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A B S T R A C T 

With the growing use of mobile devices, it is projected that nearly 70% of mobile phone users 
own an Android smartphone. Due to the completely open-source nature of Android, the 
Android operating system is vulnerable to various attacks. The smartphone’s data has a 
sensitive nature, making it important to protect from these attacks. Machine learning (ML) 
approaches have proven to be an efficient methods of detecting these assaults since they can 
create a classifier from a set of training instances; therefore, it does not need an existing 
database of harmful signatures. This review paper aims to cover different characteristics 
involved in Android attack detection systems, such as the Android operating system 
environment, feature extraction, feature selection, performance measures, supervised, and 
unsupervised models. They are described based on previous works that employ machine 
learning for detecting Android malware. Furthermore, this paper intends to help researchers 
gain expertise in the subject of Android attack detection. 

 

MSC.. 

https://doi.org/10.29304/jqcsm.2025.17.11969 

 

1. Introduction 

     Android became known as the most widely used smartphone operating system when it was released in 2008. 
Around 86% of smartphones in 2019 sold internationally were depend on Android [1]. In the mobile sector, 
Android OS held a global market share of over 71.9% as of July 2023 [2]. Due to several factors, such as Android 
applications coarse-grained permission management and the open ecological mode, given the capability to invoke 
third-party code, several security attack surfaces are presents, which substantially compromise the security of the 
Android applications. According to the statistics, it was discovered that over 3 million Android apps contained 
malware. In 2016, implying that a new malware program for Android was detected nearly every 10 seconds [3]. 
Android-powered smartphones have been the target of more attacks in recent years, partly because of their growing 
use for banking and business-related operations. Sensitive financial and personal data is now frequently processed 
by apps as part of social media, communication, and mobile banking .Additionally, there are more possible security 
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and privacy problems caused by malware[4]. Several solutions have been proposed to evaluate Android security, 
comprising malware detection, developer reviews, vulnerability detection, and application reinforcement [5].  
Different detection strategies for Android malware have been presented to handle these security issues, one of the 
most efficient methods is to use machine learning for detection [6]. There are a couple primary sources of features 
in the machine learning-based Android malware detection implementation: both dynamic and static extraction [7]. 

The static features are taken from Dalvik bytecode, native code, manifest, sound, picture, and inverted APK files. The 
dynamic features extracted from code execution, pathways, variable value tracking, sensitive function calls, log 
records and more behaviors that occur during the application's execution by running APK files in the environment 
[5]. 

Many research works [8][9][10][11] focused on training machine learning classification algorithms to detect 
unknown Android malware applications based on known Android malware apps. Machine learning techniques have 
produced a significant accuracy ratio in detecting malicious programs, contingent upon the quality of extracted 
features, the dataset, and the training methodologies employed for the models [12]. Machine learning can be divided 
into three major categories: supervised machine learning [13,14,15], unsupervised machine learning , and 
reinforcement machine learning [16]. Additionally, each learning type is linked to three fundamental learning 
methods: clustering, regression, and classifications. Regression is related to reinforcement learning, where the 
expected result is being graded, ranked or estimated such as linear regression algorithms. The practice of classifying 
data sets that have been labeled into classes or groups is called classification which is applied in supervised learning 
such as decision tree algorithms. The method employed in unsupervised learning is called clustering when the 
datasets are unlabeled. A label is the name of the group or class which the data instances belong to. Many 
characteristics are used to represent data in machine learning that can be continuous, nominal, or categorical [17].  

This review paper is structured as follows: Section 2 provides important background information, discusses the 
architecture of Android operating system, and Android attacks. In Section 3, this paper covers different key 
components in Android attack detection system. It reviews feature extraction and code analysis approaches, feature 
selection, machine learning (ML) categories and performance metrics to evaluate any classification algorithm. This 
is followed by a discussion and review of past studies in Section 4. Section 5 concludes the paper. 

 

2. Background 

Android, globally being one of the most widely used mobile operating systems, so it is a main target for 
cybercriminals. Android attack refers to cyberattacks targeting devices running on the Android operating system. 
This section covers the architecture and potential Android attack. 

2.1- Architecture of Android 

      Android is constructed on the top of the Linux Kernel as shown in Fig. 1 . Linux is selected since it is free and 
open source validates the path evidence, offers networking protocols and drivers, controls virtual memory, security, 
and device power [18]. Android uses a layered architecture [19]. The layers are organized from bottom to top, the 
Hardware Abstraction Layer, Native Libraries, Android Runtime, Java API Framework, and System Apps are all 
stacked on top of the Linux Kernal Layer. Each layer is accountable for a specific job. Android-based applications and 
various services used in the system make use of the Android Runtime (ART). Dalvik was the runtime environment 
that preceded the Android Runtime (ART). ART and Dalvik were created for Android application-related projects. 
The ART uses the Dalvik Executable (DEX) format and the bytecode specifications [20]. The remaining components 
are memory management and power management. As Android-based applications operate on battery- powered 
devices with limited memory. Consequently, Android OS is prepared such that any resource may be effectively 
managed [18].  
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Fig. 1 - android OS architecture 

 

2.2 Android-specific attacks 

      Malicious programs might target the devices in several ways. In addition to generally recognized attacks, 
Android specific attacks comprise [21]: 

• Privacy leakage. It occurs when the device user allows risky permissions that provide access to 
personal information and sensitive data to a malware application with no user's knowledge. 

• Colluding attacks. This can happen when lots of applications that the same developer has signed 
are set up and share UID. These applications, coupled with the shared UIDs, share harmful 
permissions wanted by a specific app, allowing another application to access the same data without 
requesting for permission. 

• Premium Text (SMS). Is a well-known attack in which an individual unknowingly signs up for a 
premium SMS service, which can result in financial loss because these SMS are more expensive 
than standard text messages [22]. 

Harmful applications try to take advantage of vulnerabilities and offer a variety of threats to Android system. In the 
fight against attackers, ML can be quite useful. This paper in the next section, reviews key attack detection system 
concepts. 

3. Attack detection system 

Android attack detection system involves different key components to identify and detect potential security 
threats. Here are the basic concepts of how to approach building such a system: 

     3.1 feature extraction 

        Based on the feature extraction method, Android attack detection can be classified as static, dynamic, or 
hybrid analysis. It uses static, dynamic, or both features. as shown in Fig. 2 . 
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3.1.1 Static analysis 

       Static analysis involves evaluating Android files and obtaining information such as opcode sequences, 
requested permissions, API calls, and so on. Static detection is frequently utilized in detecting Android malware, 
among various additional features due to it is simple to extract [23]. 

Ayman Elshenawy et al [24] suggested a successful machine learning model for detecting Android malware 
according to static malware analysis of Android application features before installation on devices. The suggested 
approach is applied to two independent datasets, DREBIN and MALGENOME. A machine learning classifier was 
created by them using multi-level feature selection techniques like PCA and IG. The classifier that was implemented 
provides around an 89% decrease from the starting set of features for the defined dataset. Furthermore, they 
improved the performance of the suggested classifier and the RF classifier's experimental results showed the best 
performance. 

Ahmed S. Shatnawi et al [25] present a static base classification method for identifying malware depend on Android 
permission and API calls depending on three Machine Learning algorithms, K-nearest neighbors (KNN), Support 
Vector Machines (SVM), and Naive Bayes (NB) with the new Android malware dataset (CIC InvesAndMal2019). They 
show that when compared to other classifiers, the SVM classifier performed best, achieving an accuracy rate of 83% 
when using API call features and an average of 94% when using permission features. This classifier aimed for high 
malware detection while supporting research on mobile information security. 

Munam Ali Shah et al [26] use Machine Learning methods and Reverse Engineered Android applications' features to 
detect vulnerabilities present in smartphone applications. Firstly, they propose a model that merges the biggest 
datasets available of malware samples with more innovative static feature sets than ordinary methods. Secondly, 
they have employed machine learning with ensemble learning. Their proposed model has a 96% accuracy rate for 
false positives with a 0.3 false positive rate in the specified environment. The study also found that strong and 
ensemble learning algorithms perform better when doing classifications with high-dimensional data. 

Vasileios Syrris and Dimitris Geneiatakis [27] studied the powerful supervised machine learning techniques that 
make use of Drebin data set static analysis data. They evaluate six classification techniques under different 
configurations. Their experiments show that SVM can achieve accuracy of nearly 99% and the model physical size 
supplied by SVM is 390 MB size. Hence, their study shows that about 1000 features from the Drebin feature set are 
adequate to achieve great classification performance using the classification models. Moreover, they provide and 
defend several methods for lowering the dimensionality of space. 

 

3.1.2 Dynamic analysis 

         Dynamic analysis is a technique that runs the program in a sandbox environment and follows the behavior of 
the application's API call sequence, system calls, networks traffic, and CPU data to observe the data flow while the 
program is running, thus showing the true state of the program processing more near to the actual status. However, 
it is not extensively utilized in a large number of resources and the slow detection while running the program [21]. 

Bilal Majeed Abdulridha Al Latteef and Faris Mutar Mahdi Aledam [28] introduce an effective machine learning 
based strategy for malware detection on smartphones. This model selects and infers features using both static and 
dynamic analytic techniques. Next, it extracts features making dimensionality reduction using sampling and 
Principal Component Analysis (PCA) without compromising accuracy, using real-world and synthetic datasets.  They 
evaluate different metrics and criteria for analysis and machine learning schemes to assess the effectiveness of 
malware detection methods. Moreover, their model shows a cost-effective solution for malware detection in 
smartphone operating systems, notably apps that are malicious or recompiled. 
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Fig. 2 - static, dynamic and hybrid analysis 

3.1.3 Hybrid analysis 

        Is a blend of dynamic and static analysis, which can improve the accuracy and efficiency of Android malware 
detection [21]. 

 R. Srinivasan et al [29] provided a detailed examination of Android malware detection using machine learning 
techniques with static, dynamic, and hybrid analysis. They identify Android malware by using machine learning and 
genetic algorithms and the order of techniques applied in the suggested work is: Data Set preparation, using 
Androguard tool and Classification based on machine learning algorithms. Finally, experiments indicate that 
Support Vector Machine and Neural Network classifiers may maintain over 90–91% classification accuracy when 
dealing with lower dimension feature sets while reducing classifier training complexity. 

Mahmoud Al-Ayyoub et al [30] studied dynamic, static and hybrid analysis to identify and detect harmful activities. 
They use classifiers based on machine learning to identify malware applications also they show the performance of 
these classifiers in the process of classification. They applied the effectiveness of the four machine learning 
classifiers that were designed to detect malware based on the static (permissions) and dynamic features (action 
repetition) and they investigated in three stages.  Also, the results of their studies explained that accuracy obtained 
above 94% was from dynamic, static and hybrid analysis. Therefore, employing only static analysis is likely to be 
more effective and less expensive. 

Table 1.  Summarizes previous works that performed static, dynamic and hybrid analysis in Android 
detection systems. 

studies                           analysis method                           Extracted features 

[24] [25] [26] 

[27] [8] [9] [37] [11] 

Static analysis Permissions, intents, API 
calls, etc. 

[28] [36] [32] Dynamic analysis Dynamic permissions, 
actions,IP address, etc. 

 [29 [30][31] [33] [10] Hybrid analysis Combining static,dynamic 
features 

 

Different 

Feature-based 

Detection 

Static Analysis 

Dynamic Analysis 

Hybrid Analysis 

Permissions, API 

Call,Opcode, 

Meta Info., etc. 

System Call, 

Network Features, 

Dynamic 

Permissions, etc. 

Combine Static & 

Dynamic Features 



6 Shatha hamead Othman, Journal of Al-Qadisiyah  for Computer Science and Mathematics Vol.17.(1) 2025,pp.Comp 132–144

 

3.2 Feature Selection 

       Feature selection is the process that increases malware detection effectiveness by removing redundant and 
useless features in Android malware detection. Fig. 3 illustrates the feature selection process [21]. By selecting the 
good features, you can improve the accuracy, efficiency and interpretability of your predictive models. The most 
effective feature selection methods include Recursive Feature Elimination (RFE), LASSO regression, Principal 
Component Analysis (PCA), information gain (IG), support vector machine (SVM) and singular value decomposition 
(SVD). 

To demonstrate the importance of feature selection, Sakib Shahriar Shafin et al [31] provide a two-layer machine 
learning detection model that relies on ensemble learning with stacked generalization techniques. The Random 
Forest Regression technique is used in this work to select features. They tested the suggested model using 11,598 
samples with various malicious attack types from the CIC-Maldroid-2020 dataset. Consequently, a wide range of 
metrics including precision, accuracy, recall, and F1-score, were employed to evaluate the effectiveness of their 
suggested model. Finally, they introduce an efficient and robust classification system and Android malware 
detection that are capable of accurately detecting 99% of malicious attacks including banking malware, riskware 
and adware which have become increasingly common in recent times. 

R. Jeberson Retna Raj and V. Joseph Raymond [32] implemented in their suggested work a modern PCA (Principal 
Component Analysis) based on conditional dependency features together with feature reduction technique. They 
developed a hybrid technique that combines static and dynamic processes in order to achieve better outcomes. 
Among the most significant factors in malware detection is the Android Sensitive Permission. To verify that zero-
day exploits may be identified with a higher accuracy rate, performance measure datasets gathered from several 
repositories including Github, Virus Share, and the Canadian Institute of Cyber Security, will be compared with 
models. When comparing the model to other classifiers, they can observe that it has obtained an accuracy of 80% 
with PCA using a KNN method using k = 15, which is better than the 76% accuracy without PCA. 

K S Ranadheer Kumar and Jagadish Gurrala [33] employed machine learning classifiers to assess the performance of 
filter-based feature selection strategies, in analyzing Android permission for malware detection. Their results 
demonstrate that filter-based feature selection utilizing Fisher's Score and Information Gain outperformed the Chi-
Square Test in the terms of feature reduction, realizing classification accuracies of 91.53% and 91.22% on the high-
dimensional CICInvesAndMal2019 dataset. Notably, the Decision Tree classifier achieved the highest accuracy of 
95.09%, using a subset with only 49 features. The Chi-Square Test with the KNN classifier also demonstrated 
accuracy (92.16% with 50 features). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 - the process of feature selection 
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3.3 Machine Learning (ML) Categories  

       In the context of Android attack detection, machine learning (ML) can be categorized into several approaches, 
each with its methodologies and applications. Here are two main categories: 

3.3.1 Supervised learning 

        In supervised learning, the models are trained on labeled data where the inputs and the outputs are known. 
The desired output is matched with the input dataset. For the program to determine the class of every given piece of 
data, it contains algorithms that receive a dataset and provide feedback. Regressions, classification trees, random 
forests, artificial neural networks (ANNs), and support vector machines are just a few of the numerous methods 
utilized in classification [34]. It can be categorized into two categories.: 

• Regression: predicting continuous outcome. 

• Classification: forecasting distinct value. 

Nuren Natasha Maulat Nasri et al [8] proposed the malware detection system of Android and utilizing five different 
classifier types when using WEKA to carry out the simulation procedure. The dataset used contains 10000 benign 
and 10000 malware. So, the Random Forest classifiers they provided achieved the greatest accuracy result of 
89.36%. By using RF classifiers on the Drebin malware samples compared to 89.2% which Naïve Bayes attained. 
Finally, they conclude that the majors can acquire better detection performances with the development of learning 
classifiers and feature tuning. 

Seif ElDein Mohamed et al [9] present a method for detecting Android malware that relies on permissions and API 
features. Their goal is to assess and investigate the combination of Android characteristics with machine learning 
classifiers. They investigated different ways to categorize Android malware according to the feature that was being 
used. Furthermore, they used two different datasets in their successful tests and their results showed that the 
proposed method achieved an average accuracy of 99% with the Malgenome data set and an average accuracy of 
86% with the Maldroid data set. 

Abdelrahman Elsharif Karrar [10] employs a graph-based ML technique to manage functionalities of permissions 
and APIs, using app data from the Drebin project. Machine learning techniques, for example Decision Tree Algorithm 
(DT), Logistic Regression Algorithm (LR), Random Forest (RF) and K-Nearest Neighbor Algorithm (KNN) are used in 
the classification process. Finally, the work proposes that the RF classifier realizes the highest recall and accuracy. 
Additionally, the suggested method required less than ten seconds for analyses achieving 96.80% and 97.30% recall 
and accuracy, respectively.  While DT and KNN deliver (96%) accuracy while LR delivers (95%). 

Amarjyoti Pathak et al [11] suggested an Android malware detection method that depend on machine learning that 
is applied to several datasets to classify malware. The feature importance score is suggested as a feature selection 
approach in this study to identify the essential permissions computed using gradient boosting. The proposed 
methodology minimizes the dimension of the feature vector, which reduces the model's training time. The useful 
insights are discovered through a comparison examination of the algorithm's performance and the Random-forest 
classifier in all three datasets achieves the highest accuracy with unsavory or no loss in accuracy. 

 

3.3.2 unsupervised learning 

           Unsupervised learning detects unknown threats by identifying the data without prior labeling. The solution 
must find out natural grouping, many techniques are used, such as Hierarchical clustering, K-means clustering and 
Autoencoders. It can be categorized into two categories [34]: 

• Clustering: it involves grouping the data into categories that fit the specifications. 

• Dimension reduction: which reduce the details while retaining the facts. 

William Bradley Glisson et al [35] investigated the efficiency of four machine learning algorithms combined with 
feature selection from manifest file permissions of  Android to categorize apps as harmful or not. The first goal of 
this research was to evaluate the antivirus software and its effectiveness. This study's second goal was to assess the 
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performance of various machine learning algorithms when they were just used with the APK manifest file. Hence, of 
the considered algorithms Random Forest yielded the greatest results, with 82.5% precision and 81.5% accuracy. 
Gaussian Naive Bayes was the only algorithm to produce less than-ideal results, it had the lowest accuracy (0.6208), 
specificity (0.1313), F1 score (0.7486), and precision (0.6028). 

Shakirat Aderonke Salihu et al [36] provided a performance comparison analysis of four ML techniques for Android 
malware detection: Naive Bayes (NB), Support Vector Machine (SVM), Decision Tree (DT) and K-means. The study's 
experiments used 558 APK apps, including 279 examples of benign software from the Google Play Store and 279 
malware from MalGenome. While NB had 90% accuracy, K-means, SVM, and DT only managed 94% accuracy. This 
study effectively showed that ML techniques supervised and unsupervised machine learning approaches, including 
DT, SVM, and K-means, which have an accuracy of 94% in detecting Android malware, may be used to detect 
malware on Android devices. 

3.4 Performance Measurement 

       Calculating specific performance metrics and visualizing the confusion matrix is essential to evaluate each 
classification algorithm. These will be useful for evaluating the effectiveness of different approaches and for 
analyzing the performance of any method. 

 

3.4.1 Confusion Matrix 

A confusion matrix is a table used to assess the performance of a classification model by summarizing the results 
of predictions compared to the actual classes. It provides a breakdown of correct and incorrect predictions across 
different classes [37]. It is shown in Fig. 4 . 

 

Fig.4 - Confusion Matrix [37] 

While: 

TP True Positive: indicates that the classifier labeled the positive tuples correctly. 

TN True Negative: means the classifier labeled the negative tuples correctly. 

FP False Positive: Refers to positive tuples that the classifier categorized incorrectly. 

FN False Negative: Refers to negative tuples that the classifier categorized incorrectly [37]. 

 

 

       3.4.2 Performance Metrics 

       The following performance metrics are calculated to determine which model works best. 
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Accuracy (AC) is a measure that assesses the overall performance of a classification model. It calculates the 
percentage of right predictions (including true positives and true negatives) among all predictions made. It is 
defined by using equation (1). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
               (1) 

 

 Precision (P) It measures the proportion of true positive predictions among all positive predictions made by the 
model. And this can be defined using equation (2). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃) 
                          (2) 

 

Recall known as true positive rate or sensitivity, is a metric used to evaluate the performance of a classification 
model. It measures the proportion of positive instances that were correctly identified by the model. This measure is 
shown in equation (3). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                             (3) 

 

F1 Score is a weighted average of recall and Precision or the True Positive (TP) rate as defined in equation (4). 

 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑠𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                    (4) 

 

The ROC Curve is a graphic representation that is used to evaluate the classification model's performance. The 
trade-off between the true positive rate and the false positive rate at different threshold values is illustrated via this 
curve [36]. 

 

Table (2) summarizes previous works that performed Supervised and unsupervised machine learning algorithms 
for Android attack detection. 

Table (2) summarizes previous works 

 

Study               Dataset                      samples                     Features selected         Result 

 

[24]                   DREBIN                                18,835                 215 features                      89% with RF 

                        MALGENOME                    
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    [25]                CIC InvesAndMal          (426) malware           50 features                          94% with SVM 

                      2019                                  (5,065) benign 

    [31]              CIC-Maldroid-2020      11,598 samples           231 features                       99.49% 

    [28]              real-world and                 14,000 samples         1912 features                   90% 

                          synthetic datasets 

    [26]             MalDroid and                  1,00,000 samples       56000 features                 96% 

                          DefenseDroid 

    [8]                Drebin dataset                10,000 benign             15 features                         89.36%  with RF 

                                                                      10,000 malwares 

   [9]                  Malgenome and              3800 samples            High number of                 99 % with Malgenome 

                          Maldroid                                                                    features                              86% with the Maldroid 

  [30]                 Andro CT and                 195623 samples        176 actions and                 94% 

                            Andro Zoo                                                               668 permissions 

  [32]                virus sharing,                  1403 samples             16 features                         80% with PCA 

                          Github, and the CIC 

   [29]              Android malware           APK files                      less than half of the           more than 90-91 % 

                           dataset                                                                        original feature set        

   [36]               MalGenome dataset      558 applications       number of features           94% with SVM 

                         and Google Play store                                             reduced 

   [27]              the Drebin data set        123,453 benign          1,000 features                    99% 

                                                                 5,560 malware 

   [33]              CICInvesAndMal2019   1187 benign                49 features                           95.09% 

                                                                    407 malware            

   [35]                Google Play store,          10597 samples          Numerous features             81.5% with RF 

                            AndroZoo 

    [10]                 Drebin dataset                15,036 samples         183 features                         97.30%  

    [11]                 Defense Droid               10,000 benign               29 features                           93.96% 

                                                                       19999 malicious   

4. Discussion 

        Depending on a summarized comparison has been extracted as shown in Table (2). Hence, the following 
points can be highlighted: 
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• Many of the studies used static analysis, dynamic analysis was used by smaller number of studies, and the 

remaining studies used hybrid analysis, as shown in Fig .5 . The high use of static analysis can be related to 

its lower cost when compared to hybrid and dynamic analyses. Many studies provide evidence that a hybrid 

approach combining static and dynamic analyses yields superior results, achieving accuracies above 90%. 

 

 

 

Fig.5 - feature extracted methods used in the reviewed studies 

 

• By using the feature extraction methods, the most widely extracted features are permissions, system calls 

and API calls. indicating that careful selection and optimization of these features can lead to important 

improvements in detection performance. 

 

• Many studies used PCA as the feature selection method in the malware detection system, which has proven 

effective in reducing the dimensionality of datasets without compromising accuracy. On the other hand, a 

smaller number of studies used another feature selection method like information gain, RF, and Gini 

impurity. 

• Fig. 6  shows the datasets utilized in ML-based Android malware detection research. The most popular 

dataset for Android malware detection was Drebin. The Drebin dataset is used the most since it offers a 

complete labeled dataset. The other popular datasets are Maldroid, MalGenome, and CIC InvesAndMal2019. 

 

 

 

Fig. 6 - datasets and how they were used in the studied research 
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• The most widely used ML models to detect Android malware are SVM, RF, KNN, DT and NB since the cost of 

resources to run SVM, RF, and NB models is low. Less often used models include ensemble learning, logistic 

regression, and Kmean. Fig. 7  shows all the ML models that have been researched and how they were used 

in the reviewed papers. 

 

• According to the reviewed studies, it was noticed that high accuracy was achieved by SVM, RF, ensemble 

learning, DT and KNN machine learning methods. Therefore, this may be why these methods are widely 

used in the Android malware detection system. 

 

 

 

Fig. 7 - ML methods with their usage in the reviewed studies 

 

• Finally, this paper gives a thorough review of different existing literature in the field of Android malware 

and attack detection using machine learning techniques and proposes doing hybrid for two or more 

machine learning algorithms to enhance the accuracy and effectiveness of attack detection. 

5. Conclusion 

       Smartphones are inherently vulnerable to security threats. Attackers are more interested in targeting Android 
devices due to their constant evolution in both hardware and applications. This is primarily due to Android's open-
source nature and its greater market share compared to other mobile operating systems. The Android architecture 
and its particular attacks were covered in this study. It also reviews recent research on machine learning-based 
techniques for Android malware detection, focusing on studies published between 2020 and 2024. The discussion 
includes an analysis of available machine learning models and their effectiveness in detecting Android malware, 
core ideas, datasets, and performance metrics of the current techniques, feature extraction methods, and feature 
selection methods. In conclusion, the integration of advanced machine learning techniques with effective feature 
selection and a hybrid analysis approach presents a promising path for enhancing Android malware detection 
systems. As mobile threats continue to improve, these studies collectively advocate for outstanding research and 
development to ensure robust security measures are in place, safeguarding devices from malicious applications. 
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