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A B S T R A C T 

In the Open Shop Scheduling, a group of jobs are assigned to several machines, and each job can 
be handled on any machine without following a set order. The main difficulty is figuring out the 
best scheduling configuration to reduce the makespan or the amount of time needed to finish 
all jobs from the beginning of the first work to the end of the last. Multiple jobs requiring the 
same machine simultaneously can cause scheduling conflicts, which must be avoided while 
considering work order flexibility among different machines. Scheduling considerations in OSS 
are extremely complicated because every job must be executed on every machine exactly once. 
The goal is to determine an efficient sequence that balances the workload across available 
machines, minimizing makespan while adhering to various operational constraints. This 
survey provides a comprehensive analysis of Open Shop Scheduling, a widely studied topic in 
scientific research focusing on minimizing makespan, synthesizes key contributions from the 
literature, highlights recent advancements, and outlines potential avenues for future research. 

MSC.. 

https://doi.org/10.29304/jqcsm.2025.17.11965 

1. Introduction 

The main focus of the crucial field of scientific research known as Open Shop Scheduling (OSS) is optimizing the 
distribution of tasks across several machines or workstations [1]. OSS offers more freedom than rigid scheduling 
paradigms like flow shop or job shop scheduling, enabling each job to be processed in any order on any machine. 

 This intrinsic adaptability creates a difficult problem, especially when the goal is to reduce the makespan or the 
amount of time needed to finish all jobs from the start of the first to the end of the last. The OSS problem is 
characterized by the need to determine an optimal schedule where each job is executed on a selected machine exactly 
once. The challenge arises from minimizing makespan [2][13] and managing potential conflicts arising from 
simultaneous job demands on the same machine. Therefore, the key to OSS is to develop an effective sequencing plan 
that complies with several restrictions and optimizes the resources. Minimizing makespan is still a top priority 
because of OSS's substantial influence on productivity and operational efficiency. Organizations can improve service 
delivery, lower operating costs, and increase throughput by minimizing the makespan. With an emphasis on 
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makespan minimization, this review seeks to give a thorough overview of OSS, clarifying the problem description and 
the approaches.  

2. Open Shop Scheduling (OSS) 

It is a complex combinatorial optimization problem that belongs to the broader family of job scheduling problems, 
including flow and job shop scheduling. In OSS, a set of jobs must be processed on multiple machines, but unlike flow 
or job shops, there is no predetermined sequence of operations for each job on the machines. This lack of precedence 
constraints in OSS provides more flexibility. Still, it adds complexity, 

 as any job can be processed on any machine at any time as long as each job is processed on all machines exactly once. 
The primary objective of Open Shop Scheduling is to optimize the allocation of jobs to machines to minimize one or 
more performance measures, which are critical in industrial, manufacturing, and computing environments [9] [10].  

OSS's most commonly studied performance measures include minimizing the makespan, total completion time, total 
tardiness, and the number of tardy jobs. The makespan(Cmax) is one of the key objectives in OSS and represents when 
the last job finishes processing on the machines. Minimizing the makespan increases efficiency by reducing the time 
required to complete all jobs. This is particularly important in industries where minimizing downtime and maximizing 
throughput is critical for maintaining competitive advantage. When minimized, the overall flow time of jobs in the 
system is decreased. The sum of the completion times of all jobs is another important performance metric, and 
reducing in-process inventory and enhancing resource usage is closely related to this statistic. Different tasks 
frequently carry different levels of relevance or priority in real-world applications. In OSS, this is achieved by giving 
jobs weights and reducing the weighted sum of completion times. The weighted performance metrics are particularly 
applicable in real-world situations where certain tasks may be more important than others because of client priority, 
deadlines, or financial impact. Similarly, being late is a major problem, particularly in systems where deadlines must 
be fulfilled. The tardiness of a job, defined as the difference between its completion time and its due date, is penalized 
to ensure that jobs are completed as close to their deadlines as possible. Minimizing total tardiness and weighted total 
tardiness is crucial in environments where late completion can incur significant penalties or reduce customer 
satisfaction. 

The number of tardy jobs and the maximum lateness are crucial performance metrics (Lmax). The focus is on reducing 
the number of jobs that exceed their due dates, while the latter aims to minimize the worst-case scenario, where the 
job with the greatest delay is reduced as much as possible. These measures ensure that the scheduling system is 
efficient and robust to delays, which can be crucial in industries where delays in one part of the process can have a 
cascading effect on subsequent operations. Given its flexibility and complexity, the Open Shop Scheduling problem 
has been a topic of extensive research with various heuristics, metaheuristics, and exact algorithms proposed to solve 
different variants of the problem. The challenge lies in the NP-hard nature of the OSS problem, which means that 
finding optimal solutions for large instances is computationally infeasible, and hence, practical approaches often rely 
on approximation methods or heuristic techniques that provide near-optimal solutions within reasonable 
computational times [9] [11].  

Solutions to OSS are widely applied in areas such as manufacturing, telecommunications, and even cloud computing, 
where the efficient allocation of resources is essential to operational success. Open Shop Scheduling is a vital 
optimization problem in operations research, with numerous practical applications in industry and services. Its 
performance measures, from minimizing to reducing tardy jobs and tardiness, ensure that operations run smoothly, 
deadlines are met, and resources are used effectively. 

Over the years, numerous open shop scheduling problem variants have been explored. While the standard problem 
is well-defined, many studies have extended it by adding or modifying assumptions and constraints. For instance, 
although related to open shop scheduling, flexible manufacturing systems (FMS) involve additional complexities and 
are often treated separately in the literature [8]. Research into open shop scheduling, as depicted in Figure  1 . can be 
broadly categorized into three main classes of solution methods: exact algorithms, deterministic heuristics, and 
metaheuristics. This simple classification effectively captures the diversity of approaches to solve the open shop 
scheduling problem. A significant body of work has focused on minimizing the makespan, often using branch and 
bound (B&B) algorithms, which are considered one of the most powerful exact methods for solving scheduling 
problems. 
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Fig 1. Open Shop subdivision [16] 

To clarify more through Gantt chart 1. similar to the Open Shop Scheduling (OSS) problem's machines. Each 

job in OSS must go through a group of machines, but there is no predetermined order in which they must be 
completed, giving scheduling freedom. The horizontal axis of the chart represents time, while the vertical axis 
represents machines (M1, M2, etc.). Tasks (J1, J2, etc.) are represented by colored bars on the chart, each indicating 
how long a specific work will take on a particular machine [5]. 

 

 

 

 

 

 

Fig 3. Gannet Chart for open shop scheduling with 8 jobs and 5 machines. 

2.1  Performance Measures in Open Shop Scheduling Optimization 

The open shop scheduling problem is a significant challenge in scientific research, particularly in optimizing the use 
of resources in manufacturing and service environments.  Open shop scheduling primarily aims to assign jobs to 
machines to optimize specific performance criteria. In practice, these criteria are expressed through several 
performance measures. Some of the key measures commonly addressed include: 

Minimizing the makespan (Cmax): Minimize Completion Time (Cmax): This is a very important metric that 
indicates the maximum time to complete all the jobs in the schedule. It is represented mathematically as follows:  

Cmax = max(Ci)        …      (1) 

Where Ci is the completion time for a job i. 
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- Minimizing the sum of completion times: Another important metric is the total flow time, which is the sum of 
the completion times for all jobs, given by: 

∑ 𝐶𝑖𝑛
𝑖=1             …      (2)                                           

This measure seeks to minimize the cumulative time jobs spend in the system, directly impacting operations 
efficiency and minimizing in process inventory. 

- Minimizing the weighted sum of completion times: When jobs have varying importance or priorities, a 
weighted sum approach is employed. Each job i is assigned a weight Wi based on its priority, and the objective is 
to minimize the weighted sum: 

∑ 𝑊𝑖𝐶𝑖𝑛
𝑖=1                 …      (3) 

This method ensures that higher-priority jobs are processed more quickly, reflecting the organization’s or 
production system's specific needs. 

- Minimizing tardiness and lateness: Tardiness is the amount by which the completion time of a job exceeds its 
due date. The tardiness Ti for a job i is calculated as: 

Ti = max(0, Ci − di)                        …      (4) 

Ci is the completion time, and di is the due date for a job i. The total tardiness is minimized by optimizing the 
scheduling of jobs to ensure they meet or fall within their deadlines: 

∑ 𝑇𝑖      𝑛
𝑖=1                  …      (5) 

                              

This helps in reducing penalties or losses due to late job completion. 

- Minimizing the weighted sum of tardiness: Similar to the weighted sum of completion times, this measure 
accounts for job priorities. The weighted tardiness WiTi is minimized, where Wi represents the importance of job 
i. The objective is: 

∑ 𝑊𝑖𝑇𝑖𝑛
𝑖=1                 …      (6) 

 
Which ensures that critical jobs experience minimal delays. 
-Minimizing the number of tardy jobs: This performance measure focuses on reducing the number of completed 
jobs after their due dates. It is calculated by summing an indicator variable Ui, where Ui = 1 if Ci > di; 
otherwise, Ui = 0. The goal is to minimize: 

∑ 𝑈𝑖𝑛
𝑖=1              …      (7)                                                         

representing the total number of late jobs. 

- Minimizing the weighted number of tardy jobs: In situations where some jobs are more critical than others, their 
importance is weighted. The objective is to minimize: 

∑ 𝑊𝑖𝑈𝑖𝑛
𝑖=1               …      (8) 

Wi represents the job’s importance, and Ui indicates whether a job is tardy. 

- Minimizing the maximum lateness (Lmax): Lateness Li is defined as: 

Li = Ci − di       …      (9) 
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Representing the difference between a job’s completion time and its due date. The objective is to minimize the 
maximum lateness across all jobs: 

Lmax = max(Li)     …      (10) 

It improves overall timeliness and system reliability by ensuring that even the most delayed jobs have the fewest 
minutes of lateness. 

 

2.2 Applications of OSS 

Open Shop Scheduling (OSS) has various applications across various industries, making it a crucial area of study in 
scientific research. OSS is particularly helpful in the manufacturing sector as it optimizes workflows requiring 
numerous components that must be processed through several stages. By allowing manufacturers to adjust to shifting 
production needs, job sequencing flexibility boosts overall productivity and efficiency. The healthcare industry also 
uses it to enhance patient scheduling across hospital departments. Healthcare facilities can decrease wait times and 
enhance patient care, improving health outcomes by effectively allocating resources and setting up appointments. In 
telecommunications, OSS is essential for controlling data packet routing across networks. Through optimum data 
transmission operation scheduling that ensures timely information delivery, OSS contributes to better network 
performance and resource utilization  [15]. OSS is also useful in transportation and logistics, where it may be applied 
to optimize vehicle routing for pickups and deliveries, allowing businesses to lower expenses and improve operational 
efficiency by minimizing makespan [13]. 

Overall, OSS's versatility makes it applicable to various fields, where effective scheduling contributes to improved 
operational performance and resource utilizations. 

2.3 Related Work 

The literature review thoroughly examines the Open Shop Scheduling Problem (OSSP), highlighting various 
algorithms and approaches to optimize scheduling activities in different circumstances. The review highlights both 
traditional and modern techniques for reducing makespan and enhancing scheduling efficiency by combining studies 
that use strategies like Bat Algorithm, Longest Processing Time (LPT), Genetic Algorithms, and Quantum Computing 
with more recent methods like Whale Optimization and Quantum Computing. This review's broad coverage of 
benchmark problems and datasets, such as the well-known Taillard cases, is one of its main advantages since it offers 
a solid foundation for evaluating the effectiveness of various algorithms. Furthermore, the paper includes innovative 
techniques like hybrid algorithms and the application of Graph Attention Models, demonstrating the changing terrain 
of OSSP research. Information on the scalability and flexibility of different approaches, including algorithms evaluated 
on small, medium, and large-scale datasets, further enhances the review's practical usefulness. To close the gap 
between theoretical developments and real-world applications in manufacturing, logistics, and healthcare, the paper 
also highlights the interdisciplinary character of scheduling challenges. The breadth  and depth of the literature 
covered in this review provide a valuable foundation for future research, particularly in identifying trends, evaluating 
algorithmic performance, and exploring new avenues for optimization in OSSP. Despite its comprehensive scope, the 
literature review has some limitations.  One disadvantage is the lack of in-depth analysis comparing the computational 
complexities  of different algorithms, which can be crucial for understanding their practical applicability in large-scale  

problems. Additionally, while the review includes a variety of algorithms, it does not fully  explore the limitations or 
potential biases in the datasets used, such as Taillard instances, which  might not represent all real-world scenarios. 
Moreover, the review leans heavily on performance  metrics like makespan without considering other important 
factors such as resource constraints, energy consumption, or multi-objective optimisation, which are increasingly 
relevant in scheduling  research today. Finally, while cutting-edge approaches are mentioned, the integration of 
emerging technologies like machine learning have not been thoroughly examined, leaving gaps in exploring  future 
Open Shop Scheduling Problem research trends. 
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M. B. Shareh et al., proposed in [5] the Bat Algorithm for solving open shop scheduling problems(OSSP). Specifically, 
standard open shop benchmarks from Taillard criteria are used in the experiments, along with different problem 
scenarios like 4x4, 5x5, and so on, involving various jobs and machines. The optimal makespan obtained by the 
algorithm was 193. Examining the Bat Algorithm's performance compared to other benchmark algorithms is essential, 
even though it showed a makespan of 193. Testing the Bat Algorithm across a larger range of benchmarks or problem 
scenarios, especially in real-world applications where the problem size and complexity fluctuate, could be a crucial 
factor for future research. This would provide valuable insights into its scalability and computational efficiency 
compared to other leading methods. 

In [12], M. Sophia et al. used the Longest Processing Time (LPT) algorithm to solve the Open Shop  Scheduling Problem 
to minimise the total completion time. For a case of 3 jobs and 3 machines, with varying processing durations on every 
machine for every workload, the total completion time using the LPT algorithm was 35 hours, with 4 hours of idle 
time. 

M. M. Ahmadian et al  . [13] discussed minimizing makespan and the time to complete all jobs. The article reviews a 
body of literature spanning four decades and illustrates the complexities associated with this type of scheduling and 
the various solutions developed over time. The makespan values presented that the proposed method (BA_OS) is 
highly competitive with other established algorithms across small and large problem instances; the optimal makespan 
solution was 937. 

S. Aghighi et al. [14] used an open shop scheduling problem with Reverse Flows, which aims to minimize the 
makespan, i.e., reduce the total time required to complete all tasks on all available machines. Several algorithms were 
tested on small, medium, and large datasets. Software such as GAMS was used to solve small examples. In contrast, 
algorithms such as Differential Evolution (DE), Genetic Algorithm (GA), and Whale Optimization Algorithm 
(WOA)were used to solve large examples of algorithms such as DE, GA, WOA, BA, etc., were compared to evaluate the 
effectiveness of the solutions. DE proved to be very effective in finding good solutions compared to other algorithms. 

A. M. Cañadas et al., [15] discuss the Open Shop Scheduling (OSS) Problem and use an algebraic approach to solve this 
problem, where minimizing makespan is the primary objective. The use of multiple models of time matrices 
associated with operations performed on a set of machines (e.g., three jobs on different machines). These models are 
based on the schedules of jobs on machines, where the processing times are generated randomly using specific 
distributions in some cases. The experimental results presented in the study showed that 95% of the calculated 
distributions satisfy the minimum ∗β of Makespan. 

In [16], W. Kubiak used the problem of "Open Shop Scheduling" on machines to achieve the shortest total duration 
makespan. Makespan refers to the time it takes to perform all jobs in a given system using the available resources. It 
appears that the focus was on minimizing makespan using various algorithms, such as the network flow algorithm, 
which aims to schedule operations in the best way on machines to reduce the total time. The results indicate that the 
minimum makespan depends on multiple factors, such as the complexity of the resource graph and conflicts between 
operations, taking into account the use of approximation methods to obtain acceptable results when the problem 
cannot be solved with mathematical precision. Optimal scheduling with a makespan value of 5 for some schedules 
with no waiting periods and other makespan values such as 4 and 8 in different contexts of scheduling problems are 
found, and it is also shown how these values can be achieved via specific computational techniques to reduce the time 
and reach feasible schedules.  

In [17], H. M. Gu et al. deal with the Open Shop Scheduling (OSS) and minimising Makespan using the Whale 
Optimization Algorithm with Local Search (HWOA); the Makespan results for some cases were as follows: 10 jobs and 
5 machines: the minimum Makespan value was 175 and 30 jobs and 5 machines: the minimum value was 482 and 20 
jobs and 10 machines: the minimum value was 334 and 50 jobs and 5 machines: the minimum value was 764. These 
values reflect the minimum Makespan for each case using the HWOA algorithm. 

A. Atay et al., proposed in [18] multiple tasks that require allocation to a set of resources such as machines, and several 
well-known standard datasets have been used in the literature to solve open-shop scheduling problems. Algorithms 
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based on cooperative game theory have been used with resource allocation to minimise the total cost and waiting 
time between tasks. It is an algorithm based on task rescheduling to achieve time and cost savings based on the 
cooperation of multiple players in the system. Experiments have been conducted on different cases, and the results 
have shown that improvements in task re-arrangement lead to significant time savings.  

In [19], J. Li et al. used the Graph Attention Model (GAM) with discount memory integration to solve the Open Shop 
Scheduling Problem (OSSP) to reduce the total time to complete all operations (makespan). The proposed algorithm 
game (attention model with discount memory) achieved excellent results, as it reached a solution quality that 
approximates the lower bound of the total time. Compared to traditional tools such as or-tools, the proposed 
algorithm provides similar solution quality but with less computational time. 

In [20] H. Wang and W. Chen compares scheduling algorithms used in pick-and-drop robot tasks in logistics 
environments. The research focuses on minimizing the total make-span, utilizing a variety of algorithms to allocate 
functions between pick-and-drop robots. The open-shop scheduling problem shares some characteristics with the 
pick-and-drop robot scheduling problem (TPS) regarding the order of execution of tasks between robots. The value 
of Cmax, which represents the makespan in a given example, is equal to 3 in one case. This means the time required to 
complete all the tasks is 3-time units. It was also shown that there is another case where Cmax = 2 could not be achieved, 
as the schedule that can complete the tasks now does not exist. 

     In [21] Z. Zhuang et al., Improved the solution of the scheduling problem using a combination of complex networks 
and dynamic heuristics, it presents a general framework for transforming the scheduling problem into a network 
model, where processes are represented as nodes in a network, and the time constraints between these nodes are 
defined as edges connecting them. The goal is to find the optimal order of visits to these nodes to complete all tasks 
quickly (minimizing the makespan). We used several types of scheduling, Flow Shop Scheduling, Job Shop Scheduling, 
and Open Shop Scheduling, and it was shown that we could solve the Open Shop problem with linear constraints in 
polynomial time, i.e. in a more efficient way compared to other types of scheduling. 

     In [22], K. R. A. Kumar and J. E. R. Dhas used to solve the Job Shop Scheduling Problem(JSSP) the Gannet 
Optimization Algorithm (GOA). The study investigated 23 benchmark problems, typical in JSSP research, including 
well-known instances like LA12 to LA39. These problems were used to evaluate the efficiency of GOA in minimizing 
manufacturing time, a common goal in scheduling. The open shop scheduling problem (OSSP) was studied using three 
simulation algorithms (SA - A1), which gave good but not the best results; the discrete Firefly algorithm (DFA -A2), 
which achieved better results than SA in several cases, and a hybrid algorithm (A3): was the most effective, achieving 
the best results in 76% of the experiments. Thus, the main result is that the hybrid algorithm (A3) is the best for 
minimizing the average flow time in open shop scheduling. Thus, the hybrid algorithm combining DFA and SA was the 
most efficient in solving OSSP problems and minimizing the average flow time, especially in more complex cases with 
increasing tasks and machines. 

    L. Binkowski and C. Tutschku [23] used hard constraints to solve Open-Shop Scheduling. Analyses were performed 
using quantum algorithms to address this problem. The algorithm was applied to a small model using an IBM Q system 
on one computer, and the results were positive, as good solutions were reached with reduced time. Some errors were 
observed in samples close to the optimal solution, but the performance was promising. A noise-free simulator was 
used to analyses the results, where the simulator showed a higher ability to reach optimal solutions compared to the 
real quantum device that suffers from some noise. Thus, the study highlights the potential of using quantum 
computing to improve complex schedules and reduce task completion time. 

   In [24], H. Alghamdi et al. proposed Algorithms used to solve the open-shop scheduling problem, such as Genetic 
Algorithms (GA) and Particle Swarm Optimization (PSO), which can also be effective in solving university scheduling 
problems, as they help in finding optimal solutions under multiple constraints, such as schedule conflicts or resource 
availability. 
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   In [25], A.M. Tsirlin used a job-shop scheduling problem where patients must visit different points of service (POS), 
and the goal is to minimize waiting time. The branch-and-bound method is applied to find an optimal solution by 
considering upper- and lower-bound estimates. 

    M.A. Belmamoune et al. proposed in [26] the Job Shop Scheduling Problem (JSSP) using a reinforcement learning 
algorithm, specifically a Q-Learning algorithm. We introduce a new representation of the state of the scheduling 
environment and utilise task ordering rules like Shortest Processing Time (SPT) and Longest Processing Time (LPT), 
among others, as the actions performed by the agent based on the scheduling environment. A set of several standard 
scenarios within a subset of benchmark instances from the famous OR Library solved a scheduling challenge. The 
main goal for this type of challenge is to minimize makespan.  

In [27], A. Bouzidi et al. proposed to solve the Open Shop Scheduling Problem (OSSP), an NP-Hard problem, using the 
Cat Swarm Optimization (CSO) algorithm. This algorithm minimizes Makespan or the total time required to process 
all jobs by assigning jobs to resources (such as machines) as efficiently as possible. The Cat Swarm Optimization (CSO) 
algorithm, which has two modes, is based on mimicking how cats would behave when looking for the best solution:  
Seeking Mode and Tracing Mode. The algorithm has been improved to increase its efficiency by adding operations 
such as switching locations and updating using searching and tracing. 

    In [28], Yu Fu and Amarnath Banerjee used the stochastic programming model for service scheduling with uncertain 
demand, and it is applied to clinic scheduling based on the open access policy. Stochastic Integer Programming (SIP) 
optimized patient allocation among available time slots. The Sample Average Approximation (SAA) method was 
adopted to calculate optimal solutions based on expected random data, and scheduling was optimised to handle 
uncertain demand in clinics. The model showed strong results in handling increased demand from conditions such as 
the COVID-19 pandemic. Costs related to long waiting times and patients not attending their appointments were 
reduced. 

    S. K. N. V Shakhlevich proposed in [29]. It deals with shop scheduling problems, including the Open Shop Scheduling 
Problem (OSSP), where flexible tasks whose processing time can be flexibly distributed among machines are dealt 
with. The study used algorithms based on the optimal division of operations among machines with flexible 
distribution of processing times and focused on minimizing the total time to complete all tasks (Makespan). 

   L. R. Abreu et al.[30] used Genetic Algorithms to Solve Open Shop Scheduling Problems (OSSP) with Sequence-
Dependent Setup Times. The goal of these algorithms is to minimize Makespan (total time to complete all tasks), Using 
Genetic Algorithms in parallel with construction algorithms such as Bounded Insertion Constructive Heuristic (BICH) 
and Minimal Insertion Heuristic (MIH). Also, using examples such as the GP03-01 dataset, one of the examples shows 
a Makespan of 1040 time units. The proposed algorithm outperforms other solutions, such as Mixed Linear 
Programming (MILP), and other methods, such as Electromagnetic Heuristic (EH). 

In [31], T. F. Abdelmaguid's Dynamic Multiprocessor Open Shop Scheduling was addressed to minimize Makespan 
(total time to complete all tasks) and Mean Weighted Flow Time (MWFT). The data used in the experiments included 
30 small random populations and an Exact Algorithm based on the mixed integer linear Programming (MILP)  model 
was used. IBM ILOG CPLEX software was used to solve the generated sub-problems. 

V. H. H. Lopes Costa Lima [32] discussed the problem of open workshop scheduling using hybrid  algorithms, including 
Tabu Search and ils; the proposed algorithm was tested on 140 cases known  in the literature, including datasets used 
In Taillard, Guéret, And Prins experiments, where jobs  were assigned to different machines. The time required to 
complete the tasks was measured, and tests were conducted on other cases; the proposed algorithm was successful 
in improving the  makespan results, where the makespan ranged between 1399 time units in one of the experimental  
cases, and this was dependent on the number of machines and the assigned tasks. The results indicate that the 
algorithm provided competitive results with little deviation from the optimal solutions. 

In [33], Wiesław Kubiak discussed NP-hard problems in scheduling, particularly focusing on two-machine open shops. 
It mentions that the makespan minimization for this type of problem  is NP-hard, even when operations are unit-time. 
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Specifically, for a two-machine open shop with  unit-time operations and time lags, the problem is shown to be 
computationally complex. According to the results, the makespan problem in the open workshop with time gaps is 
NP-hard in its strongest form, even if there are only two machines and every operation takes the same time. Because 
of its complexity, the problem cannot be solved efficiently with traditional algorithms, so researchers are 
concentrating on creating competitive and approximate algorithms to solve it. As a result, a competitive algorithm 
was created to solve the makespan problem in open workshops with time gaps, and an approximate method was 
created to solve the problem. 

In [34] J. Dong et al., an approximate polynomial time method (EPTAS) is used to solve the multistage open shop 
scheduling problem to minimize the makespan or the total sum of completion times. The suggested algorithm is 
effective when applied to jobs planned on multistage open shops. The method is applied to the scheduling problem to 
minimize the makespan of the time the final job finishes. 

In [35], S. Hassan et al. discussed the two primary goals of the open shop scheduling problem (OSSP): minimizing the 
overall make-span and task delay. Large difficulties were solved by applying mathematical and approximation 
techniques to data from various workshops and procedures. Multi-objective mixed linear programming (MOMILP), 
multi-objective parallel genetic algorithm (MOPGA), and multi-objective parallel simulated cooling (MOPSA) were 
among the techniques employed to minimize these goals. These algorithms' performances on both small and large 
issues were compared. On big problems, MOPGA was better at finding the best answers, whereas MOPSA was quicker 
but marginally less effective at producing high-quality solutions. 

A. A. Rahmani Hosseinabadi et al., [36] In the discussion of the Open Shop Scheduling Problem (OSSP)  and its solution 
using the Extended Genetic Algorithm (EGA), multiple datasets were used to test  the effectiveness of the proposed 
algorithm. In the dataset Test_4_4, the optimal Makespan  achieved was 193, which aligns with the optimal solution 
found in the standard benchmarks (Taillard Benchmark). 

G. Ni and L. Chen [37] used to solve the three-machine proportionate open shop and mixed shop scheduling problem 
in proportional operating environments. The algorithms developed in the  paper appear to be based on data on 
machine job scheduling with given processing times. For  makespan (the maximum time required to complete all jobs), 
improvements are achieved using  approximate algorithms. Key results include a three-machine proportionate open 
shop problem: the  approximate algorithm is improved from 7/6 to 13/12. Three-machine mixed shop problem: an 

improved approximate algorithm is presented with 7/6 + α, better than the previous results 5/3. 

 K. Nip and Z.Wang [38] discuss the problem of scheduling two-machine shops under linear constraints.  This type of 
problem aims to schedule the tasks on two machines to minimize the Makespan (the total time required to complete 
all tasks). Several approximate algorithms are presented  to solve two-machine shop scheduling problems, including 
a 2-ratio approximation algorithm,  and Polynomial-Time Approximation Schemes (PTAS) have been developed that 
can improve the optimal solution. 

In [39] R.Reijnen et al. used the job shop scheduling problem (JSSP) and its variants, such as  dynamic scheduling 
(DyJSSP) and distributed scheduling (DiJSSP), and used benchmark datasets  such as the Taillard dataset, which are 
often used to test solutions in job shop scheduling problems  and most notably Makespan optimizations, so methods 
such as DRL algorithms and GNNs were  used to develop solutions that reduce Makespan time while improving 
performance across multiple  benchmark datasets. In addition, several studies compared the performance of their 
techniques with techniques such as L2D and PDR (prioritisation rules) and demonstrated superior performance 

in several experimental cases. For example, using GNNs with DRL was faster and more accurate than traditional 
optimization methods such as Tabu Search and Genetic  Algorithms. Hybrid methods, such as using neural networks 
with local search methods, were also proposed, improving solutions' accuracy at the expense of longer running time. 

K. Ho et al.[40] discussed the Open Shop Scheduling Problem (OSSP) using a set of benchmark  datasets, including the 
Taillard (TA) dataset, one of the most popular datasets used to test scheduling  algorithms and also for makespan (the 
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total time to complete all tasks), a new algorithm called Residual  Scheduling was used. Experiments showed that this 
algorithm achieved Zero gaps in 49 out of 50  JSP problems containing more than 150 processes distributed across 20 
machines. On the TA  dataset, the average makespan gaps using the RS algorithm were lower than other methods, 
such as L2D and Schedule Net, with gaps ranging from 0.026 to 0.177, depending on the problem size. 

A.H. Lal et al. proposed in [41] an Open-ended Scheduling Problem (OSSP) focusing on minimizing  the average flow 
time. 50 OSSP problems were used with random processing times generated  using a random number generator, and 
three algorithms were used to reduce the average flow time: Simulated Cooling (SA) - denoted as A1, and 
Discontinuous Firefly Algorithm (DFA) - denoted  as A2 and A hybrid algorithm combining DFA and SA - denoted as 
A3. The results showed  that the hybrid algorithm A3 provided the best results in 76% of the cases, compared to A1 
and  A2. The best results were found in all cases with more than 7 jobs and 25 machines, reflecting the  effectiveness 
of this approach. 

In [42], A. Kekli used a hybrid algorithm combining Cat Swarm Optimization (CSO) and  Genetic Algorithm (GA) to 
solve the Open Shop Scheduling Problem with the Vehicle Routing  Problem (OSSP-VRP). This algorithm minimizes 
makespan (maximum time to  complete operations) and total vehicle distance travelled. For the Taillard dataset, the 
hybrid  algorithm HCSO-GA reached better solutions in 70% of cases than other algorithms, with relatively low gaps 
between the computed and the best-known solutions. In the Taillard 10×10. In this case, the algorithm achieved Cmax 
= 871, which is better than previous algorithms.  

Table 2. Systematic analysis of the related work 

Ref. Author Year Dataset Proposed Method Results 

[5] M. B. Shareh et al. 2020 Taillard Bat Algorithm 
The optimal makespan found by the algorithm is 

193. 

[12] 

M. Sophia 

et al. 
2024 

For 3 jobs and 3 
machines 

LPT (Longest Processing Time) 
The LPT algorithm's total completion time was 

35 hours, with 4 hours of idle time. 

[13] 
M. M. Ahmadian et 

al. 
2021 Taillard BA_OS algorithm 

For a 15×15 problem, the optimal makespan 
solution was 937. 

[14] S. Aghighi et al. 2024 Taillard 

Differential Evolution (DE), 
Genetic Algorithm (GA), and 

Whale Optimization Algorithm 
(WOA). 

For small problems, the makespan ranged from 
about 222 to 317 seconds. For medium 

problems, it ranged from 472 to 10,845 seconds. 
For large problems, it was much higher, 

reaching about 362,466 seconds in some cases. 

[15] 
A. M. Cañadas et 

al. 
2023 

3  jobs on different 
machines 

Algebraic approach 
95% of the calculated distributions satisfy the 

minimum ∗β of Makespan. 

[16] W. Kubiak 2022 
A set of data used in a 

scientific study or 
experiment. 

Network Flow Algorithm. 

Some schedules with no waiting periods have a Makespan value of 5, 

while other makespan values, such as 4 and 8, are found in different 

contexts of scheduling problems . 



Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol.17.(1) 2025,pp.Comp 81–94                                        11 

 

 

[17] H. M. Gu et al. 2019 

Test 10 _ 5 

Test 30 _ 5 

Test 20 _10 

Test 50 _ 5 

Whale Optimization 
Algorithm with Local Search 

(HWOA). 

The lowest makespan value was : 

175, 482, 334,764. 

 

[18] 
A. Atay 

et al. 
2021 standard datasets 

Algorithms based on 
cooperative game theory 

improvements in task re-arrangement lead to 
significant time savings. 

[19] J. Li et al. 2020 standard datasets 
algorithm gam-dm (attention 

model with discount memory) 
reached a solution quality that approximates the 

lower bound of the total time. 

[20] 
H. Wang and W. 

Chen 
2021 Random dataset 

Decoupled heuristics. 

Coupled heuristics. 

The time required to complete all the tasks is 3 
Time units. It was also shown that there is 
another case where Cmax = 2 could not be 

achieved, as the schedule that can complete the 
tasks now does not exist. 

[21] 
 

Z. Zhuang et al. 
2019 nodes in a network 

A combination of complex 
networks and dynamic heuristics 

It was shown that we can solve the Open Shop 
problem with linear constraints in polynomial 
time, i.e., more efficiently than other types of 

scheduling. 

[22] K. R. A. Kumar and 
J. E. R. Dhas 

2023 Taillard 

Gannet Optimization Algorithm 
(GOA) 

 

The makespan for LA 12 is 1038, for LA 13 is 
1149, and for LA 14 is 1291. 

[23] L. Binkowski and 
C. Tutschku 

2023 
Implemented on IBM 

Q 
Variable Quantum Algorithms 

(VQAs) 
focuses on presenting new algorithms and 

applying them to small OSSP cases. 

[24] 
H. Alghamdi et al. 

2020 University Scheduling 
(Genetic Algorithms). 

(Particle Swarm Optimization). 

Help find  optimal solutions under multiple constraints, such as schedule  

conflicts or resource availability .  

[25] 
A.M. Tsirlin 

2022 Health dataset 
branch-and-bound algorithm. 

 

Find the optimal scheduling solution that 
minimises patient waiting time across different 

Service Points. 

[26] 
 

M. A. Belmamoune 
et al. 

2023 Benchmark dataset 
Q-learning, Deep Q-Networks 
(DQN), and cooperative DQN 

agents. 

The Q-learning algorithm improved minimising 
makespan compared to traditional dispatching 

rules like FIFO, SPT, and LPT. 

[27] A. Bouzidi et al. 2019 
Guéret dataset 

 

Cat Swarm Optimization (CSO) 

 

The best-known solutions, the best solutions 
found by the CSO method, relative percentage 
deviation (RPD), and average execution time. 

[28] 

Yu Fu and 

Amarnath 

Banerjee 

2021 
Datminimisingocal 

clinic 

Stochastic Integer Programming 
(SIP) 

Sample Average Approximation 
(SAA) 

The model showed strong results in handling 
increased demand from conditions such as the 

COVID-19 pandemic. Costs related to long 
waiting times and patients not attending their 

appointments were reduced. 

[29] 
S. K. N. V 

Shakhlevich 
2019 

Taillard 

 

 

algorithms based on the optimal 
division of operations among 

machines with flexible 
distribution of processing times 

With unlimited flexibility, faster and less 
complex solutions are reached compared to 

cases of restricted flexibility. 
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[30] L. R. Abreu et al. 2020 GP03-01 dataset Genetic Algorithm The makespan is 1040 time units. 

[31] 
T. F. 

Abdelmaguid 
2020 

  30 small random 
group 

 

Exact Algorithm 

The total Makespan time ranged between 242 
and 257 time units.  

[32] 
V. H. H. Lopes 

Costa Lima 
2020 

   Taillard, Guéret 
Prince 

Tabu Search Algorithm. 

Iterated Local Search (ILS). 

The Makespan ranged between 1399 time units . 

[33] 

Wiesław 
Kubiak 

et al. 

2022 Benchmark dataset 
Approximate and competitive 

algorithms 

3/2 approximate algorithm: TThe solution 
provided by this algorithm will be, at most, 50% 

larger than the optimal solution. 2/2 
competitive algorithm: This algorithm achieves 

results that are twice as close to the optimal 
solution. 

[34] J. Dong et al. 2022 Taillard 
Efficient Polynomial Time 
Approximation Algorithm 

(EPTAS). 

EPTAS provides approximate solutions that are 
very close to the optimal solution with 

improvements up to a high efficiency level. Still, 
it does not offer a fixed or specific value for a 

given makespan. 

[35] S. Hassan et al. 2022 
Data from multiple  

ses andproces  

workshops   

Multi-Objective Parallel 
Genetic Algorithm (MOPGA) 

 

While MOPSA was faster, it was slightly less 
efficient regarding solution quality. 

[36] 
A. A. Rahmani   

Hosseinabadi et 
al. 

2019  Test_4_4  
 Extended Genetic Algorithm 

EGA 

The optimal Makespan achieved was 193 . 

[37] 
G. Ni and L. 

Chen 
2020 

Three-Machine 
Proportionate 
Open Shop and 

Mixed Shop 

Approximate algorithms 

The approximate algorithm has been improved 
from 7/6 to 13/12. For the three-machine mixed 

shop problem, an enhanced approximate 
algorithm is presented with 7/6 + α, better than 

the previous results of 5/3. 

[38] 
K. Nip and Z. 

Wang 
2021 

The tasks on two 
machines 

Polynomial-Time 
Approximation Schemes - 

PTAS 

A 2-ratio approximation algorithm and 
Polynomial-Time Approximation Schemes 

(PTAS) have been developed that can improve 
the optimal solution. 

[39] 
R. Reijnen 

et al. 
2024    Taillard DRL algorithms and GNNs 

GNNs with DRL were faster and more accurate 
than traditional optimisation methods such as 

Tabu Search and Genetic Algorithms. 

[40] K. Ho et al. 2023  Taillard 
a new algorithm called 

Residual Scheduling 

There were zero gaps in 49 of 50 JSP problems containing more than 150 

processes distributed across 20 machines. On the TA dataset, the average 

makespan gaps using the RS algorithm were lower than those using 

other methods, such as L2D and Schedule Net ,with gaps ranging from 

0.026 to 0.177,  depending on the problem size.  

[41] 
A. H. Lal 

et al. 
2019 

50 OSSP problems 
were used with 

random processing 
times generated 
using a random 

number generator  

Simulated Cooling (SA) 

Discontinuous Firefly 
Algorithm (DFA) 

A hybrid algorithm that 
combines DFA and SA 

Compared to SA and DFA, the hybrid algorithm 
A3 gave the best results in 76% of cases. The 

best results were found in all cases with more 
than 7 jobs and 25 machines. 
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3 Future Directions 

In the future research domains of scheduling problems, there are many opportunities for improvements in both 
theoretical constructs and practical uses. Several research studies suggest that scheduling models could be more 
applicable if they were made with more realistic assumptions. For example, Shareh et al. 's research demonstrates the 
importance of factoring setup times and equipment maintenance into the maintenance models -- factors often 
overlooked in the existing models [5]. Further indexing indicates that different methods and variants of different 
algorithms improve the depth of scheduling results. For example, Aghighi et al. highlight the DE algorithm's 
effectiveness, which can be further enhanced by considering different objective functions and no-wait multi-objective 
scheduling problems [14]. This revelation suggests that a more detailed exploration of hybrid strategies that entangle 
various optimizations may be useful to investigators in the future. Furthermore, Canadas et al. argue that Brauer 
configuration algebras should be used as a lens to broaden the investigation of open shop scheduling issues. One 
possible way to do this is to review how these algebraic frameworks correspond to real-life scheduling problems, such 
as public transportation networks [15]. The techniques' adaptability is evidenced further by proposing other 
metaheuristic techniques, like those proposed by Bouzidi et al., for different kinds of applications in the open shop 
scheduling context [27]. Additionally, research into online scheduling techniques is becoming more popular. 
According to Fu et al., models created for clinical scheduling can be modified for use in more general contexts, such as 
online job shop scheduling with time windows [28]. Developing models that can adjust to changing needs in various 
service situations is one important area for future research that this adaptability suggests. Incorporating real-time 
restrictions, like fluctuating machine speeds and task release times, is crucial. According to Wang et al., taking these 
limitations into account can make scheduling models more realistic, pointing to the need for more responsive and 
dynamic scheduling systems [20]. Future research in these areas can greatly advance scheduling approaches and 
guarantee their continued applicability and efficacy in ever-more complicated operating environments. 

4 Discussion 

Because of its intrinsic complexity and applicability to various industrial applications, the Open Shop Scheduling (OSS) 
problem has drawn much interest from the operations research community.  Despite the advances in OSS research, 
several areas could still be explored more deeply. For instance, a great opportunity to increase the efficiency of 
solutions is related to hybrid approaches, where the computational benefits of precise algorithms with heuristic and 
metaheuristic methods can be combined. Moreover, since industries must still respond to rapidly evolving demands, 
further investigation would be extremely beneficial to enable OSS solutions to operate in dynamic and uncertain 
environments. All in all, devising new creative scheduling. 

5 Conclusion 

The open shop scheduling issue has existed for over 40 years and has been a problem that seeks to minimise the 
manufacturing period. Even if not many studies were done on this topic initially, much research has been done in the 
past 30 years. We have demonstrated our findings on several conventional open shop scheduling problems and noted 
the impact of machine count on problem complexity. As a result, scheduling challenges need to be considered in many 
management and planning concepts. In conclusion, As OSS continues to be critical in various industries, future 
research should focus on incorporating more realistic constraints, such as machine setup times, and embracing multi-
objective approaches to meet the demands of modern scheduling environments. By advancing these methods, OSS 

[42] A. Kekli 2023 Taillard 
C at Swarm Optimization 

(CSO) and Genetic Algorithm 
(GA)  

the hybrid algorithm HCSO-GA reached better 
solutions in 70% of cases than other algorithms, 
with relatively low gaps between the computed 
and best-known solutions. In the Taillard 10×10 
.case, the algorithm achieved Cmax = 871, which is 

better than previous algorithms. 
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solutions can become more adaptable, scalable, and practical for real-world applications, driving continued 
innovation in complex scheduling problems. 
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