(X:V)=rank(X)+ 

rank(MVM).Hence VMVMV= VMV, MMVMnV)rank(X =⇔=M . 

Our derivations may be comprised in the following 

Proposition(1) 

  Under the general multivariate linear model { }∑ ⊗ VXY ,, β ,MINQUE 

for Σ Coincides with simple estimator for Σ for all ):( VXRY ∈  if and 

only if VMVMV= VMV, where XXXXIM ′′−= +)( . Moreover 

):( VXR is the whole space together with the above coincidence if and 

only if MVM=M. Note that when Y in the multivariate linear model is 

multivariate  normally distributed,  then the condition VMVMV= VMV 

is necessary and sufficient for MYY ′∑ − 1  to have a Wishart-distribution 

i.e W(k,δ)-distribution, cf. Theorem  9.2.1 in Rao and Mitra (1971), in 

which case k=trace(MV)=f and δ=0. Hence the question of equality of 

MINQUE and simple estimator for Σ in the multivariate linear model is 

equivalent to the question of MYY ′Σ −1 having a Wishart distribution, 

W(k,δ), in the multivariate linear model with normally distributed Y. 

Observe that in general we do not have k = trace(MV)= rank(MV)= f. 

However, since (11) is equivalent to =+Z Z ′ , i.e. LMVM=LM, we see 

that the condition VMVMV= VMV is equivalent to VMVM= VM, which 

means that VM and hence MV is idempotent. But for idempotent 

matrices rank and trace coincide. The former equivalence has also been 

observed by Bhimasankaram and Majumdar (1980)who trace it back to 

Mitra (1968). 
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By adapting a table from Rao and Mitra (1971,p.161) to the situation 

under model{ }VXY ⊗Σ,, β with normally distributed Y, one may obtain a 

general representation of V being necessary and sufficient for 

MYY ′Σ −1 to have )0),(( MtracW -distribution . From this representation one 

immediately observes MVM= M, showing that rank(XMV)=n is implicitly 

comprised therein. Complementing the table, for non- singular V 

however , Chikuse (1981)concludes that )0),(( MtraceW -ness of MYY T1−Σ  is 

equivalent to equality of MYY ′ and .)( MYMVMMY +′  General 

characterizations of the class of all matrices satisfying the identity 

VMVMV= VMV(or VMVM= VM ) may be derived from theorem 4.4 in 

Bhimasankaram and Majumdar(1980) or theorem 2 in Basksalary et al. 

(1980). A general non- negative definite solution to MVM= M with 

respect to V can also be obtained from Baksalary (1984), whose result is 

claimed  to be advantageous over that derived by Khatri and Mitra(1976, 

Lemma 2.1). 

1.2.Relationship with known results 

It is well known that one representation of the BLUE(Best Linear 

Unbiased Estimator)for Xβ is given by 

             

             )13()( YTXXTXX
+++ ′′                      

with XXVT ′+= , whereas the OLSE (Ordinary Least Square Estimator) 

for Xβ reads 
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                               XX
+
Y                               (14)  

 

Conditions for equality of (13) and (14) for all ):( VXRY ∈ are well known 

in the literature. one of them being  XX
+
 V= V XX

+
,c f. Puntanen and 

Styan (1989). Trivially the latter condition is equivalent to the symmetry 

of the matrix MV. 

Now taking the results of the previous section into account, we can state 

that coincidence of MINQUE and simple estimator for Σ for 

all )( VXRY M∈ holds together with coincidence of BLUE and OLSE for Xβ 

for all )( VXRY M∈  if and only if MV is idempotent and symmetric, or 

in other words, MV is an orthogonal projector. 

  As mentioned before we have )()( MRMVR = when rank(XMV)= n. 

This means that under rank(XMV)= n the matrix MV is an orthogonal 

projector if and only MV= M. On the other hand , MV= M entails 

rank(XMV)= n. Hence we may state 

 Proposition(2):  

Under the multivariate linear model { }∑⊗ VXY ,, β , coincidenes of 

MINQUE and simple estimator for Σ  for all ):( VXRY ∈ holds together 

with Coincidences of BLUE and OLSE for Xβ for all ):( VXRY ∈ if and 

only if MV is an orthogonal projector, where XXXXIM ′′−= +)( . 
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Moreover )( VXR M  is the whole space together with the above 

coincidences if and only if MV= M.
 

 As mentioned above , the condition MV M = M as well as the condition 

MV= M entails rank(X:V)=n, which may equivalently be expressed as 

rank(V)=n- rank(X)+dim )]()([ VRXR ∩                         (15)  

cf. Marsagli and Styan (1974). Hence under each of these two conditions, 

V is non- singular if and only if  rank(X)=dim )]()([ VRXR ∩ ,which in 

turn is equivalent to ).()( VRXR ⊆  

Eventually note that when MV is symmetric, i.e. M and V commute , 

then M and V can be simultaneously diagonal zed by some orthogonal 

matrix, cf. Rao (1973,p.41). Hence we have V M= M  if and only if there 

exists an orthogonal matrix U such that 

TS
U

I
UM 








=

00

0
and  TS

U
D

I
UV 








=

0

0
 

where s=n- rank(X) and D is a )()( snsn −×− non-negative definite 

diagonal matrix. 

 

2.Comparison of estimators:  

        The following lemmas are necessary for a proof of our main 

theorem. 

Lemma(1): Let V be nn ×  nonnegative definite matrix with rank r and Σ 

be   positive definite matrix . Random matrix  ),(~X VN pn ⊗Σ× µ if and 

only if  AU+= µX ,where A is rn × matrix with  rank r and  VAA =′ , 

),0(~U rpr IN ⊗Σ×  

Proof: Obviously, ),(~X VN pn ⊗Σ× µ if and only if 
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),0( ~, )( 2

1

VINMXY Ppr ⊗Σ−= ×

−

,that means, V)N(0, ~,...,, 21 iidYYY p ,where 

pYYY ,...,, 21 , are the column vectors of y , we known that for every i=1,..,p, 

V)N(0, ~iy if and only if ii AWY = ,where A is rn × matrix  with rank r and  

VAA =′ , )IN(0, ~ rW .A proof of this proposition can be found in Rao 

(1973),p.521.Let W=(W1,…,WP).Then )II(0,N ~ rPpr ⊗×W    Hence 

V)I(0,N ~ Pp ⊗×nY  if and only if Y= AW, that implies V),(N ~X p ⊗Σ× µn  if 

and only if AU+= µX where ),0(~2

1

rpr INWU ⊗ΣΣ= ×

−

.The proof of 

lemma (2.1) is completed . 

Lemma(2):let X be an pn ×  matrix and V nn × nonnegative definite 

matrix. Then rank (VM)=rank(X:V)-rank(X) where XXXXIM ′′−= +)( . 

        A proof can be found in Wang and Chow (1994) 

 

 Lemma(3):  

                        
k

UU
k

i

ii

m

∑
=

∧
′

=Σ 1
                                          (16)      

                                   
k

UU
k

i

iii

s

∑
=

∧
′

=Σ 1

λ

 ,                                        (17) 

Where U1,…,Uk are iid ~N(0,Σ)  and 0...1 >≥≥ kλλ  are the positive 

eigenvalues of MV.  

Proof: since MV=0, thus m

∧

Σ  and s

∧

Σ  can be written as  

                                   kMMVMMm /)( εε +
∧

′=Σ  

                                   kMs /εε ′=Σ
∧

    

In view of lemma 1 and V)N(0,~ ⊗Σε , r= rank (v) we note that there is 

an rn ×  matrix A with rank r such that  
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               ,,),0(N~,A~ pr VAAI =′⊗Σ×δδε  

Thus  

                                  KQm /1δδ ′=Σ
∧

                                              (18) 

                                  KQs /2δδ ′=Σ
∧

                                               (19) 

Where     

                   MAMAMAMAQ +′′= )(1 ,  MAAQ ′=2          

It is easy to verify that Q1Q2=Q2Q1, which implies (see for example , Rao 

(1973),p.41) that there is an rn × orthogonal matrix T such that both 

TQT 1
′  and TQT 2

′   are diagonal. By using lemma(2), it is can be show that  

                               rank(Q1)=rank(A
/
MA)= rank(A

/
M)=rank(VM)  

                                                = rank (V:X)-rank (X)=k                 (20) 

We note that Q1 is projection matrix, thus  

                                           







=′

oo

oI
TQT

K

1                                             (21) 

                                            






Λ
=′

oo

o
TQT

K

2                                        (22) 

Where ),...,( 1 kk diag λλ=Λ                                          

Denote  

                                      U=T
/δ                                                               (23)    

 

Then 

                                 ),0(N~ pr rIU ⊗Σ×                                                (24) 

    Let  U
/
=(U1,…,Ur) .Then U1,…,Ur are iid ~N(0,Σ). 

Substituting (21),(23) in (18) yields (16) 

i.e. 

from (21) we get 11

11 )( −− ′=→=′ TTQITQT s   

from (23) we get 1−′= TUδ  
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equation  (18) becomes: 

                        

KUU

KUIIU

KUTTTTU

KTUTTUT

KTUTTTUm

/

/..

/)()()(

/)()()(

/))(((

1111

1111

1111

′=

′=

′′′′′=

′′′′′=

′′′=Σ

−−−−

−−−−

−−−−
∧

 

Then  

                          ∑
=

∧ ′
=Σ

k

i

ii
m

k

UU

1

                     

Also substituting (22),(24) in (19) yields (17)  

From (22) we get  

                        
11

2

22

)( −−′=⇒

=′→Λ=′

TTQ

TQTTQT

K

Ks

λ

λ
           

From equation (19) we get  

                          

KUU

KUU

KUIUI

KTUTUTT

KTUTTUT

KTUTTTU

K

K

K

K

K

Ks

/

/

/

/)()()(

/)()()(

/)]())[((

1111

1111

1111

′=

′=

′=

′′′′′′=

′′′′′=

′′′=Σ

−−−−

−−−−

−−−−
∧

λ

λ

λ

λ

λ

λ

                           

 

Then  

                           ∑
=

∧ ′
=Σ

k

i

iii
s

k

UU

1

λ
                                       

Theorem:  under entropy loss function  

.,)()()(

,1...,)()()( 1

otherwiseRRb

ifRRa

sm

ksm

∧∧

∧∧

Σ<Σ

===Σ=Σ λλ
 

Where )( mR
∧

Σ , )( sR
∧

Σ  are the risk of m

∧

Σ , m

∧

Σ  respectively. 

Proof:  

From  (5) we have  
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ptr

ptrL

ss

sss

−ΣΣΣ−ΣΣΣ=

−ΣΣ−ΣΣ=ΣΣ

−∧−−∧−

−
∧

−
∧∧

2

1

2

1

2

1

2

1

11

log)(

log)(),(

 

also  

      ptrL mmm −ΣΣΣ−ΣΣΣ=ΣΣ
−∧−−∧−∧

2

1

2

1

2

1

2

1

log)(),(  

 

It follows from (17) that  

,log

log),(

2

1

2

1

2

1

2

1

p
k

VV

k

VV

tr

p
k

UU

k

UU

trL

iiiiii

iiiiii

s

−

′




















′

=

−

Σ′Σ

−




















Σ′Σ

=ΣΣ

∑∑

∑∑
−−−−

∧

λλ

λλ

 

Where 

          ),0(..,...,1
2

1

INdiiVVUV PKii

−

Σ=    

 

From (16) we have    

 





















−

′

−




















′

=ΣΣ

∑∑
∧

p
k

VV

k

VV

trL

iiii

m log),(  

Now : 

     

,log

),()(

11



















−

′

−


















′

=







ΣΣ=Σ

∑∑
==

∧∧

p
k

VV

k

VV

trE

LER

k

i

iii

k

i

iii

ss

λλ  
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,log

),()(

11



















−

′

−


















′

=







ΣΣ=Σ

∑∑
==

∧∧

p
k

VV

k

VV

trE

LER

k

i

ii

k

i

ii

mm

 

 

Obviously, 

             .1...,)()( 1 ===Σ=Σ
∧∧

kms RR λλ  

Let 

























−

′

−


















′

=
∑∑

== p
k

VV

k

VV

trEL

i

k

i

iii

k

i

ii

k

11

1 log),...,(

λλ

λλ  

 Because ),...,( 1 kL λλ  is a symmetric and convex function, ),...,( 1 kL λλ  has 

minimum value, and when  λλλ === k...1 , ),...,( 1 kL λλ  takes minimum 

value. 

 Now , Let  

 

               

























−


















′

−


















′

=



















−

′

−


















′

=

∑∑

∑∑

==

==

p
k

VV

k

VV

trE

p
k

VV

k

VV

trEh

k

i

iiP

k

i

ii

k

i

ii

k

i

ii

11

11

log

log)(

λ
λ

λλ

λ
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                         ( )



















−

′

−−


















′

=
∑∑

== p
k

VV

k

VV

trE

k

i

ii
P

k

i

ii

11 loglog λ

λ

    























−


















′

=′
−

=

∑
P

P

k

i

ii
p

k

VV

trEh

Then

λ

λ
λ

1

1)(

 

So  

        .00)( 1 =−






































′

⇒=′
∑

=

λ
λ

p

k

VV

trEh

k

i

ii

 

Since  ),0(~ INV pj  then ),...,( 1
′= jpjj VVV , 

              N(0,1)~..,...,1 diiVV jpj    so that  

 

            
( )

jpj

jp

j

jj VV

V

V

VV ...

.

.

.

1

1























=′
 

So  

              pEVVVEtr jkjj ==′ ∑ 2)(  

Thus  
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1

0

0)(
1

1

=∴

=→

=→

=





−=

=








−′=′
−

=

∑

λ

λ

λ

λ

λ

λ
λ

PP

P
P

P
P

P
VVtrtrEh

P

Pk

i

ii

 

The proof  of theorem is completed.    
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