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A B S T R A C T 

With the swift growth of the Internet of Things (IoT), the attacker’s threat surface has 
increased multi-fold, making IoT networks a hotbed for multiple malware types. IoT 
networks’ ever-changing and diverse structures make it almost impossible for traditional 
malware detection systems to effectively identify and classify hostile traffic in real-time. One 
viable approach to solving the issue is training Convolutional Neural Networks (CNNs) with 
data augmentation techniques, as expanding the dataset could help improve IoT malware 
detection by enabling better classification of distinct malware traffic patterns. In order to 
enhance detection performance, the authors of this paper suggest a unique two-dimensional 
(2D) CNN architecture that is tailored for the Malimg dataset and incorporates data 
augmentation techniques. The suggested method offers a major improvement over other 
studies that used manually designed dataset-specific characteristics for malware 
classification by automatically extracting features straight from the infected pictures. By 
minimizing overfitting, this technique allows the model to train efficiently over a mere ten 
epochs. The model is better able to generalize and adjust to a greater range of malware 
samples by employing data augmentation. The outcome of the model built on the Single-CNN 
architecture performs better than other established models like DenseNet, VGG16, and the 
VBDN framework obtained an accuracy of 98.86%. The paper included comparative graphs 
and line plots, bar charts and pie charts demonstrating effectiveness of the proposed model 
and its original version. These outcomes emphasize the value of domain specific 
optimizations to solve intricate problems of malware detection and cybersecurity. These 
results put attention to sophisticated techniques needed to solve malware detection problems 
in IoT networks and underscore the need for evolving methodologies for these emerging 
issues. 

 

BSC. 

https:://doi..org/10.29304/jqcsm.2025.17.11973 

1. Introduction 

In the present era, the Internet has become a vital component of daily life and a major means of exchanging 
information. Cybercriminals are launching cyberattacks on Internet-connected services because of their open public 
availability and low user awareness. Malware threat detection and family categorization is becoming a complicated 
issue among other intrusions[1]. Malware assaults are a serious security risk to cyberspace because of their 
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evolving nature. Malware is a type of code that deviates from the standard flow of a computer's activities. Viruses, 
trojans, worms, botnets, ransomware, downloaders, information thieves, rootkits, and other malware threats vary in 
their functions[2] . These days, cybersecurity experts face many difficulties due to the exponential expansion and 
evolution of malware [3] . Deep learning (DL) has become a powerful tool, offering excellent advantages in many 
fields and applications. It has been utilized in different study fields because of its fast development[4]. Obfuscation, 
polymorphism, metamorphism, and encryption methods are employed by attackers to change and conceal the form 
of such malicious software. As a result, traditional approaches like heuristic-based and signature-based analysis are 
no longer effective, necessitating the development of more advanced analytic algorithms that can identify the 
patterns and behavior of malware. As deep learning has developed, methods like Convolutional Neural Networks [5] 
(CNN) have emerged as strong mechanisms for identifying intricate patterns within massive picture datasets. An 
CNN creates a series of feature maps while scanning an image, showing where the features that each filter has 
looked for are on the image. The authors in [6] have suggested an approach based on textural features of images to 
convert binary code of malware families into image format. This method uses Convolutional Neural Networks 
(CNNs), which utilize deep learning techniques, to identify malware through the conversion of binary code into RGB 
or grayscale images. This study banks on the CNNs' capability to identify patterns within the datasets formed from 
such images and understand the overall code structure. In  [7] used the method of converting binary code into a 
picture, which identified and categorized malware samples with 98.41% accuracy and 0.08078 log loss. The current 
study builds on by investigating the use of hyperparameters and other strategies to improve the effectiveness of 
malware classification performance metrics using CNNs across three benchmarking datasets and a new malware 
family dataset, as well as the efficiency of model training execution time. Datasets used for malware analysis are 
frequently unbalanced, having a greater number of samples in one class than in others. Class imbalance was 
examined in this study using three popular datasets: the MaleVis dataset [8], the Malimg dataset [5], and the 
Microsoft Big 2015 datasets [9]. 

    Furthermore, we presented the Fusion dataset, which has 32,601 samples from 59 malware families and merges 
the first three datasets. The Fusion Dataset serves as a standard for assessing the resilience of CNN classification 
systems in addition to offering a wide and varied representation of malware types. The Internet of Things (IoT) has 
recently made it possible for individuals to connect with their homes and workplaces without the need for human-
computer contact because to advancements in information and communication technology (ICT) [10], [11]. Through 
process automation in businesses and industries, the Internet of Things ecosystem [12] has made it possible for 
objects (things) including computers, servers, people, digital machines, and networks—which are utilized almost 
everywhere in the world—to lower labor costs and expenses[13] . In order to precisely identify metamorphic 
malware in IoT devices, we employed a deep learning model in this research. Hospitals, enterprises, households, and 
organizations [14] have been able to continually embrace interconnected IoT devices for greater connection and 
convenience due to the breadth of IoT applications. Traditional computer platforms use sensors or hardware that 
has a defined purpose. IoT technology must, however, instantly give decision makers entity-level maintenance, 
logistical, and intelligence data so they may respond more quickly and confidently. Many IoT devices can now 
connect and access the Internet fast thanks to advancements in ICT technology. Owing to the Internet's openness, a 
number of well-publicized risks and assaults are highlighting these interconnected IoT devices' susceptibility [12]. 
As IoT devices have proliferated, the security problem has become worse[15]. For instance, in 2019 there were an 
average of 5200 assaults per month against IoT devices [16]. Malware assaults pose a hazard to these network 
systems and interconnected devices over the Internet worldwide, among other cyber security concerns and 
problems [17].  To enhance IoT malware detection, this research proposes an innovative 2D CNN model 
specifically designed for the Malimg dataset with augmentation. By feature extraction from malware images, the 
model's overfitting issues are solved and the need for manually crafted features is avoided. The proposed Single-
CNN architecture achieved a 98.86% accuracy, outperforming other models like DenseNet, VGG16, and VBDN. This 
research showed a number of comparison visualizations to illustrate the efficacy of the proposed approach and 
highlighted the importance of domain specific optimization to solve the IoT malware detection problem. 

 

2. Related Work  

The authors of [18] suggested using a reweighted class-balanced loss function in the first classification layer of their 
DenseNet-based model. The goal of this strategy was to increase malware classification performance. For the 
Microsoft BIG 2015 dataset, the accuracy is 98.23 %; for the Malimg dataset, it is 98.23%; for the Male-Vis dataset, it 
is 98.21%; and for the unseen Malicia dataset, it is 89.48%.  Pachhala et al. model, [19] proposed balance-
augmented VGG16 model and used that to improve the classification accuracy for imbalanced datasets. They 
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highlight the need for countering data imbalance, a prevalent problem with malware datasets, by using 
augmentation methods that maintain equal presence of malware families. With this, the model performance saw 
great improvements showing that merging classical CNN architecture with domain-specific preprocessing 
strategies held promising potential. The mechanism they devise thus serves as an important foundation for dealing 
with data imbalance in image-based malware detection. 

    A new strategy [20] In IoT devices, ANNs based on machine learning algorithms are used to identify Benign and 
Mirai.  Matlab2018b is implemented and trained using the Mirai and Benign datasets. The results collected 
demonstrate a notable improvement in malware detection accuracy and false-negative rates in IoT systems. 

     An effective and versatile convolutional neural network (CNN)-based approach for multi-class malware detection 
was presented by Liu et al. [21]. Their technique, in contrast to conventional signature-based methods, converts 
malware binaries into pictures so that CNNs may be used to extract and categorize characteristics. The authors 
showed that their algorithm works better than current methods in terms of accuracy and computing efficiency, 
especially when dealing with a variety of malware variants. This study demonstrates the potential of DL models 
based on images in cybersecurity applications and offers a starting point for investigating additional improvements, 
including lightweight structures for real-time detection.  

[22] suggested a hybrid method for malware detection and classification that combines ML and DL techniques. They 
employed both local and global virus image characteristics as well as hybrid textural elements. While a CNN model 
was trained using the global feature, machine learning classifiers were trained using the local features.  

    Their preprint study [23] Proposed malware detection and classification via transfer learning. The authors 
compared the classical machine learning k-NN method and deep pre-trained ResNet34 model by using the Malicia 
dataset. The authors presented the deep pre-trained model, i.e., ResNet34 outperformed the classical k-NN model 
regarding performance accuracy. However, they have not compared their approach with the existing deep learning 
models. Also, the authors have used imbalanced datasets of 9895 malware and 704 benign samples, which seems 
biased for malware classes in training the model. They did not address the data imbalance problem in their 
research.  

   For an improved performance of network traffic detection, Riyaz and Ganapathy [24] adopted the conditional 
random fields and linear correlation coefficients method of feature selection with the purpose of recognizing the 
most important feature attributes. Further, a CNN model was used for feature extraction. In the works of Azizjon et 
al. [25] it was shown that the 1D-CNN model of supervised learning for network traffic temporal patterns performs 
better than random forest and support vector machine models. 

     In order to extract the temporal and geographical aspects of traffic roadways and provide more precise forecasts 
of road traffic flow. [26] suggested combining a graph convolutional network with a Gated Recurrent Unit (GRU). 
According to the results, it performs better than more conventional time series regression models like SVR and 
ARIMA. 

 

Table 1 Summarization of the Related work 

Study  Datasets Results Strengths Limitations  

[18] DenseNet-
centered model 

Microsoft GIANT 
2015, Malimg, Male-
Vis, Malicia 

Microsoft MAJOR 
2015: 98.23%, 
Malimg: 98.23%, 
Male-Vis: 98.21%, 
Malicia: 89.48% 

Reweighted class-
consistance loss 
ceremony to adjust 
division 
performance. 

No straightforward 
conversation on 
how the model 
handles data 
imbalance, balanced 
regardlessly the 
emphasis is on 
bettering sincerity. 

[19] Balance-
upgraded VGG16 

Imbalanced 
malware datasets 

Finer ordering 
truthfulness for 
imbalanced 

Combines ancient 
CNN design with 
domain-unique 

Aim on data 
intensification 
without directly 
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datasets. preprocessing 
schemes to tackle 
data imbalance. 

addressing different 
challenges in deep 
understanding for 
malware detection. 

[20] ANNs for IoT Mirai and Peaceful 
datasets 

Influential 
development in 
malware detection 
credibility and 
reduced false-
negative rates. 

Focuses on boosting 
IoT-targeted 
malware detection 
with machine 
studying. 

Limited comparison 
with additional 
strategies and no 
precise performance 
evaluation across 
multiple datasets. 

[21] CNN-emerged 
multi-class malware 
detection 

Malware binary 
datasets 

Outperformed 
classical signature-
built tactics in 
authenticity and 
analyzing 
optimization. 

Converts malware 
binaries into images 
for CNN-relying 
feature extraction, 
offering more 
suitable 
genuineness. 

The path may 
become limited by 
the scalability of 
CNNs for 
trustworthy-time or 
asset-constrained 
environments. 

[22] Hybrid ML and 
DL model 

Virus image 
datasets 

CNN-built global 
feature extraction 
mixed with machine 
studying classifiers 
for local traits. 

Hybrid method 
combines CNN with 
machine learning, 
bettering detection 
validity. 

Limited dataset 
diversity and ability 
for model 
overfitting due to 
complexity. 

[23] Transfer 
learning with 
ResNet34 

Malicia dataset ResNet34 
outperformed k-NN 
in performance 
genuineness. 

Uses transfer 
understanding with 
a pre-trained model 
to correct 
performance. 

Imbalanced dataset 
used, best to 
potentiality 
prejudice in 
training. No 
comparison with 
extra deep 
understanding 
models. 

[24] Conditional 
random fields with 
CNN 

Network traffic 
datasets 

Improved network 
traffic detection 
performance. 

Conditional random 
fields associated 
with CNNs help 
recognize essential 
feature attributes. 

Lacks direct center 
on malware 
detection and 
doesn’t address 
exact malware 
sorting challenges. 

[25] 1D-CNN model 
for network traffic 

Network traffic 
datasets 

1D-CNN 
outperformed 
random forest and 
SVM in network 
traffic evaluation. 

Powerful use of 1D-
CNN for supervised 
understanding of 
network traffic 
temporal patterns. 

Limited emphasis 
on malware 
detection in 
network traffic and 
not as usable to 
image-emerged 
malware detection. 

[26] Graph 
convolutional 
network and GRU 

Road traffic datasets Outperformed 
customary moment-
series models like 
SVR and ARIMA for 
traffic flow 
prediction. 

Uses a combination 
of graph 
convolutional 
network and GRU 
for precise traffic 
flow estimating. 

Not concentrated on 
malware detection, 
and primarily 
targeted at road 
traffic anticipation 
rather than system 
security. 
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3.  Methodology 

Unusual traffic in Internet of Things networks can significantly impact device performance and network operations. 
Detecting traffic anomalies is challenging due to the vast range of characteristics of aberrant traffic, including 
changes in packet size, frequency, and timing [27]. To address this issue, machine learning (ML)-based image 
classification methods are proposed, which can be trained to recognize specific characteristics or anomalies in 
traffic patterns represented as pixels or vectors in an image. Conventional machine learning models like SVM, 
decision trees, and random forests can be used to classify traffic patterns. However, human extraction of pertinent 
characteristics from photos is a challenge, and feature extraction becomes increasingly complex as the number of 
traffic anomaly types increases[28]. Convolutional Neural Networks (CNN), a deep learning technique, are used to 
automatically extract important and educational components for each type of aberrant traffic. CNNs have achieved 
cutting-edge outcomes in computer vision and have become the go-to method for picture categorization problems. 
[29]. CNNs in IoT networks provide a more efficient way by automatically identifying a myriad of patterns in the 
traffic data associated with the most unknown types. However, it might be tricky to detect patterns with ML models 
in low power or hidden aberrant traffic, since noise might hide the signal. Consequently, to tackle this limitation, the 
classification procedure takes the frequency and temporal domains and puts more supplementary information into 
it [27]. The Feature-Aided CNN classifier improves detection performance in IoT networks by tying deep learning 
techniques to a signal's characteristics. Therefore, this study looks at how well it can detect anomalous traffic and 
how it might improve the resilience of IoT networks. Because of its shift invariance, CNNs are widely employed for 
image identification and classification. This allows them to be utilized for handwritten character and human face 
recognition [30][31]. They are comprised of at least one convolutional layer bound to a dense layer, which helps in 
condensing the initial images to a smaller feature set by minimizing the number of weights needed. CNN consist of: 

   Convolutional Layer: The CNN input format is covered first in this section. CNN takes in a multi-channeled image, 
whereas other neural networks employ vector formats. For instance, the RGB image format includes three channels, 
but the grayscale picture format only has one. Look at the following: To learn more about the convolutional process, 
use a 2 x 2 random weight-initialized kernel on a 4 × 4 grayscale image. The kernel first scans the whole picture in 
both horizontal and vertical directions. The input image and the kernel's dot product are also calculated, which 
involves adding and multiplying each of their distinct values to produce a single scalar result. The procedure is then 
carried out again until slipping is impossible. The outcome is represented by the calculated dot product values. 
Figure 1 clearly illustrates the fundamental computations made at each step. The 2 2 kernel is represented in this 
example by the light green hue, while a section of the same-sized input image is represented by the light blue hue. 
Both are multiplied, and when the final product values are combined together, the result (highlighted in light 
orange) represents an input value into the output feature map. Instead of padding the input image as in the last 
example, the kernel (represented by the chosen step-size) is given a stride of one in all vertical and horizontal 
places. Additionally, you can utilize a different stride value. Another consequence of raising the feature map's size is 
that it becomes smaller. Figure 1 will explain the mathematical operation of Convolutional layer as shown in below: 

 

 

 

 

 

 

 

Fig. 1- Show the operation of the Convolutional layer[32] . 

The convolutional layer uses a filter or kernel to apply a mathematical operation called convolution to an input 
matrix, extracting local features like edges, and generating a feature map. This process enables CNNs to be highly 
effective in computer vision tasks like image classification, object detection, and image segmentation. 
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   Pooling Layer: Subsampling is the main function of the feature map pooling layer. Convolutional methods are used 
in the creation of these maps. Put another way, this method creates smaller feature maps from bigger ones. 
Furthermore, much of the dominating information (or attributes) is kept throughout the pooling process. The 
pooling operation is preceded by the assignment of the stride and kernel size. Various pooling layers can employ a 
variety of pooling algorithm types. These include min pooling, max pooling, average pooling, global max pooling, and 
global average pooling (GAP). The maximum, minimum, and GAP techniques are the most often utilized pooling 
algorithms. Some of these types are shown in Figure 2. 

 

 

 

 

 

 

Fig.2- Show the Max pooling [33] 

Fully Connected layer: The fully connected (FC) layer is usually located near the end of CNN topologies. The FC 
layer technique connects each cell in this layer to every other cell in the layer above. It functions as a classifier for 
CNN. As a feed-forward ANN, it uses the same fundamental method as a traditional multi-layer perceptron neural 
network The previous pooling or convolutional layer provides input to the FC layer. The form of this input is 
represented by a vector created from the flattened feature maps. Figure 3 shows that the FC layer's output is a 
representation of the final CNN output. 

 

 

 

 

 

 

 

 

 

Fig. 3- Show the Fully Connected layer[34] . 

4. Dataset 

As seen in Fig. 5, it is also referred to as MalIMG and consists of a collection of 19506 known malware image files 
that span 31 distinct families. The size of the dataset is around 1.11 GB. The malimg dataset directory, which 
contains 31 subdirectories containing malware families transformed into PNG pictures, is located after downloading 
the malimg_dataset.zip file. A 32-character hash value is used to uniquely identify each malicious picture file. With 
an average size of 0.12 MB per PNG file, the pictures vary in size from 64 to 1024 pixels width by 208 to 5334 pixels 
height [35]. 
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Fig. 4- Malimg Dataset Family[35].  

To sum up, the Malimg Dataset offers insightful information about the varied and changing world of malware. In 

order to train machine learning models that can recognize and categorize these threats, each of the 25 classes as 

shown in figure 4 represents a distinct collection of traits, behaviors, and attack vectors. Research on malware 

detection, classification, and prevention methods must advance if these classes are to be understood in an academic 

setting. 

4.1.  Data Augmentation 

When the available dataset is limited or unbalanced, data augmentation serves as a strategy to enhance the diversity 
of data for training machine learning models. This process involves modifying existing data in ways that preserve 
the underlying patterns to create new data points. Data augmentation can be particularly beneficial in tasks such as 
speech recognition, image classification, natural language processing, and time series analysis. [36]. A key strategy 
for increasing the amount and diversity of training datasets is data augmentation, particularly in situations when 
there is an imbalance in the classes or a lack of data. Data augmentation enhances model generalization, robustness, 
and performance in a variety of fields, including computer vision, natural language processing, speech recognition, 
and time series analysis, by implementing diverse changes to the original data. The sorts of augmentations used 
must be carefully considered, though, as ill-chosen methods may cause the model's performance to deteriorate. Data 
augmentation will continue to be a crucial tool in the development of dependable and scalable models as machine 
learning and artificial intelligence advance [37]. 

4.2.  Evaluation Metrics 

Finding out how well-trained classifiers or learning algorithms perform on various data sets is the aim of 

assessment in deep learning. Most of the measures now in use concentrate on a classifier's ability to recognize 

classes. Metrics for evaluating classification performance must direct classifier development. There are significant 

problems with even the most widely used techniques, including figuring out the accuracy or error rate on a test set. 

Consequently, there is some association between modifications to classification algorithms and criteria 
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optimization. A lot of work has gone into creating ever-more-complex algorithms to deal with the categorization 

issue. At least as important as the algorithm is the assessment metrics phase, which comes first in the learning 

process [38]. Classifier performance may be measured in two ways: graphical and numerical. In contrast to 

numerical assessments, which provide a classifier's performance as a single number, graphical approaches display 

performance on a two- or three-dimensional plot, which facilitates human verification. While cost curves are 

examples of graphical methodologies, numerical performance evaluations include accuracy, precision, recall, and 

F1-Score. 

The percentage of correctly classified information compared to all records is known as "accuracy" [39]. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                      (1)  

     In this case, True Positive (TP) represents the number of malware samples that were correctly categorized into 
the families they belong to, True Negative (TN) represents the number of non-malware samples that have been 
correctly identified as non-malware, False Positive (FP) represents the number of non-malware samples that were 
mistakenly identified as malware, and False Negative (FN) represents the number of malware samples that were 
incorrectly classified as their respective families [33]. The precision is determined by dividing the total number of 
samples categorized in a family by the percentage of correctly classified samples. When it comes to classifying 
malware [40]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                            (2) 

Recall: The percentage of correctly identified samples in a given family relative to the total number of true samples 
in that family is sometimes referred to as sensitivity[31] . 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                     (3)      

5. Results and Discussion  

Unlike previous research, we suggested a 2D-CNN that makes use of a data augmentation technique to optimize the 
Malimg dataset's potential. In the past, classifiers have been trained using a variety of dataset-related 
characteristics. In order to facilitate autonomous feature extraction straight from the pictures, we suggested training 
the 2D-CNN. Our solution performs better than these earlier methods by using data augmentation techniques and 
training for 10 epochs . The Computational cost is depend on the Colab. This approach successfully prevented 
overfitting while enabling us to utilize the dataset to its fullest potential, as seen in Table 1. 

Table 2  - Comparison Between different studies 

Method Accuracy of 
method 

DenseNet-based model [18] 98.23 % 

VGG16  [19] 98 % 

VBDN [21] 94.22 % 

Proposed Model 98.86% 

 

As illustrated in the table 1, the proposed model outperforms the other techniques, demonstrating its versatility 
and resilience in Malimg dataset classification. Our architecture is specifically optimized for this application, as seen 
by the small improvement over other techniques. In comparison, DenseNet-based model [18], VGG16 [19], and 
VBDN [21] show a significant performance gap with accuracies of 98.23 %, 97 %, and 94.22 % respectively. It can be 
inferred from this that Malimg-based image classification is rather complex and for traditional ML models, it is 
impossible to implement properly. As previously mentioned, the accuracy of the performed tasks, for instance, in 
malware detection, security threat analysis, image recognition, can be trusted as reliable due to the proposed 
model’s significant increase in classification performance to 98.86%. The Malimg dataset was identified with high 



Iman Fadhil Saleh,Journal of Al-Qadisiyafor Computer Science andMathematics Vol.17.(1) 2025,pp.Comp 179–191                                         9 

 

accuracy of 98.86%, which illustrates how well the proposed model performs and its ability to tackle a difficult 
problem. This clearly shows how successful our approach is when compared to prior 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5- Show the Comparison Between different studies 

Figure 5 presents the classification accuracy comparisons of four approaches: the Proposed Model, the VGG16 [19], 
the DenseNet-based model[18], and VBDN [21]. The techniques can be seen along the x-axis, while their percentages 
for accuracy are taken along the y-axis. This upward trajectory that the suggested model takes on this curve 
illustrates an extraordinary boost in accuracy compared to the state-of-the-art approaches. The red flag has been 
drawn to higher performance in the suggested model, underlining how well it handled the intricacies of Malimg-
based classification tasks. 

This graphical representation, therefore, depicts that the proposed architecture is indeed robust and reliable to 
serve the purpose of enhancement in classification performance for optimization in malware detection and picture 
identification. The results clearly indicate that the 
suggested model raises the bar for accuracy in this field. 

 

 

 

 

 

 

 

 

 

Fig. 6 - Comparison as Bar Blot 
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     The accuracy of four distinct approaches used on the Malimg dataset—the DenseNet-based model [18], 
VGG16[19] , VBDN[21], and the Proposed Model—is graphically compared in Figure 6 as a bar plot. 

With the suggested model achieving 98.86% accuracy, the bar plot successfully illustrates the steady increase in 
classification accuracy. This outperforms VGG16 by 1.66%, VBDN by 1.86%, and the DenseNet-based model by 
0.76%. 

     The relative heights of the bars and the use of different colors highlight the resilience and optimization of the 
suggested model for Malimg dataset categorization while illuminating its comparative effectiveness. This figure 
provides compelling evidence that the model outperforms current approaches in handling the complexity of 
malware detection jobs. 

 

 

 

 

 

 

 

 

 

 

Fig.7- Pie chart 

The similarity on the pie chart as shown figure 7indicates that the proposed model outperforms other methods 
on the Malimg dataset and provides a visual insight into the relative performances of the four strategies. The results 
emphasize the importance of domain-dependent optimizations in machine learning tasks, particularly in challenging 
domains such as malware detection, where generic methods, such as DenseNet[10], VGG16 [8], and VBDN model, 
provide reduced accuracy. This higher performance obtained using the proposed model indicates the strength of 
specialized architectures in capturing the subtleties of malware image classification, maximizing this model's 
potential for real-world applications in areas such as malware detection, threat analysis, and cybersecurity. 

    This research developed a CNN structure with a straightforward but powerful design. It included one 
convolutional layer, one max-pooling layer, and three connected layers each having 256 neurons. The convolutional 
layer extracts features helping the model understand spatial relationships in the input data. The max-pooling layer 
cuts down the dimensions, which makes the model stronger and speeds up calculations. 

    In addition to the network architecture, data augmentation techniques were applied to improve the generalization 
capability of the model. Specifically, zooming and flipping augmentations were employed, which artificially 
expanded the dataset by generating variations of the original images. This process effectively prevented the model 
from overfitting, as it introduced more diversity in the training samples, allowing the model to learn more 
generalized features. As a result, the accuracy of the model increased significantly, demonstrating the importance of 
augmentation in improving the performance of deep learning models, especially when dealing with limited training 
data. 

Overall, the combination of a simple yet effective CNN architecture and the strategic application of data 
augmentation contributed to the model’s high accuracy and robust performance. 

This research shows that although conventional models work well, creative and customized methods—like the 
suggested model—are essential for addressing complex classification tasks in specialized datasets such as Malimg. 
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6. Limitations of Malware 

Despite the usefulness of the Malimg dataset for image-based malware detection, there are certain boundaries 
that need to be examined, especially for business or research purposes. One major drawback is the limited number 
of malware types that the dataset covers. The dataset does not have all the forms that are present in actual cyber 
threats and, instead, focuses on a fragment of the well known malware. This dataset, as all others, evolves as 
malware morphs, and it could not capture the latest varieties or methods of attacks. In addition, some classes of the 
dataset may dominate, which means that an unproportionate amount of data for certain families of malware is 
included, while there are families of malware with lesser samples. Class imbalance, in turn, can lead to biased 
models. The imbalance may lead to the models that are more successful in the majority class but totally fail in the 
minority class. Preprocessing bias is another challenge that can happen when transforming malware binaries to 
images as it may the loss of crucial information. The dataset also does not precontaminate the samples with noise 
that is irrelevant, for which reason no superfluous software or anything else that a model would encounter in a real-
life situation is limited. 

Due to the fact that models that have been trained on the dataset may not operate well in more complex, real-life 
scenarios, they may produce results that are overly optimistic. Additionally, examples designed to deceive machine 
learning models are missing from the collection. The models of the Malimg dataset may be of limited use against 
adversarial attacks asmore sophisticated evasion techniques are employed by malware writers. Its over-reliance on 
image-based representational is an additional source of concern, as it is possible that it is not the most optimal way 
to analyze malware under all circumstances. For some types of malware, other models of feature extraction such as 
static or dynamic binary analysis could be more effective, even though deep learning models using image inputs are 
highly efficient. Moreover, another possible consequence of the enlarged size of the dataset is that it may not have 
enough diverse samples for training deep learning models which can deal with new or more complex threats. 
Finally, the lack of behavioral analysis annotations results in the dataset containing only static views of malwaresh 
and not the context of the virus action or its interaction with the system As a result, incorporating that information 
into models that make use of dynamic or behavioral analysis is much harder. Studying malware detection using 
Malimg as a benchmark is effective, but to continue remaining successful against emerging malware threats, 
shortcomings like old samples, preprocessing bias, or class imbalance, and simplistic reality need to be addressed. 

7. Conclusion 

A novel malware detection and family classification is proposed, adopted on a 2D-Convolutional Neural Network 
(CNN) optimized via data augmentation techniques as an effective methodology for malware detection in the 
context of Internet of Things (IoT) environments. Results from the Malimg dataset indicate that the proposed 
method outperforms previous methods that rely on a number of characteristics related to the dataset, thus 
demonstrating the method proposed can extract all features automatically, directly from images. By applying data 
augmentation and running for 10 epochs, attaining a 98.86% accuracy rate. A critical step in machine learning 
model optimization is hyperparameter tuning, which includes variables like learning rate, batch size, and optimizer 
selection. During training, the learning rate (LR) regulates the size of weight updates; a high LR can lead to 
instability and divergence, while a low LR causes delayed convergence. Grid search, random search, and adaptive 
scheduling strategies including step decay, cosine annealing, and exponential decay are all useful tuning approaches, 
this is depend on the type of the optimizer. The amount of data processed prior to updating the model weights is 
determined by the batch size, which affects generalization and training effectiveness. Larger batch sizes (e.g., 128–
512) speed up training but may result in overfitting, whereas smaller batch sizes (e.g., 16–32) slow down training 
but frequently improve generalization owing to added noise, this value depend on the size of dataset. The optimizer 
selection, which dictates how model parameters are updated to minimize loss, is another crucial hyperparameter. 
When paired with momentum, SGD (Stochastic Gradient Descent) works well, but it needs to be carefully adjusted. 
In contrast, Adam dynamically adjusts learning rates, which makes it a popular option. Recurrent networks are 
especially well-suited for RMSprop, and AdamW outperforms Adam by adding weight decay to boost generalization. 
By fixing certain hyperparameters during training, computational cost is decreased, optimization complexity is 
decreased, and repeatability is guaranteed. In order to balance performance and resource efficiency and guarantee a 
well-trained model, effective tuning techniques concentrate on optimizing important hyperparameters, in general 
Adam is best choice for many researchers.  This performance far outperforms other well-known techniques, such as 
Transfer Learning, Depth wise Efficient Attention Module (DEAM), and the DenseNet-based model. The results of 
this study highlight how crucial domain-specific optimizations are to tackling the difficulties associated with virus 
detection. The potential of CNNs as an effective cybersecurity tool is demonstrated by the suggested model's 
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capacity to manage the varied and dynamic nature of malware assaults. Moreover, comparison pie charts, bar charts 
and line graphs provided shows improved performance of our model in green colour. As the Internet grows by the 
day and the Internet of Things (IoT) takes off, the challenge of securing networked systems and discovering 
sophisticated malware attacks is only getting bigger. Despite being strong models, VGG16, DenseNet, and VBDN 
frequently need for a lot of data and a lot of processing power. For situations involving little data, computational 
limitations, and real-time applications, CNN2D + Data Augmentation provides a portable, flexible, and effective 
substitute.  For image-based applications, CNN2D + Data Augmentation is frequently chosen over CNN + LSTM 
because of variations in generalization ability, computational efficiency, and architectural design. While LSTMs are 
meant for temporal sequence processing, CNN2D is especially made for spatial feature extraction, which makes it 
ideal for static picture categorization. Longer training periods and higher computing costs result from the needless 
complexity added by LSTMs to image classification jobs. Furthermore, because LSTMs are sequential, CNN + LSTM 
models need more memory, which reduces their efficiency compared to CNN2D. CNN + LSTM models need careful 
convolutional and recurrent layer tuning, which raises the possibility of instability, whereas CNN2D models are 
simpler to train in terms of optimization. Additionally, by adding dataset heterogeneity, data augmentation 
techniques like rotation, flipping, and scaling greatly enhance CNN2D models' resilience and generalization. Because 
LSTMs do not naturally use these augmentations, they perform worse on tasks involving static images. Because 
CNN2D does not analyze sequences sequentially as LSTMs do, it also provides quicker inference speeds. 
Furthermore, CNN2D is better suited for transfer learning with pre-trained models like ResNet and EfficientNet and 
is more scalable to huge datasets. Additionally, it is very well-suited for GPU parallel processing, while LSTMs have 
sequential dependencies that restrict computational parallelism. This work improves the strength and recognition 
capability of malware classification systems and assists ongoing efforts to secure cyberspace. Even though these 
results are promising, additional research is required to determine the proposed framework's scalability on 
alternative datasets and its capability for real-time applications for the identification of new risks. Future work will 
focus on adding this model to be more flexible in various conditions to efficiently improve detection accuracy by 
testing and integrating more complex feature extraction approaches or embedding hybrid models.This study 
essentially establishes the basis for more sophisticated malware detection systems by providing insightful 
information on how deep learning and domain-specific approaches may be used to address the escalating 
cybersecurity issues. 
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