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A B S T R A C T 

The field of bioinformatics faces significant challenges in the extraction of meaningful 
knowledge from the vast and complex biological data, particularly in gene regulation and 
motif identification. This research delves into the intricate problem of planted motif mining 
(PMP), an NP-complete challenge critical for numerous applications, including disease 
diagnostics, forensic medicine, and environmental monitoring. Various algorithms have been 
developed to address this problem, ranging from deterministic polynomial-time algorithms to 
advanced deep learning methods. This study provides a comprehensive review of these 
methodologies, highlighting their efficiencies, limitations, and practical applications. The 
paper discusses profile-based and pattern-based algorithms, emphasizing the importance of 
approximation algorithms for handling extensive biological data. Additionally, the role of 
deep learning in motif mining is explored, showcasing the advancements brought by CNN-
based, RNN-based, and hybrid models. The integration of these innovative techniques holds 
promise for improving the accuracy and speed of motif identification, ultimately enhancing 
our understanding of genetic regulation and its implications in health and disease. 

 

MSC.. 

https://doi.org/10.29304/jqcsm.2025.17.11961

1. Introduction 

The rapid growth of biological data has prompted collaborative efforts to understand and analyze this data to 
enhance daily life. Despite significant efforts, bioinformatics still requires substantial work for effective knowledge 
extraction. There are a lot of factors that make the challenges harder; including vast amount of data contained 
within a genome, lack of techniques to extract useful knowledge, and complexity of laboratory tests in biology for 
validating accurate information. 
Genes are distinct segments on DNA chromosomes responsible for encoding proteins. Gene expression begins when 
a transcription factor binds to a specific region called the binding site, located before the gene. In the eukaryotic 
nucleus, a transcription factor protein plays an important role in regulating transcription activation. These binding 
sites exhibit similar patterns, referred to as motifs [1]. 
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An essential objective in bioinformatics involves uncovering motifs. The motif-finding problem is considered NP-
complete, leading to ongoing research to solve it using deterministic algorithms with polynomial time complexity. 
[2] 

The benefit of motif mining is that it is useful in numerous applications, such as detecting the predisposition to 
disease, Diagnostics, forensic medicine, prosthesis laboratories, criminal laboratories, corpse identification, 
medicines manufacturing, and uncovering chemical and nuclear environmental pollution that causes genetic 
mutations. [3] 
Gene regulation from single cell detection is very important for many cancers remedy. Detecting mutations allows 
for the administration of drugs tailored to the genetic makeup of a patient's tumor or cancer cells. [4] 
Planted motif problem (PMP) is one of the famous disciplines in motif mining. This problem involves a group of bio 
sequences with similar or different lengths, beside two parameters l and d such that 0 ≤ d < l < n. the aim is 
specifying substring of length l with d allowed mismatch. These substrings (with length l) are named motifs.  
For example, consider three sequences: CATACGT, ACAAGTC, and AATCGTG. With a motif length (l) of 3 and a 
maximum allowed mismatch (d) of 1, the substring CAT is identified as a motif. In the first sequence, CAT occurs at 
the initial position with no mismatches. In the second sequence, it appears at the second position with one 
mismatch, and in the third sequence, it emerges at the third position with one mismatch as well. Another 
perspective is that CAT qualifies as a motif because substrings CAT from the first sequence, CAA from the second 
sequence, and CGT from the third sequence fall within the 1-neighbourhood of CAT. 
 

PMS algorithms fall into two main categories: profile-based algorithms and pattern-based algorithms [5]. 
The first category focuses on predicting where motifs will initiate within each sequence, while the second category 
aims to discover motifs directly. Both types of algorithms classified as either approximate or exact. Approximation 
algorithms, also known as heuristic algorithms, might not always provide accurate results. These algorithms use a 
location frequency matrix to conclude either upon meeting the specified end condition or reaching a predefined 
number of iterations. [6, 7]. 
On the other hand, exact algorithms use exhaustive enumeration search and consistently yield optimal solutions [8]. 
Examples of this type are Moby Dick [9] and YMF [10, 11]. Its time complexity becomes impractical due to the 
extensive biological data, making it suitable only for searching short sequence motifs. 
In the field of PMS, approximation algorithms are generally speedup and more common than exact algorithms, 
although they lack a guarantee of always producing the correct motif. This review exhibits some frequently different 
types of planted motif problems. 
 

2. Literature Review of Motif Identification Methods 

In reference [12], the researchers introduced algorithms PMSi and PMSP, drawing inspiration from concepts 
employed in PMS1. These algorithms exhibit enhanced space efficiency compared to PMS1, leading to improve 
running times across various scenarios. Notably, PMSP surpasses both PMS1 and PMSi in challenging instances, 
demonstrating superior performance. Additionally, it competes favorably with existing exact algorithms while 
utilizing considerably less memory. This feature enables PMSP to successfully solve the previously unsolved 
challenging instance (17, 6). 
PMS1 effectively solves instances such as (9, 2), (11, 3), and (13, 4) within a few minutes, and voting method 
successfully addresses these cases along with (15, 5) in 22 minutes. However, as the value of d increases, the 
algorithms experience higher memory requirements. Notably, PMSP demonstrates the capability to handle 
challenging scenarios such as (l, d) = (15, 5) and (17, 6).  
  

PMSprune [13] adopts a similar approach to [12], with the inclusion of additional features. This approach 
produced the strategy of generating group of l-mers such that the difference between the l-mers in first sequence 
and these l-mers is equal or less than d, and then this approach checks these l-mers is motif or not. PMSprune 
presents an improved algorithm to generate neighbors and effective technique to prune the results. 
The algorithm starts with constructing the similarities (neighborhoods) for every l-mer (x) in first sequence S1 
using a depth d tree structure T(x). Each node in T(x) represents a similar (neighbor) of S1. This algorithm traverse 
the tree using depth first order and checks the largest and smallest distance to neighbors in all sequences. If the d H 
(y, S) value falls within the specified d, it outputs y; otherwise, it undergoes a pruning process, where y represents l-
mers in each sequence and S represents set of t sequences. This dynamic pruning technique will be eliminate the 
search space. 
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The stemming algorithm [14] aims to reduce the complexity of computational search, independent of the 
alphabet size |∑|. It begins by constructing a set of candidate motifs and then generates neighborhoods for these 
candidates, and then, the neighbors are intersected to create a group of candidate motifs that similar with each 
other. In the first, the algorithm identifies all necessary motifs with a few non-motifs and place them in superset C. 
after that, a specific strategy of pruning can be applied to extract the necessary motifs from C. Instead of scanning 
through all neighborhoods, this method operates within a search scope that adjusts according to the size of the 
candidate set C, reducing the computational search region. 

 
The PMS4 algorithm[15] serves as an acceleration mechanism. This approach operates in two distinct steps: 

the initial step involves identifying a set of candidate motifs, while the subsequent phase verifies each individual 
candidate motif, it is a true motif or not. The fast approach employed by PMS4 follows two steps, the first step, it 
executes any effective algorithm for searching on a subset of k chosen sequences (where k < t) rather than of all t 
sequences, aiming to specify a C collection of motifs. Significantly, the (l, d) patterns recognized in the initial step 
encompass a superset of motifs found in the t sequences. The particular choice of k sequences might differ across 
various algorithms. In the second step, this algorithm evaluates the truth of each l-mer in set C. 
 

PMS5 [16] efficiently expands the algorithm of PMS1 by incorporating innovative concepts along with the 
neighbor generation approach from PMSprune. This algorithm starts with a set S comprising t sequences, producing 
the collection of (l, d) motifs, denoted as Ml,d(S). For each collection of 3(A, B, C) l-mers, which represents the 
popular similar motifs (neighbors) such that A represents an l-mer from S1, B is an l-mer from S2i, C is an l-mer 
from S2i+1, where 1 ≤ i ≤ (t-1)/2. For determining the popular similar neighbors, the algorithm utilizes the concept 
of tree from PMSprune and (ILP) Integer Linear Programming involving 10factors. This method includes an initial 
preprocessing stage that creates numerous ILP instances. These instances must be resolved and stored in memory 
as a lookup table, resulting in higher memory demands. 

 
The PMS6 algorithm[17] builds upon the PMS5 algorithm, enhancing its preprocessing steps and reducing the 

size of the lookup table through incorporation of effective method of hashing. Unlike PMS5, this method 
distinguishes itself by determining motifs equivalent to l-mer (x) in sequence S1 through a two-phase process. In the 
initial phase, five classes were used to handle triplets of l-mers (A, B, C), denoted as C(n1,..., n5), based on computed 
values of n1 to n5. These triplets are assigned to their respective classes according to the calculated values. The 
computation of n1 to n5 for each triplet follows the methodology proposed by PMS5. In the second phase, the 
algorithm calculates the motifs from sequences x, S2i, and S2i+1, where i ranges from 1 to (t-1)/2, based on 
equivalence class values. It's worth noting that PMS6 consistently demonstrates faster performance in comparison 
to PMS5. 

 
The PairMotif algorithm [18] efficiently diminishes the search space of motif by producing candidate motifs 

from selected pairs with relatively greater distances. This process unfolds through three iterative steps. In the initial 
step, it creates pairs of l-mers, where one is from the S1, and the other is from the remaining Sr where (2 ≤ r ≤ t), 
ensuring they are positioned within a Hamming distance of 2d. In the second step, two rules of filter are applied to 
each selected pair of l-mers, reducing the number of l-mers to be examined in the next stage. In the final step, the 
method identifies popular similar neighbors for each remaining pair of l-mers, for each widely occurring neighbor y, 
it carries out a validation process to ascertain its status as a motif. The experimental findings from PairMotif validate 
its effectiveness and consistency across different lengths of sequences. 

 
The qPMS7 algorithm [19] expands upon the concept and shows more flexible method in qpms field. This 

method supposes that two integers i , j ranges between (1 to t) and there are l-mers u and v such that u ∈Si, v ∈Sj, 
and M ∈{Bd(u) ∩ Bd(v)} which represents qpms motif, excluding Si and Sj. Consequently, for every two sequences 
such (sequence (i) and sequence (j), the method will examines all potential pairs of l-mers (u, v) to distinguish all 
elements within the intersection of Bd(u) and Bd(v). 
 

PMS8 [20] offers an effective solution to the planted search motifs by proffer the innovative concept of 
neighbor production. Additionally, it establishes efficient condition for 3 (l-mers) to share popular neighbors. The 
PMS8 algorithm works well in two distinct phases: the first one is sample driven, the second is the pattern driven. 
During the first phase, it initiates generation of l-mers from various sequences, storing them in a two dimensional 
array (R) with size of (t × (n-l+1)), Where the index of each row matches the sequence number of the input. Initially, 
the algorithm chooses an l-mer (u) from the first sequence, adds it to the stack, and eliminates all l-mers (y) from 
matrix that are dissimilar with y is greater than 2d.afterwards, it iteratively chooses one candidate motif (l-mer) 
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from each sequence,adds it to the stack (pushing), and eliminates l-mers from matrix (R) that are not part of the 
popular neighborhoods in the stack. This process continues until the size of stack arrives a specified value. 
Upon reaching the threshold, the algorithm transitions to the pattern driven step. In this phase, it generates the 
common neighborhoods for the l-mers in the stack. After that, the algorithm checks every neighbor l-mer, to see if 
there's a (l, d) motif planted within it. 
 

qPMS9 [21] represents highly effective parallel quorum planted motif search technique, offering a significant 
enhancement in the execution time compared to PMS8. The advancements of qPMS9 over PMS8 are multi-faceted. 
Firstly, it introduces a novel string reordering approach, effectively boosting performance by combining an 
enhanced method of pruning within the space of search. Additionally, qPMS9 addresses the resolution of qPMS 
instances that were not previously covered by PMS8. Notably, qPMS9 successfully tackles l, d as follows: (28, 12), 
(30, 13) by using a single-core computer within a sensible time frame. 
 

In the reference [22], a sophisticated and highly effective randomized technique called qPMS10 for 
addressing the PMS problem can be introduced. 
The algorithm comprises three stages. Initially, it acquires sample sequences, with minimal time consumption. Next, 
it applies qPMS9 to the sample, which could be parallelized given the availability of a parallel version. Finally, it 
verifies whether each candidate motif qualifies as a genuine motif for the original input. This algorithm deals with 
(30, 15) and q = 100.  
We've evaluated our algorithm using two different sets of inputs. The first set follows the conventional parameters, 
with n = 20 and m = 600, while the second set has larger dimensions with n = 1000 and m = 600. 
 

In their work [23], CaiyanJia, Ruqian Lu, and Lusheng Chen introduced Apriori-Motif algorithm, this algorithm 
works without knowing the motif length (l). This algorithm employs a      specific search strategy (breadth-first 
search) to prune the search region, this method utilized the concept of downward closure property used in Apriori. 
The work used the suffix tree and index structure inthis work. 
This method used a breadth-first search to explore the entire pattern space, which is indexed by the consensus tree 
structure. Besides that, it can extract motifs with lengths ranging from d + 1 to l, and by using the downward closure 
property. 
 

In reference [24], the algorithm Ex-Motif, designed to extract all frequent structured motifs with a quorum of 
q. This method holds potential applications, such as the identification of single/composite regulatory binding sites 
included into DNA sequences. 
This approach utilized an inverted index of symbol positions and it achieved the enumeration of all structured 
motifs through positional joins over this index. Simultaneously, variable gap constraints are taken into account 
during these joins, resulting in significant efficiency gains. To optimize both time and space, the algorithm retained 
only the start positions of each intermediate pattern during the positional join process. 
 

The researchers in reference [25]introduced a scalable parallel system called ACME. This approach depends 
on a methodical strategy capable of handling sequences of gigabyte scale, marking the inaugural support for super 
maximal motifs. ACME is a flexible parallel system adaptable for utilization on desktops with multi-core processors 
or across thousands of processors in cloud environments. 
ACME is capable of accommodating sequences that are three orders of magnitude lengthier, such as the entirety of 
the human genome in DNA format, and can manage large alphabets like the English alphabet representing 
Wikipedia content. It can scale up to 16,384 CPUs on a supercomputer and allows for flexible deployment in cloud 
environments. The novelty of ACME stems from (i) the sequence in which it navigates through the search space and 
(ii) the manner in which it accesses information within the suffix tree. 
This system works as follows:  
• A parallel method suggested that breaks down the motif extraction procedure into smaller tasks, enabling the 

effective utilization of thousands of processors. ACME can expand to 16,384 processors on an IBM BlueGene/P 
supercomputer and can complete a query in just 18 minutes, a task that would require over 10 days on a high-
end multi-core machine. 

• An automated tuning technique was developed that enables nearly optimal resource utilization, particularly 
beneficial in cloud-based environments. 

• A cache-efficient method was devised for traversing the search space, reducing serial execution time by nearly 
tenfold.  
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• The experimental assessment involves large real-world datasets across various architectures, both locally and 
in cloud environments.  

 
Pavesi and et al, introduced in reference [26] the Weeder algorithm, which relies on identifying count 

matching patterns with particular and highly pronounced mismatches. Initially, motifs are depicted using a 
consensus sequence. Then, by comparing the consensus with k-mers of sequences and allowing for a specific 
number of mutations, after that, the k-mers are evaluated for significance using specific metrics.  
 

The FMotif algorithm [27] introduced a constructed suffix tree to identify motifs with lengthy parameters of l 
and din extensive sequences of DNA under the ZOMOPS constraints. This suggested tree enhances efficiency 
compared to the standard suffix tree by minimizing redundant scans of sequences. 
 

Buhler and et al in reference [28] devised a random projection algorithm for a PMP that condenses each l-mer 
in the input data into a smaller space through hashing.  
At first, a transformation occurs, moving from an l-dimensional space to a k-dimensional subset for all subsequences 
within the input set. This is achieved by randomly picking k positions from the l available positions. Subsequently, 
each l-mer is assigned to the suitable bucket via hashing through this transformation. Subsequently, buckets 
containing l-mers surpassing a certain threshold are deemed "qualified buckets". To ensure reliability, random 
hashing is repeated n times to guarantee each qualified bucket appears more than once. In the end, a profile is 
generated for every eligible bucket to identify the most likely l-mer in the sequence, presented as consensus 
sequences. 
 

A proposed algorithm named Ref-Select [29] aims to choose reference sequences for PMP. Reference 
sequences are those devoid of motif instances, thus the method endeavors to select reference sequences that 
produce as few potential motifs as feasible. The method comprises two primary sphases. Initially, for each pair of 
sequences in the dataset D, The count of potential motifs produced from these pairs is determined by assessing the 
Hamming distance between each pair of l-mers. Subsequently, the reference set is chosen to minimize the set's 
count of candidate motifs. 
Methods for identifying motifs fall into two primary categories: those relying on techniques of molecular biology 
and those employing methods of bioinformatics. Popular technique of molecular biology include Dnasefootprinting, 
gel mobility shift methods, SELEX, CHIP, among others [30]. While these methods can effectively reveal the structure 
of motifs, they often entail extended timeframes and high costs. Gene chip technology has emerged to address the 
need for extensive approaches, playing an important function in biology techniques. Protein immunop recipitation 
(ChIP) has also been employed to capture numerous fragments of DNA bound to specific TF. Moreover, sequence 
technologies appeared in second-generation used in tests, resulting in technologies such as ChIP-chip [31] and ChIP-
seq [32]. 
 

Utilizing the algorithm of Expectation Maximization (EM) [33], MEME performs an iteration of EM on each 
candidate sequence once. The motif with the highest likelihood is selected for iteration until the convergence 
criteria are satisfied. This method is iterated until optimization is complete. However, it is important to note that 
such an algorithm might lead to local optima instead of reaching the globally optimal solution, especially when 
dealing with identification of short motif. 

 
The work referenced in [34] introduced a genetic algorithm for motif identification that relies on method of 

Gibbs sampling to form the matrix of weights. Based on scoring method, a scoring function is used to modify the 
population during iterations. The consideration of motif count in the sequence encompasses instances with no motif 
or multiple motifs. 
 

In reference [35], researchers introduced a novel algorithm for motif discovery in biological data by 
leveraging pushdown automata representation and employing mining tree techniques. The approach involves 
several key steps: 
 
• The algorithm begins by defining a grammar that facilitates the creation of a pushdown automata notation 

suitable for biological data, encompassing DNA, RNA, and proteins. 
• In the next phase, a set of motif sequences transfer from a biological bank undergoes transformation into a 

collection of pushdown automata, following the grammar established in the initial step. 
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• In the third phase, we generate a corresponding pushdown automaton for a given sequence, which serves as 
the input data for analysis. The final stage involves applying graph mining techniques, such as extracting 
frequent sub-trees or utilizing AprioriGraph, to derive sub-trees from the pushdown automata created in step 
three. Subsequently, all resultant trees are compared with a set of trees generated in step two. This comparison 
aims to identify and emphasize the motifs specific to the provided input data. 
 

In reference [36], an algorithm named APMS, designed as an approximate qPMS solution, is introduced to 
efficiently handle extensive DNA datasets. This is achieved primarily through the acceleration search of neighboring 
substring and the elimination of redundant substrings. The experimental findings demonstrate that APMS excels not 
only in identifying implanted (l, d) motifs but also in executing processes orders of magnitude faster compared to 
the latest state-of-the-art qPMS algorithms. 
The process and fundamental concepts of APMS can be outlined as follows: 
• Identify high-frequency substrings of a specified length, k, from the dataset and store them in a set A. This step 

serves as preparation for generating seeds. 
• Create a seed, m', using the k-mer x, which has the highest frequency in A. 
• Refine the seed, m', generated by x. The refinement involves finding motif m by searching for d-neighbors of m'. 
• If the refinement of m' yields a (l, d) motif, m, then filter out redundant k-mers in A using m. 
• If set A is not empty, return to step b); otherwise, output the obtained (l, d) motifs in descending order based on 

their consensus sequence score. 
 

In reference [37],the researchers introduced a novel algorithm called MCES for discovering planted (l, d) 
motifs. This algorithm identifies motifs by extracting and merging emerging substrings. 
Specifically, for the management of larger datasets, we have devised a MapReduce-based approach to distributedly 
extract emerging substrings. Results from experiments conducted on simulated data reveal that: 
 i) MCES efficiently and effectively identifies (l, d) motifs in input sequences ranging from thousands to millions, 

surpassing the speed of leading (l, d) motif discovery algorithms like F-motif and TraverStringsR; 
 ii) MCES demonstrates the capability to identify motifs of unknown lengths with higher accuracy compared to the 

rival algorithm CisFinder. Additionally, the validity of MCES is verified on real datasets. 
 

In reference [38], the iGibbs algorithm employs a methodology where it takes a fasta or gbk DNA file as input 
and generates a nucleotide list to predict a starting position through random sampling. It incorporates motif length, 
a lower iterative value, and calculates probability and position ranking scores using the Position Weight Matrix 
(PWM). Implementation of the algorithm is carried out using Python, Python(x,y), and Biopython. The evaluation of 
iGibbs involves testing with varying motif lengths (12, 18, and 24) and different base lengths (5,000, 10,000, and 
15,000) at various iteration levels. Results indicate that iGibbs exhibits superior average runtimes of 7, 10, and 23 
seconds for motif lengths 12, 18, and 24, respectively, compared to 12, 32, and 60 seconds in the existing Gibbs 
sampling algorithm available at http://ccmbweb.ccv.brown.edu/gibbs/gibbs.html. To verify the accuracy of the 
motif results, the hamming distance is employed for identifying contiguous strings, and the minimum edit distance 
is utilized for consensus sequence comparisons. 
 

Zainab Muhammed Jameel proposed in her thesis [39] a new technique to discover simple motifs (SM) and 
compound motifs (CM) hidden in DNA databases using finite states automata (FSA). 
 

In reference [40], Hasnaa Imad Al-Shaikhli developed the Strong Motif Finder (SMF) and Quorum Strong 
Motif Finder (qSMF) algorithms for planted motif discovery in DNA.  The main goal of her work with both 
algorithms is to reduce the execution time while achieving equal or higher prediction accuracy. 

 
Huo and colleagues in [41] introduced the GARP algorithm, which enhances genetic algorithms (GA) to detect 

the planted motif by utilizing the random projection strategy (RPS). The rationale for employing RPS prior to GA is 
to locate favorable initial points that can serve as the initial population for the genetic algorithm, rather than relying 
on random selection. 

 
In reference [42], Paul et al introduced method for the Planted Motif Problem (PMP), employing a population 

clustering technique to identify multiple and subtle motifs. Initially, the population is initialized by randomly 
choosing segments of the specific length to create a candidate consensus motif. After that, every sequence in dataset 
is checked to identify equivalent substrings, which are subsequently sorted based on the number of mismatches 
from the candidate motif. Following this, these substrings are evaluated depending on the scoring function. At the 

http://ccmbweb.ccv.brown.edu/gibbs/gibbs.html
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end, the method computed the fitness of an individual (Cluster) to choose parents for use in Genetic Algorithms 
(GA). 

 

3- Motif Mining and deep learning 

In the past few years, deep learning has demonstrated significant success across diverse 
applications, prompting researchers to explore its application in the mining of DNA or RNA motifs. Motif 
mining within deep learning primarily encompasses three main frameworks: CNN-based models, RNN-
based models, and hybrid CNN–RNN-based models. 
 

DeepSEA [43] employed a convolutional neural network (CNN) with three layers, where the first 
one is 320 kernels, the second is 480 kernels, and third is 960 kernels. Convolutional layers (top layer) 
had a broader spatial range for input, while the lower-level layers of the convolutional network could 
capture more intricate features. To comprehensively capture information from the entire sequence data, 
DeepSEA introduced a specific network layer which its position on up of third convolutional layer, this 
called (FCN) fully connected network. This FCN layer ensured that all nodes get input from every output 
of preceding layer.  
 

DeepSNR [44] utilized CNN-based deep learning approach. The convolutional segment of the 
DeepSNR model shared a similar structure with the DeepBind network. However, DeepSNR introduced a 
distinctive feature, such as the deconvolution network mirroring the convolution network, aiming to 
diminish the activation size and amplify activations by employing a combination of unpooling and 
deconvolution operations. 
 

Dilated [45] employed the approaches of deep learning by utilizing multilayer CNN. Dilated method 
emphasized the acquisition of a mapping, tracing the DNA region from the sequence of nucleotide to 
pinpoint the location of the regulatory marker within that space. Through This approach could achieve a 
hierarchical depiction of the input area, surpassing the capacity of standard convolution. This enabled 
scaling to larger sequences both before and after the application of the convolutional operation. 
 

DanQ [46] implemented a sequential approach consisting of a single-layer CNN followed by a 
bidirectional LSTM (BLSTM). The initial layer in this method and by using the convolution filteringwas 
designed to identify the location of motif in the sequence. In contrast to DeepSEA, the convolution step in 
the Danlayer to grasp the motif. Subsequent to the largest pooling layer, the model incorporated a BLSTM 
layer. 
 

KEGRU [47] employed a model with incorporating k-mer and a single layer of GRU, instead of 
incorporating a CNN layer, KEGRU relied predominantly on the k-mer and incorporating layers to fulfill 
the retrieval the features of CNN present in alternative methods. This structural choice enabled KEGRU to 
excel in handling sequence relationships, ultimately proving effective in RNA motif mining with its adept 
performance. 
 

iDeeps [48] implemented a combination of CNNs with a bidirectional long short-term memory 
(BLSTM) network to concurrently discern binding sequence and structure motifs from RNA sequences. 
The CNN module within iDeeps possessed the ability to catch the understandable motif of RNA-binding 
proteins (RBPs). The inclusion of a BLSTM network in the iDeeps framework not only enhanced 
performance in identifying binding sequences but also facilitated the straightforward capture of 
structural motifs. 
 

Table (1) illustrates some types of planted motif search algorithms (rows) depending on various factors 
(columns) that effect on the time and memory obtained. These factors encompass searching type, quorum 
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or not, static or structure motif, data structure used, single core or multicore machine, maximum values of 
l, d, t, n and finally the time taken for these parameters. 
 
 

Table(1): Some types of planted motif search algorithms 

Algorithm 

Name 

Exhaustive 

Search 

(Exactly 

Results) 

Heuristic 

Search 

(Abbroxim-

atly Results 

Qurom 

Planted 

Motif 

Simple 

Motif Type 

Structured 

Motif Type 

Data Structure 

or Technique 

used 

Single 

core 

machine 

Multi_core 

machine 

Or  

Parallel 

system 

Maximum value for  

l, dand t , n 

Time 

taken 

PMSi Yes - - Yes - Tree search Yes - (13, 4) t=20  n=600 
18 

min 

PMSP Yes - - Yes - Tree search Yes - (17,6) t=20  n=600 
12 

hour 

Voting Yes - - Yes - Hash table Yes - (15,5) t=20  n=600 
22 

min 

PMSprune Yes - - Yes - Tree search Yes - (19,7) t=20  n=600 
10 

hour 

Stemming Yes - - Yes - 
Neighborhood 

generation 
Yes - (15, 5) t=20 n=600 

12.31 

sec 

PMS4 Yes - - Yes - 
Tree Search + 

Lookup table 
Yes - (23,9) t=20  n=600 

54 

hour 

PMS5 Yes - - Yes - 
Tree Search + 

Lookup table Yes - (23,9) t=20  n=600 
54 

hour 

Pair Motif Yes - - Yes - 
Branch and 

bound 
- Yes (27,9)  t=20  n=600 

10 

hour 

PMS6 Yes - - Yes - 

Tree Search + 

Lookup 

table+hashing 
Yes - (23,9) t=20  n=600 

19.19 

hour 

qPMS7 Yes - Yes Yes - Tree Search Yes - 
(21,7)  t=q=20   

n=600 

11.6 

hour 

PMS8 Yes - - Yes - Tree Search Yes - (25,10) t=6  n=6000 
15.45 

hour 

qPMS9 

- Yes Yes Yes - Tree Search - 
Yes (48 

core)  

(30, 13)  t=q=20  

n=600  

51.02 

hour 

- Yes Yes Yes - Tree Search Yes - 
(25,10)  )  t=q=20  

n=600 

6.3 

hour 

qPMS10 - Yes Yes Yes - Tree Search - Yes 

(23, 9) 

t=1000 n=600 q=100 

2.49 

hour 

Apriori-

Motif 
Yes - - Yes - 

Index structure + 

Suffix tree 
Yes - (15,4) t=20  n=600 

3.134 

hour 

Ex-motif Yes Yes Yes Yes Yes 

Inverted index 

and Hash 

function 

Yes - - - 

ACME Yes - - Yes - Suffix tree - 
Yes (160 

(15, 3)  
580 
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core) sec 

Weeder Yes - Yes Yes - Suffix tree Yes - - - 

Fmotif Yes - Yes Yes - Suffix tree Yes - (15,5)  t=20  n=600 
26.4 

hour 

Random 

Projection 
- Yes - Yes - Hashing - Yes (19,6)  t=20  n=600 

0.96 

sec 

MEME - Yes - Yes - 
Expectation 

Maximization 
Yes - t=20  n=600 7.6 sec 

APMS - Yes Yes Yes - 

Acceleration of 

neighboring 

substring search 

Yes - 
(21,8) t=3000  n=200 

q=0.5% 

28.9 

sec 

MCES Yes - - Yes - 

MapReduce-

based approach + 

Tree search 

- Yes 

(25, 10) 

t=3000   n=200 

22 sec 

iGibbs 

sampling 
- Yes Yes Yes - 

Gibbs sampling 

+ Markov chain 

monte carlo 

(MCMC) 

Yes - 

(24, 0) 

t=1    n=15000 

23 sec 

SMF and 

qSMF 
- Yes Yes Yes - 

Two 

Dimensional 

Array 

Yes - (30,12)  t=20  n=600 - 

 

4- Discussion 
 The identification of motifs within biological sequences remains a crucial challenge in 
bioinformatics, with significant implications for understanding genetic regulation, disease predisposition, 
and personalized medicine. Throughout this review, we have examined a variety of algorithms designed 
to tackle the Planted Motif Problem (PMP), highlighting their respective methodologies, strengths, and 
limitations. 
Early algorithms such as PMS1 laid the groundwork for motif discovery but faced challenges with 
efficiency and scalability. Subsequent advancements, including PMSP and PMSprune, introduced more 
space-efficient approaches and dynamic pruning techniques, significantly improving performance.  
Profile-based and pattern-based algorithms represent two primary approaches to motif identification. 
While profile-based algorithms predict motif initiation sites, pattern-based algorithms aim to discover 
motifs directly. Exact algorithms, like Moby Dick and YMF, guarantee optimal solutions through 
exhaustive searches but are often impractical for large datasets due to their high time complexity. 
Approximation algorithms, though faster, may not always yield accurate results. 
Recent developments have focused on reducing computational complexity and enhancing scalability. 
Algorithms such as PMS4, PMS5, and PMS6 introduced innovative preprocessing steps and neighborhood 
generation techniques, while PMS9 and qPMS10 leveraged parallel processing to handle larger datasets 
effectively. The introduction of ACME showcased the potential for scalable parallel systems to manage 
gigabyte-scale sequences, marking a significant leap forward in motif mining capabilities. 
Deep learning approaches have also begun to show promise in motif discovery. Methods like DeepSEA 
and DeepSNR employ convolutional neural networks (CNNs) to capture intricate features within 
sequence data, offering new avenues for motif mining. These models can process extensive datasets with 
high accuracy, making them suitable for modern biological research where data volume is continually 
increasing. 
Despite these advancements, challenges remain. The inherent complexity of biological sequences, the vast 
amount of data, and the need for efficient and accurate algorithms continue to drive research in this field. 
The integration of deep learning techniques with traditional bioinformatics methods offers a promising 
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direction for future studies, potentially overcoming current limitations and uncovering new biological 
insights. 
 

5- Conclusion and future work 
 Motif identification in biological sequences is a critical aspect of bioinformatics, with applications 
ranging from disease diagnostics to personalized medicine. Over the years, numerous algorithms have 
been developed to address the Planted Motif Problem (PMP), each contributing to the incremental 
advancement of the field. 
This review highlights the evolution of motif discovery algorithms, from early exact methods like PMS1 to 
advanced approximation techniques such as qPMS9 and deep learning models like DeepSEA. The 
continuous improvement in space efficiency, processing speed, and scalability underscores the dynamic 
nature of this research area. 
The transition from traditional bioinformatics approaches to deep learning signifies a paradigm shift, 
leveraging the power of neural networks to handle the complexity and volume of modern biological data. 
As deep learning models continue to evolve, they are expected to play an increasingly important role in 
motif discovery, offering unprecedented accuracy and efficiency. 
Future research should focus on integrating deep learning with existing bioinformatics methods, 
exploring hybrid models that combine the strengths of both approaches. Additionally, addressing the 
challenges of data heterogeneity, algorithm scalability, and interpretability will be crucial for further 
advancements. 
In conclusion, while significant progress has been made, the quest for efficient and accurate motif 
discovery algorithms continues. The synergy between bioinformatics and deep learning holds great 
promise for the future, potentially leading to groundbreaking discoveries and innovations in 
understanding the complexities of genetic regulation and disease mechanisms. 
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