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Abstract:

Under the multivariate linear model {Y XB,D.® V}, equality of

MINQUE and so called "simple" estimator (1/f)y" My ,with
M=I-XXX)"X",f=rank(X :V)—rank(X) for X is considered. It is
revealed that this equality holds if and only if the quadratic form

> YMY admits a Wishart-distribution under multivariate normality of
Y. Also comparison of MINQUE and simple estimator of X in the
multivariate normal linear model under the risk of entropy loss function
criterion where the design matrix X need not have full rank and the
dispersion matrix V can be singular A is considered . It is interested to
prove that MINQUE is superior to simple estimator OLSE

Keywords: multivariate linear model, MINQUE, BLUE, OLSE, Wishart -

distribution

Introduction:

We consider the multivariate linear model
Y=X[+e¢, E(e)=0, cov(e)=X®V
where y is an nx p observable random matrix, an nxgmatrix X and nxn

nonnegative definite matrix V are known, while B is ¢gxp matrix of



unknown parameter, the pxp positive definite matrix X is also
unknown. The error matrix € has the normal distribution N(0,X®V).

The matrices X and V are both allowed to be of arbitrary rank. But it is
assumed, throughout this paper, that the model is consistent,
(Rao (1973),p. 297),1.e. Y e R(X:V), where R(A) stands for the range of

a matrix A and (A:B) denotes the partitioned matrix with A and B placed

next to each other. Suppose we wish to estimate the unknown positive

definite 2 by using the competing estimators

a/fwym (Mmvm )" my (1)
And

a/r )y my (2)

Where M =1-X(XX)"X", A*stands for the Moore-Penrose inverse of a

matrix A, f=rank(X:V)-rank(X). According to theorem 3.4 in Rao
(1974), and A" denotes the transpose of A.
Formula (1) provides the MINQUE (Minimum Norm Quadrate

Unbiased Estimator) for X2, cf. Theorem 3.4(a) in Rao (1974). It can also

be written as
1/ f)y (mvm )y, (3)
since we have (MVM )" = M (MVM )" in view of R[(MVM )" 1< R(M ),

and then (MvM )" = (MVM )" M in view of the symmetry of (MVM)".

According to Theorem 3.4 in Rao (1974), the MINQUE can be

represented in further different forms. For example under the weakly



singular multivariate linear model, i.e. in caseR (X ) C R(V), the
estimator (2) can be written as

QW (Ve -v X (X'VX) X'V (4)
Where f = rank (V) —rank (X). This may also be derived from the

results in Baksalary et al. (1990).

Formula (2) will be called "simple" estimator and of course coincides
with (1) when V=I. However , in the general case the simple estimator (2)
need not even be unbiased since we do not necessarily have trace(MV)=f.
On the other hand, we always have trace[(MVM)*V]=rank(MV)= f,
which ensures unbiasedness of (3). (see e.g. Theorem 5 in Marsaglia and
Styan (1974) for rank(MV)=f, and note that trace
[((MVM )"V = rank [(MVM ) V] since [(MVM)'V] is idempotent. Needless
to say that the MINQUE is unbiased by definition.

In the first section we investigate equality of MINQUE and simple
estimator when X and V can be deficient in rank. and in the second
section. The object of the present note is to make comparison of these two
estimators , the criterion we used in this comparison is the risk of the
entropy loss function , in which entropy loss function defined by

L(%,G) = tr(GE™) ~logrGZ™!| - p (5)
where G is a positive definite matrix.

1. Equality of the estimators:

By using the above mentioned identity

(MVM )" =M (MVM )" = (MVM )*M ,



it is easy to see that (1), which equals (3), and (2) coincide for all values
Ye R(X :V) if and only if
Z'V(MVM )'VZ =Z7"'vMVZ (6)
for all n x1 vectors z. This is known to be satisfied if and only if the
matrix V(M VM )+V — VMV is skew-symmetric. But since the matrix is
also symmetric it must be zero. Hence (6) is equivalent to
V(MVM )V =VMV (7)
Let L denote the unique non-negative definite square root of V. Then (7)
can be written as
LZZ L=17ZZ"L, (8)
withZz = IM , by using Z*"=(Z"z)"z" andLZ =VM . Since
L'L=LL,L'L7ZZ" =7Z" =ZZ"LL" andL'LZZ" =7Z" =ZZ"LL, it is
easily seen that (9) is equivalent to
7zt =77" )
Obviously (9) is satisfied if and only if ZZ" is idempotent, which reads
LMVML = LML,

or equivalently

VMVMV =VMV (10)

Further, in the special case rank(X:V)=n we obtain rank(MV)=n-rank(X),

cf. Theorem 5 in Marsaglia and Styan (1974). Since always n-
rank(X)=rank(M) we have rank(MV)=rank(M), which means
R(MV)=R(M). with K=VM, Eq. (10) reads

KMVMK = KMK' 11

Since we have K "kmMv =MV andK*'KM =M when R(K")=R(M),(11)is

equivalent to MVM=M (12)



when rank(X:V)=n. Observe that (13) may also be obtained directly from
the equality of (4) and (3), which holds for all » x 1 vectors if and only if
(MVM)*=M. But since M= M", this gives (12). Observe on the other
hand that (12) implies rank(X:V)= n in view of rank(X:V)=rank(X)+
rank(MVM).Hence VMVMV= VMYV, rank(X:V)=n < MVM =M .

Our derivations may be comprised in the following

Proposition(1)

Under the general multivariate linear model {r, x4,Y ® v }, MINQUE

for £ Coincides with simple estimator for 2 for all Y€ R(X :V) if and
only if VMVMV= VMV, where M=7/-X(XX)"X". Moreover
R(X :V)is the whole space together with the above coincidence if and
only if MVM=M. Note that when Y in the multivariate linear model is
multivariate normally distributed, then the condition VMVMV= VMV
is necessary and sufficient for ¥ ~' Y MY to have a Wishart-distribution
i.e W(k,0)-distribution, cf. Theorem 9.2.1 in Rao and Mitra (1971), in
which case k=trace(MV)=f and 8=0. Hence the question of equality of
MINQUE and simple estimator for X in the multivariate linear model is
equivalent to the question of X~'YMY having a Wishart distribution,
W(,5), in the multivariate linear model with normally distributed Y.
Observe that in general we do not have k = trace(MV)= rank(MV)= f.
However, since (11) is equivalent to Zz* =Z", i.e. LMVM=LM, we see
that the condition VMVMV= VMV is equivalent to VMVM= VM, which
means that VM and hence MV is idempotent. But for idempotent
matrices rank and trace coincide. The former equivalence has also been

observed by Bhimasankaram and Majumdar (1980)who trace it back to

Mitra (1968).



By adapting a table from Rao and Mitra (1971,p.161) to the situation
under model{Y, X3,X ® V }with normally distributed Y, one may obtain a
general representation of V being necessary and sufficient for
Y'Y’ MY to haveW(trac(M),0) -distribution . From this representation one
immediately observes MVM= M, showing that rank(X: V)=n is implicitly
comprised therein. Complementing the table, for non- singular V
however , Chikuse (1981)concludes that W (trace(M),0) -ness of ™'Y MY is
equivalent to equality of YMYand YMMVM)*MY. General
characterizations of the class of all matrices satisfying the identity
VMVMV= VMV (or VMVM= VM ) may be derived from theorem 4.4 in
Bhimasankaram and Majumdar(1980) or theorem 2 in Basksalary et al.
(1980). A general non- negative definite solution to MVM= M with
respect to V can also be obtained from Baksalary (1984), whose result is
claimed to be advantageous over that derived by Khatri and Mitra(1976,

Lemma 2.1).

1.2.Relationship with known results

It is well known that one representation of the BLUE(Best Linear

Unbiased Estimator)for X[} is given by

X(XT*X)" XT"Y (13)
with 7=V + XX’, whereas the OLSE (Ordinary Least Square Estimator)
for X reads



XXY (14)

Conditions for equality of (13) and (14) for allY € R(X :V)are well known
in the literature. one of them being XX' V=V XX"c f. Puntanen and
Styan (1989). Trivially the latter condition is equivalent to the symmetry
of the matrix MV.

Now taking the results of the previous section into account, we can state

that coincidence of MINQUE and simple estimator for X for
allYe R(X:V)holds together with coincidence of BLUE and OLSE for X[3
for allY € R(X :V) if and only if MV is idempotent and symmetric, or
in other words, MV is an orthogonal projector.

As mentioned before we have R(MV)=R(M)when rank(X:V)= n.

This means that under rank(X:V)= n the matrix MV is an orthogonal
projector if and only MV= M. On the other hand , MV= M entails

rank(X: V)= n. Hence we may state

Proposition(2):

Under the multivariate linear model {Y ,X,B,Z@V}, coincidenes of
MINQUE and simple estimator for X for all Y€ R(X:V)holds together

with Coincidences of BLUE and OLSE for X[3 for allY € R(X :V)if and

only if MV 1is an orthogonal projector, whereM =1-X(XX)"X".



Moreover R(X:V) is the whole space together with the above

coincidences if and only if MV= M.

As mentioned above , the condition MV M = M as well as the condition
MV= M entails rank(X:V)=n, which may equivalently be expressed as
rank(V)=n- rank(X)+dim[R(X ) N R(V)] (15)

cf. Marsagli and Styan (1974). Hence under each of these two conditions,
V is non- singular if and only if rank(X)=dim[R(X ) n R(V )] ,which in
turn is equivalent to R(X) c R(V).

Eventually note that when MV is symmetric, i.e. M and V commute ,
then M and V can be simultaneously diagonal zed by some orthogonal
matrix, cf. Rao (1973,p.41). Hence we have V M= M if and only if there

exists an orthogonal matrix U such that
I 0 1 0
M=U|"* U'and V=U|’ U’
0O O 0O D
where s=n- rank(X) and D is a (n — s) X (n — s) non-negative definite

diagonal matrix.

2.Comparison of estimators:

The following lemmas are necessary for a proof of our main

theorem.

Lemma(l): Let V benxn nonnegative definite matrix with rank r and =

be positive definite matrix . Random matrix X~ N, (4, X®V)if and

nxp
only if X=u+AU ,where A is nxrmatrix with rank r and AA'=V,

U~N_ (0.£®1,)

rxXp

Proof: Obviously, X ~ N,,,(u,2®V)if and only if



1

Y=(X-M)X 2~ N._ (0, I, ®V),that means, 1,.Y,.....Y,iid ~N(0,V),where

rxXp

Y,.Y,....Y,, are the column vectors of y , we known that for every i=1,..,p,
y, ~N(0,V)if and only if ¥, = AW, ,where A is nxrmatrix with rank r and
AA'=V W ~N(0,1,).A proof of this proposition can be found in Rao

(1973),p.521.Let W=(W,,...,Wp).Then W ~N__ (0,1, ®I,) Hence

rXp

Y ~N,, (0.1, ®V) if and only if Y= AW, that implies X ~N, (#,Z®YV) if

1

and only if X=pg+AU where U=WE 2~N, (0,£®1,).The proof of

lemma (2.1) is completed .

Lemma(2):let X be an nx p matrix and V nxnnonnegative definite

matrix. Then rank (VM)=rank(X:V)-rank(X) where M =1 - X(XX)"X".
A proof can be found in Wang and Chow (1994)

Lemma(3):
k

) Y Uu.U;

1

Yw =~ . (16)
k
AU
DR :17 ; (17)

Where Uy,...,Uy are 11d ~N(0,X) and A4, >..>4 >0 are the positive

eigenvalues of MV.

Proof: since MV=0, thus ﬁm and ﬁ can be written as

A

Yo =EM(MVM) Melk

ﬁs =eMelk
In view of lemma 1 and ¢ ~ N(0,Z® V), r= rank (v) we note that there is

an nxr matrix A with rank r such that



£~A0, O0~N_ (0,X®1), AA' =V,

rXp

Thus
s =50,6/K (18)

£, =50,6/K (19)
Where
0, =AM (MAA'M)*MA, Q, =A'MA
It is easy to verify that Q;Q,=Q,Q;, which implies (see for example , Rao
(1973),p.41) that there is an nxrorthogonal matrix T such that both
T°0,T and T'Q,T are diagonal. By using lemma(2), it is can be show that
rank(Q;)=rank(A'MA )= rank(A'M)=rank(VM)

=rank (V:X)-rank (X)=k (20)
We note that Q, is projection matrix, thus
O - (’K ] 21)
o o
T'Q,T = (AK OJ (22)
o o
Where A, =diag(4,,...., 4,)
Denote
U=T'$ (23)
Then
U~N, (0I®I) (24)

Let U =(Uy,...,U,) .Then Uy,...,U, are iid ~N(0,X).
Substituting (21),(23) in (18) yields (16)
1.e.
from 21) we get TQ,T=1, > Q, =TT

from (23) we get §=UT""



equation (18) becomes:

S, =UT T THUT) 1K
=T"HU' T 'THUT Y 1K
=U(T" YT HT (T HUIK
=UTIU/K
=UUI/K

Then
A L UU.
Zm = —
2
Also substituting (22),(24) in (19) yields (17)
From (22) we get
T’QZT =A, = T’QZT =,
=0, = TH™! ﬂ,KT_l
From equation (19) we get

S, =UT" YT AT IWUT ™)/ K
— (T/_l)/U/(T,)_llKT_lU(T_l)//K
=TT HUAUT (T 1K

=[UA, UK
—UA UK
=AUU/IK
Then
AU,
Y, = ot
2%
Theorem: under entropy loss function
@  RED=RE)), if A== =1,
(b) R(im) < R(is), otherwise.

Where R(ﬁm), R(ﬁs) are the risk of i i respectively.

Proof:

From (5) we have



LEZ)=tr(Z; 27" —loglZ, Z7'| - p
a0t L.t
=tr(£ 2%, X 2)—logL 2 X, X 2|-p
also
A LA 1 LA 1
LEZ)=tr(E 2T, X 2)—logZ X, X |- p
It follows from (17) that
L 1 1 1
Y AT VUL > Y AL UUXL?
L Z,Zx =1r _10
( ) . g .
DAV AN
=tr lo - p,
k T |7
Where
il
V=X U, VsV idid N, (0,1)
From (16) we have
Vv Vv
LZ,Zm =|tr _10 -
( ) . g ‘ P
Now :
RE.)= E[L(E, 5, )}
k k
z /7“; ViVi’ Z ﬂiVin,
=E|tr| = p —log|-=! -pl,




A

R(En) = E[L(Z,Zm)

k

> v/

k

Obviously,

RE.)=R(En)

Let L(4,,....4,) = E{tr ﬂT

Because L(4,,...,4,) 1s a symmetric and convex function, L(4,,...,4,) has

minimum value, and when A4,=..=4, =4, L(4,,...4,) takes minimum

value.

Now , Let

h(A)=E




v PNAZ
=By —= ~log(#")-log-—| - p

Then
>
vV’
. 11 /IP_I
h'(A) = E<tr| = _P
(4) P 7
So
k
Vv

HA)=0 =  E{tr|-! _P
k A

Since V, ~N,(0,1) then V,=(V,...V,) ,

ViV, iid ~N(0,1) so that
_le_
V,.V,.'z . (le SR Vjp)
_VJ'P_

So
Err(VV)=) EVii=p

Thus



k P-1
WA= trE{trZViV['— P jP } =0
i=1

{p_ﬂ:o

—>P=£
A

—P=AP

s A=1

The proof of theorem is completed.
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