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A B S T R A C T 

Cloud computing has transformed data storage but presents security challenges, especially in 
authentication. Traditional passwords are vulnerable to attacks, while biometric 
authentication offers an alternative using fingerprints and facial recognition. However, 
biometric templates cannot be revoked if compromised. To address this, biometric 
cryptosystems integrate authentication with cryptography, though existing methods face 
computational and security challenges. This paper proposes a secure biometric cryptosystem 
for cloud storage using deep learning for biometric recognition and key binding techniques 
like fuzzy extractors and SHA-256 hashing. The system follows three phases: enrollment 
(feature extraction via YOLOv8 and DeepFace-VGG, fingerprint hashing with SHA-256, and 
key binding using fuzzy extractors), verification (cosine similarity for biometric matching), 
and encryption (AES-256 for secure storage). Experimental results show high authentication 
accuracy (mAP of 0.984 at 50% IoU), with FAR of 0%, FRR of 0.93%, and GAR of 99.07%. The 
comparative analysis highlights DeepFace-VGG’s effectiveness in feature extraction, SHA-
256’s secure key generation, and fuzzy extractors' reliability in key reconstruction. The 
system resists replay attacks and biometric fluctuations while maintaining usability. Findings 
confirm that biometric authentication with cryptographic key binding enhances cloud 
security. Future research should explore scalability, multimodal biometrics, and advanced 
security methods like blockchain and homomorphic encryption. 

 

MSC. 

https://doi.org/10.29304/jqcsm.2025.17.11976 

1.Introduction 

Cloud computing is a commonly adopted computing model. It offers many advantages to users and providers. One of 
the most compelling reasons for its adoption is that it can be used to provide infrastructure and functionality at a 
reduced cost. The services are multifaceted, pay-as-you-go, on-demand, and highly effective in managing and storing 
data. These advantages have drawn many companies and individuals [1]. Nonetheless, the rapid expansion of cloud 
computing has presented considerable difficulties in safeguarding sensitive information within decentralized 
settings. While cloud infrastructures offer remarkable scalability and efficiency, they are susceptible to security 
risks stemming from their inherently shared and multi-tenant characteristics. 
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Traditional password-based systems have become less effective at preventing unauthorized access and reducing 
data breaches; therefore, alternatives like biometric cryptosystems become very appealing. Unconstrained 
biometrics—those that go beyond the traditional fingerprint and facial recognition, including voice, gait, and 
behavioral biometrics—come of particular relevance to address such challenges. These approaches leverage unique 
and hard-to-spoof characteristics and offer improved usability and security [2] [3]. 

Traditional authentication techniques- token-based systems—for example, smart cards and one-time passwords—
and knowledge-based systems—including passwords and PINs—are simple in design but have serious drawbacks. 
Token-based systems are prone to loss, theft, or duplication, while knowledge-based systems face brute force 
attacks, phishing attacks, and social engineering techniques [4][5]. To overcome these weaknesses, multi-factor 
authentication based on biometric methods has been proposed, but those systems face challenges relating to data 
privacy, processing delays, and the requirement for accurate recognition in cloud environments [6]. This study 
enhances the cloud security field by introducing a new biometric cryptographic authentication system that 
leverages deep learning and secure key binding technologies. The key contributions are: 

• YOLOv8-Based Face Recognition Integration: Advanced deep learning models allow for highly accurate face 
detection and feature identification, improving the consistency of authentication. 

• Biometric Key Binding using Fuzzy Extractors: The employment of fuzzy extractors in secure auxiliary data 
generation allows for biometric tolerance while preventing attacks via template inversion. 

• AES-256 Secured Key Management: The security is strengthened using strong encryption mechanisms that 
lock biometric-based cryptographic keys to protect from unauthorized use. 

• Cosine Similarity-Based Verification Efficiency: The use of cosine similarity in biometric template 
comparison results in high matching precision and system resilience. 

• Experimental Verification and Benchmarking: An in-depth performance analysis compared the proposed 
system to existing biometric cryptosystems to determine its usability in real-world cloud security 
applications. 

2. Related Works 

Biometric cryptosystems are the process of security verification that confirms an individual's identity through 
unique biological traits. During this verification process, biometric data is matched against stored datasets, 
therefore proving to be a strong alternative to traditional password-based systems. Typical biometric features 
include iris patterns, palm prints, retina scans, fingerprints, facial features, and voice signatures [7]. Recent deep-
learning innovations have revolutionized the field of biometric cryptosystems with tremendous success in tasks 
related to machine vision, audio recognition, and natural language processing. Deep learning models, such as 
VGGFace, have been crucial for face recognition by providing leading accuracy in extracting hierarchical facial 
features in a series of tasks, from phone unlock systems to airport security checks. [8], [9]. YOLO (You Only Look 
Once) has benchmarked face detection for real-time performance and is proficient at identifying faces, even in 
challenging environments [10]. For voice-based biometrics, Long Short-Term Memory (LSTM) networks are better 
at capturing temporal dependencies in voice patterns to accurately verify users despite variations in speech and 
environmental noise [11], [12]. The above models address the emerging complexities in biometric cryptosystems 
through improvements in robustness against adversarial inputs, scalability for large datasets, and efficiency for real-
time applications. Hence, machine learning approaches have been the building blocks in developing secure, scalable, 
and reliable biometric systems for various applications [13]. 

Abdellatef et al. [14] proposed a methodology that features the extraction of deep features from facial regions, a 
fusion network combining these features, and a bio-convergent approach for the maintenance of privacy and 
security of biometric templates. Bio-convolving encryption does not reduce the accuracy of the system; hence, it 
protects data reliably and in detail. The suggested method boosted accuracy, specificity, precision, recall, and F-
score with biometric data protection. It also exceeded CoCo loss at 98.73% in the recognition accuracy of 98.89%, 
enhancing unimodal systems due to its large area under the curve. Finally, it pointed out one limitation: the 
performance of the facial recognition system may vary according to resolution, pose, and illumination. 

Sudhakar et al. [15] applied multiple biometric methods and cross-convolution techniques to enhance security and 
privacy. Deep learning methods such as CNN and MLP were applied for feature extraction and user authentication. 
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The revocable biometrics system on the cloud was integrated with deep learning to enhance security and 
effectiveness. By leveraging the parallel processing of convolutional neural networks (CNNs), the system achieved 
a remarkable accuracy of 99.55% in the user verification task. (CB) techniques enhance user privacy and security 
by generating undecipherable templates. Revocable biometric data systems face challenges such as complexity, 
reversibility, high computational intensity, storage overhead, template deprecation, dependence on cloud 
infrastructure, low compatibility, data breach risk, and scalability issues. 

A hybrid approach to Mobile Cloud Computing (MCC) authentication has been proposed by Zeroual et al. [16] The 
concepts of encryption and deep learning models have been combined. This methodology used homomorphic 
encryption, deep neural networks, and local ternary patterns. It has raised the accuracy of face recognition by 
100% in the ORL dataset and 93.93% in the Yale dataset, with the primary concerns being data privacy and mobile 
resource optimization. It improved face recognition accuracy through partially homomorphic encryption, which is 
more efficient for mobile devices than CLBP and CLTP. Resource constraints, key complexities, network 
dependence, algorithmic compatibility, scalability issues, security concerns, and the availability of ample training 
data are major challenges the proposed hybrid solution faces. 

Shukla et al. [17] Proposed a system for cancelable biometrics in which a one-way function creates the cancellable 
template by extracting and transforming biometric features to verify the user's identity independently. 
Implementing multi-factor authentication in a client-server architecture on the cloud enhanced its credibility and 
security, making it a robust solution for biometric-based security in the new digital landscape. The proposed cloud-
based cancelable biometric systems enhanced time efficiency with faster learning of neural network models and 
offered secure, cancelable, noninvertible, and unlikable templates against different biometric threats. Before the 
widespread adoption of biometric systems, numerous issues such as hacking, data security, non-invertibility, 
performance, cost, environmental factors, user acceptance, and regulatory compliance must be addressed. 

3. Methodology 

The proposed methodology integrates biometric information with cryptographic protocols in a manner that secures 
information stored in a cloud environment. By utilizing biometric factors such as face and fingerprints as key 
security factors, the mechanism utilizes sophisticated methodologies such as Deep Learning, Binding of keys, and 
the AES-256 cipher algorithm in an endeavor to boost security, as shown in Figure 1. There are three critical phases 
in the framework: enrolment, verification, and encryption. All phases have been designed with meticulous care in 
an endeavor to safeguard information stored in the cloud and effectively counteract unauthorized access. The 
enrolment stage involves taking and registering biometric information of face and fingerprints in the system. 
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Fig. 1- General Design of the Proposed System. 

3.1. Dataset and Preprocessing   

This study employs face and fingerprint images for biometric authentication and encryption. The Labeled Faces in 
the Wild (LFW) dataset is considered a benchmark in face recognition research, consisting of 13,233 images of 5,749 
subjects collected from various real-world online sources. LFW provides a diverse range of facial variations, 
including differences in illumination, facial angles, expressions, and occlusions, making it an essential dataset for 
evaluating biometric recognition systems under unconstrained conditions. Unlike controlled biometric datasets, 
LFW images are captured in a non-intrusive manner, meaning that subjects are not directly interacting with the 
capturing device. This characteristic closely aligns with the methodology of this research, where biometric data is 
collected passively without requiring user cooperation, introducing significant variability and noise into the dataset 
[87]. Acquiring non-controlled biometric data poses unique challenges to face recognition because it includes higher 
noise, occlusion, and blurring of motions that do not normally manifest in conventional, user-controlled systems of 
acquiring biometric data. This variability degrades the recognition models and, therefore, the need for the 
application of deep learning-based feature extraction. The combination of YOLOv8 and DeepFace-VGG in this study 
eased the problem of non-controlled acquisition of biometric data. The application of the strong object detection of 
the use of YOLOv8 aided the detection of the faces regardless of the backgrounds they had appeared in, and the 
application of DeepFace-VGG aided the extraction of stable and variation-insensitive feature embeddings against 
occlusion, illumination, and pose variation. Also, Cosine Similarity has been used as the primary matching algorithm 
in an attempt to improve the recognition rates with the extra intra-class variation that comes with the passive 
acquisition of the biometric information. This aligns with the general scope of the study, which is developing a non-
intrusive yet highly secure system of authentication that will be able to perform effectively within the real world and 
in non-controlled environments. 

To conduct the system evaluation with experiments, a subset of 17 persons of the LFW database with 100 images 
per subject was utilized. This subset allowed the chance for the comprehensive testing of the system’s accuracy and 
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robustness against real-world variation of the biometric and the effectiveness of the proposed technique regardless 
of the non-intrusive acquisition of the biometric. 

To enhance detection accuracy, the YOLOv8 model is utilized for face detection, enabling precise cropping and 
preprocessing of facial regions for further feature extraction using DeepFace-VGG. This integration ensures reliable 
biometric verification and enhances overall system accuracy. The dataset is systematically split into three subsets: 
70% for training, 20% for validation, and 10% for testing. This partitioning ensures effective model generalization 
and prevents overfitting. Moreover, a balanced distribution across 17 classes is maintained to avoid bias and 
improve classification consistency. Preprocessing techniques include resizing images to 640x640 pixels to 
standardize input dimensions. Data augmentation techniques such as horizontal flipping, brightness adjustments, 
exposure modifications, and noise injection are applied to improve model robustness against variations in image 
quality and environmental conditions. For accurate labeling and annotation, the Roboflow [19]  The platform is used 
to incorporate bounding boxes and automated label assistance to refine object localization. This step ensures high-
quality input data for training deep learning models. 

For fingerprint authentication, the FVC2000_DB4 database is the largest and the most widely used database for 
commercial and scholarly research in the evaluation of fingerprint recognition system performance. The database 
has been released in the scope of the Fingerprint Verification Competition 2000, and it comprises 800 fingerprint 
images that belong to 100 different individual fingerprints with a total of eight samples per fingerprint [89].  

One of the characteristic features of this database is the heavy noise and distortion in the images, which thus form a 
challenging benchmarking database for fingerprint recognition systems. The image database includes a mixture of 
artifacts such as sensor noise, distortion, and blurring that severely negatively influence the matching and 
accuracies of the features. This has been caused primarily by the non-ideal acquisition environment and the use of a 
thermal sweeping sensor in the fingerprint acquisition. The resolution of the sensor is 500 dpi, and it also has 
contrast variation, ridge discontinuity, and partial print that further raises the recognition task difficulty. 

SHA-256 hashing during fingerprint template generation ensures good security with the maintenance of matching 
accuracy regardless of such variances. Cosine Similarity also ensures a good measure of addressing variances of the 
biometric templates and diminishes the influence of noise and distortion. 

This database remains a valuable source of images against which fingerprint and minutiae-based matching 
algorithmic testing and testing of identity verification and biometric encryption systems may be performed. Due to 
the challenging variation of image quality and the small surface area of the scans within the FVC2000_DB4 database, 
the database forms a good benchmark against the strength and efficiency of multiple-biometric security systems 
that may be assessed based on a real-world scenario with noise and distortion. 

3.2. Enrolment Phase    

The enrollment step is vital for secure biometric data registration. Face detection is performed by the system 
through YOLOv8, followed by feature extraction through DeepFace-VGG to create distinctive face encodings. Face 
encodings go through a Fuzzy Extractor to convert to binary to create helper data and face key. Simultaneously, 
SHA-256 hashing is used on fingerprint data to develop a cryptographic fingerprint key. Helper data and biometric 
keys are saved securely in the database for future encryption and verification. 

• DeepFace-VGG:  It is a deep model that extracts facial features of higher dimensions through 
convolutional layers to create robust embedding that guarantees secure biometric verification. 
Embedding is saved or compared through Cosine Similarity in verification. 

• Fuzzy Extractor:  It maximizes security by transforming facial feature-extracted facial features into 
binary vectors. The random cryptographic key is produced and XORed with this vector to create secure 
helper data. Key generation on demand is enabled through this method while biometric template 
protection is ensured. 

• SHA-256 for Fingerprint Processing: Fingerprint feature vectors get normalized before going through 
SHA-256 hashing to create a 256-bit fingerprint key. Securely saved, it is used for verification. 

• Database Structure: MySQL database is used to store biometric data in a secure manner that includes 
face encodings, fingerprint hashes, cryptographic keys, and helper data. Secure retrieval of biometric 
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credentials is ensured through the database, while sensitive details get hashed and encrypted for the 
protection of confidentiality and integrity of data. 

3.3. Verification Phase 

The verification step ensures secure and accurate user authentication by face and fingerprint biometric 
authentication. To begin with, the user enters their face image and their fingerprint. For face verification, the face is 
detected by YOLOv8, whereas high-dimensional features are extracted by DeepFace-VGG and converted to binary 
format. The face key is reconstructed by a Fuzzy Extractor and matched to stored embeddings by cosine similarity. If 
the score of similarity is lower than set beforehand, access is denied. For fingerprint matching, the presented 
fingerprint is converted to a binary format, whereas SHA-256 hashing results in a cryptographic key that is 
compared to the stored fingerprint hash in the database. Access is denied in the event of a mismatch. Authentication 
is only granted if face and fingerprint verifications succeed in offering a highly secure biometric login technique. The 
given approach integrates YOLOv8, DeepFace-VGG, SHA-256, and Fuzzy Extractors to offer solid reliability and 
robust protection. Cosine Similarity in Face Verification Cosine similarity is employed to determine how similar two 
vectors are by computing the cosine of their separation angle [21]. During login, DeepFace-VGG loads a facial feature 
vector that is compared to stored embeddings by utilizing the following formula: 

• Dot Product Calculation: 

𝐴 ⋅ 𝐵 = ∑ 𝐴𝑖

𝑛

𝑖=1

⋅ 𝐵𝑖                                                                                                                           (1) 

• Magnitude of Vectors: 

|𝐴| = √∑ 𝐴𝑖
2

𝑛

𝑖=1

                                                                                                                               (2) 

|𝐵| = √∑ 𝐵𝑖
2

𝑛

𝑖=1

                                                                                                                               (3) 

• Cosine Similarity Formula: 

𝑪𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
 𝐴 ⋅ 𝐵

∥ 𝐴 ∥∥ 𝐵 ∥
                                                                                                            (4) 

A similarity score near 1 indicates a strong match, while a lower score results in login rejection. A predefined 
threshold of 0.8 determines whether authentication is successful. If the score is below this threshold, access is 
denied. By combining face biometric technology with fingerprint technology, the system has secure biometric 
protection that is of high reliability and anti-tamper in nature. 

3.4. Encryption and Decryption    

The techniques for decryption and encryption discussed in the proposed scheme serve a critical function in 
protecting the integrity and confidentiality of stored and communicated user information in cloud environments. 
Biometric key generation, in combination with strong cryptographic algorithms, strengthens information security 
through protection against unauthorized access. As shown in figure 2. 
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Fig. 2- Encryption and Decryption scheme in proposed methodology.  

According to the envisaged framework, the key binding process forms a critical mechanism for combining keys 
derived from biometric sources, namely faces and fingerprints, into a single key for use in both encryption and 
decryption processes. It grants effective security for sensitive information stored in cloud storage infrastructure. In 
addition, it maximizes the uniqueness and accuracy of biometric information and incorporates cryptographic 
techniques for countering any potential unauthorized access vulnerabilities. 

AES 256 (Advanced Encryption Standard) is one of the most widely used block encryption algorithms today since it 
has the strength and efficiency to bear all kinds of attacks. This algorithm works based on dividing plaintext into 
128-bit blocks with the aid of a 256-bit encryption key. The entire encryption process consists of 14 iterations, 
which make use of four basic operations: SubBytes, ShiftRows, MixColumns, and AddRoundKey. Each subsequent 
pass adds to the complexity of the encrypted message, making it nearly impossible to deduce the original text 
without possessing the decryption key. [22]. 

• SubBytes: Bytes are substituted according to a non-linear transformation table 𝑆(𝑥) to provide security 
against differential analysis [23]: 

𝑆′(𝑖, 𝑗) =  𝑆(𝑆(𝑖, 𝑗))                                                                                                                           (5) 

 

𝑆′(𝑖, 𝑗): The new value of the byte at row 𝑖 and column 𝑗 after applying the substitution box (𝑆𝑏𝑜𝑥). 𝑆(𝑖, 𝑗): 
The original value of the byte at row 𝑖 and column 𝑗. 𝑆: The Substitution Box is a non-linear transformation 
designed to resist differential and linear cryptanalysis. 

• ShiftRows: Based on a shift in which rows in the state grid. The first row is an unchanged second row is 
shifted by one byte, the third by two, and the fourth by three bytes [23]: 

𝑆′(𝑖, 𝑗) =  𝑆(𝑖, (𝑗 +  𝑠ℎ𝑖𝑓𝑡(𝑖))𝑚𝑜𝑑 4)                                                                                                       (6) 

 

S′(i, j): The new value of the byte at the position (i, j) after row shifting. S(i, j): The original value of the byte 
at the position (i, j). shift(i): The number of positions to shift row i:   
  - Row0(i = 0): No shift.   
  - Row1(i = 1): Shift by 1 position.   
  - Row2(i = 2): Shift by 2 positions.   
  - Row3(i = 3): Shift by 3 positions. 
mod 4: Ensures the shifting stays within the four columns. 
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• MixColumns: A linear mixing operation wherein the columns of the state grid are multiplied by a constant 

matrix M via the operations of multiplication and modulo. It's performed on finite fields GF(28) [23]: 

  𝑆′(𝑖, 𝑗) = 𝑀 ⋅ 𝑆(𝑖, 𝑗)𝑚𝑜𝑑𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1  (7) 

 

𝑆′(𝑖, 𝑗): The new value of the byte at the position (𝑖, 𝑗) after column mixing. 𝑆(𝑖, 𝑗): The original value of the 
byte at the position (𝑖, 𝑗). 𝑀: A fixed matrix (4𝑥4) used for linear mixing through multiplication in the finite 

field 𝐺𝐹(28). Typically, the matrix is: 
𝑀 = 

[

 2 3 1 1 
1 2 3 1
1 1 2 3
 3 1 1 2 

] 

• AddRoundKey: 𝑋𝑂𝑅 operation is applied between the current block and the round key  𝐾𝑟𝑜𝑢𝑛𝑑  [23]: 
 
  𝑆′(𝑖, 𝑗) =  𝑆(𝑖, 𝑗) ⊕ 𝐾𝑟𝑜𝑢𝑛𝑑(𝑖,𝑗) (8) 

 

𝑆′(𝑖, 𝑗): The new value of the byte at the position (𝑖, 𝑗) after applying the round key. 𝑆(𝑖, 𝑗): The original 
value of the byte at the position (𝑖, 𝑗). 𝐾𝑟𝑜𝑢𝑛𝑑(𝑖, 𝑗): The value of the byte at position (𝑖, 𝑗)In the current round 
key. ⊕: The 𝑋𝑂𝑅 (Exclusive OR) operation. 

• Key Schedule: The keys used in the rounds are generated from the base encryption key via a key expansion 
function. The algorithm uses 8 𝑆𝐵𝑜𝑥𝑒𝑠  per round to generate the round key [23]: 

  𝑘{𝑙+1,𝑖,𝑗} =  𝑘{𝑙,𝑖,𝑗−1} ⊕ 𝑘{𝑙,𝑖,𝑗} (9) 

 

k{l+1,i,j}: The value of the byte at position (i, j) in the key for round l + 1. k{l,i,j−1}: The value of the byte at 

position (i, j − 1)In the key for round l. k{l,i,j}: The value of the byte at position (i, j)In the key for round l. ⊕: 

The XOR operation. 

3.5. Evaluation Metrics 

In order to assess the effectiveness and reliability of the biometric-based encryption and authentication scheme, a 
range of evaluation metrics is adopted. These allow for the accuracy, robustness, and security of the scheme to be 
measured and, in turn, validate its usability in actual implementations. These metrics allow us to assess the models' 
performance in the following ways:  

• IoU: Use IoU to calculate how closely the predicted and actual bounding boxes coincide. It considers two 
bounding boxes' overlap with regard to their overall area. To verify accuracy, contrast a predicted bounding 
box with the correct bounding box and view its IoU value. To calculate the IoU value, divide both bounding 
boxes' common area with regard to both bounding boxes' overall area. 

• Precision: Precision [24]  Functions as a key performance metric for proposed biometric security and 
authentication systems, specifically its ability to accurately discriminate between actual persons with a 
minimum of incorrect acceptances (False Positives, FP). Precision is a ratio of accurately detected actual 
positive cases, including both real and imposter cases, to the total number of positively detected cases. High 
values of precision represent high performance in distinguishing between actual persons and unauthorized 
access and, in consequence, a reduced chance of incorrect acceptances (False Positives, FP). Precision can 
be calculated using Equation 10: 

  Precision =  
True Positives (TP)

True Positives (TP)+ False Positives (FP)
 (10) 

• Recall: Recall [25] Evaluates a biometric system's ability to effectively authenticate a valid user and, at the 
same time, minimize cases of incorrect rejections. Recall measurement is a function of the proportion of 
True Positives (TP) to actual positive cases, including False Negatives (FN). A high value for Recall reflects a 
low rejection level for valid users, an important feature in scenarios with biometric encryption and key 
binding. Nevertheless, recall and precision must be balanced in terms of security concerns. Recall 
calculation is represented in Equation 11: 
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  Recall =
True Positives (TP)

True Positives (TP)+False Negatives (FN)
 (11) 

• Mean Average Precision (mAP): Mean Average Precision (mAP)  [26] It is a critical performance 
evaluation for models in object detection, offering an effectiveness estimation through a consideration of 
precision and recall at a range of Intersections over Union (IoU) thresholds. It begins with a calculation of 
Average Precision (AP) for one individual category, with AP estimating the area under a precision-recall 
curve. mAP is then calculated through aggregation of AP values for all defined object classes. High mAP 
reflects a high level of model effectiveness, with an efficient system in its performance at identifying objects 
with a minimum of both false positives and false negatives. mAP is regularly used in deep architectures, 
such as YOLO, Faster R-CNN, and SSD, for evaluation. mAP calculation is represented in Equation 12: 

  𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁
𝑖=1  (12) 

In this regard, 𝐴𝑃𝑖stands for average precision with regard to the i-th category, and N is a variable representing the 
number of object classes in its totality. Quantitatively representing Intersection over Union (IoU) in terms of mean 
Average Precision (mAP) is a widespread practice. For example, mAP50−95 describes a range of IoU values between 
0.5 and 0.95 with a 0.05 interval, whereas mAP95 describes a single value for IoU, 0.95. As seen in Equation 10, the 
computation of average precision for a target class begins with ranking all detected items in a descending manner 
according to confidence values. Next, at each level, recall and precision values are computed, culminating in the 
computation of integration of the precision-recall curve over all accessible thresholds in an estimation of an area 
under a curve, specifically the precision-recall curve (AUC). 

  𝐴𝑃𝑖 = ∫ 𝑃(𝑅)
1

0
 𝑑𝑅 (13) 

• Genuine Acceptance Rate (GAR): GAR is the percentage of cases where the system correctly identified an 
authorized user, as seen in Equation 14. It measures how much the system can be relied on to correctly 
identify authorized users [27]. 

  𝐺𝐴𝑅 =  (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑢𝑖𝑛𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑢𝑖𝑛𝑒 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠
) ∗ 100 (14) 

• False Acceptance Rate (FAR): FAR is the percentage of instances where an unauthorized user is 
incorrectly accepted by the system, as seen in Equation 15. It is a serious security error, as it measures how 
the system is exposed to giving access to impostors [28]. 

  𝐹𝐴𝑅 =  (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠
) ∗ 100  (15) 

• False Rejection Rate (FRR): FRR Percentage of instances where an authorized user is falsely rejected by 
the system, as seen in Equation 16. This represents a functional error where legitimate users are denied 
access [29]. 

  𝐹𝑅𝑅 =  (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑢𝑖𝑛𝑒 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠
) ∗ 100   (16) 

• The Equal Error Rate (EER): is an important metric in biometric authentication, representing the point at 
which both the False Rejection Rate (FRR) and False Acceptance Rate (FAR) become equal [30]. A smaller 
EER indicates a higher level of accuracy in the system, attaining an ideal balance between security and 
usability. It is typically derived from the Receiver Operating Characteristic (ROC) curve. The formula for 
EER is: 

  𝐸𝐸𝑅 = 𝐹𝐴𝑅(𝜏) = 𝐹𝑅𝑅(𝜏)   (17) 

Where 𝜏 is the decision threshold at which both rates are equal. EER is widely used to compare biometric systems, 
with lower values indicating improved performance. 

4. Results and Discussion 

The study was performed in two computing settings: Google Colaboratory and a computer installed on-site, with 
each having unique benefits for model training in deep learning and testing. 
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Collaboratory provides unlimited Tesla T4 GPU at no cost to significantly improve performance in the training of 
deep learning models. Testing was performed on the environment of Python 3.11.11, PyTorch 2.5.1, and CUDA 12.4 
for performance maximization. The face detection model and feature extraction model for YOLOv8 were deployed 
through the Ultralytics framework. Tesla T4 offers high computing power that maximizes neural network training 
and inference. 

Table 1 - Google Colab Experimental Environment 

Experiment 
platform 

Python Ultralytics Pytorch CUDA GPU 

Google 
Colaboratory 

Version 3.11.11 Version 8.1.5 Version 2.5.1 Version 12.4 Tesla T4 

 

A high-performance local computer was used for further testing with controlled conditions of processing. Having 
Windows 10 Pro operating system, it comes with an Intel Core i7-10700K processor (8 cores, 16 threads, 3.8GHz 
base, turbo boost of 5.1GHz), 32GB of DDR4 at 3200MHz of RAM, and an NVIDIA RTX 3060ti GPU with 4864 CUDA 
cores and 8GB of GDDR6 VRAM. All these specifications make for good parallel processing of deep neural networks 
for their training as well as inference. 

Table 2 - Local Experimental Environment. 

Experiment platform Python Windows RAM CPU GPU 

Local PC Version 3.12.7 Version 10 Pro 32 GB 
Intel i7-
10700k 

RTX 3060ti 

 

Both environments offset one another, with cloud-based flexibility from Google Colab and on-premise 
infrastructure to offer performance-tuned computing for intensive computations. 

4.1. YOLOv8 Results and Analysis 

YOLOv8 performance is shown by train and valid loss functions along with key performance metrics. The train box 
loss started well over 1.0 but successively reduced to 0.3309, suggesting better bounding box localization. The 
train class loss also reduced from 4.0 to 0.1837, suggesting better classification, whereas train dynamic focal loss 
reduced from 1.5 to 0.8777, suggesting better management of challenging cases. For validation, the box loss 
reached 0.75, whereas the class loss and dynamic focal loss reached 0.5 and 1.1, respectively, suggesting that the 
model is well generalizing to unseen instances. The trends here suggest stable training without overfitting, 
maximizing feature extraction of faces by YOLOv8 efficiently. 

The final three subplots reflect precision, recall, and mean average precision (mAP), providing insight into how 
accurately the model is operating. The precision of 0.981 means that 98.1% of identified objects were accurately 
identified, maintaining false positives to minimum levels. The 0.932 recall means that 93.2% of real objects were 
actually picked up, maintaining false negatives to minimum levels. mAP@50 also hit 0.984, maintaining good 
performance on object detection using 50% Intersection over Union (IoU) thresholds, while mAP@50-95 hit 0.807, 
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indicating steadiness on the fluctuating difficulty of detection. All of these ensure that YOLOv8 is effective in 
biometric use cases, most notably face detection and identification, maintaining maximum reliability in actual use 
cases. As shown in figure 3. 

Fig. 3- YOLOv8 Training and Validation Performance Metrics. 

The confusion matrix outlines the relationship between the predictions made by the YOLOv8 model (shown on the 
vertical axis) and the true values (shown on the horizontal axis) for different categories. The matrix highlights the 
model's strong ability in classification, as evident from the high concentration of correct predictions along the 
diagonal. Notably, the model showed exceptional accuracy for Scarlett Johansson, with 31 correct predictions, and 
for Hugh Jackman and Jennifer Lawrence, with both achieving 22 correct predictions. However, there were slight 
cases of misclassification in categories like Brad Pitt and Denzel Washington, where few samples were wrongly 
classified as belonging to other classes. Such errors often occurred in visually similar categories or with low-quality 
images. Overall, the matrix shows the model's high classification accuracy while identifying areas of potential 
improvement by addressing specific areas of confusion, enhancing data quality, and increasing the sample sizes in 
categories that showed suboptimal performance, as shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4- Confusion Matrix for YOLOv8 Model. 

4.2. Secure Key and Time Execution 

A cryptographic system based on biometric information requires a delicate balance between security, usability, and 
reliability. In order to maintain this balance, a number of key performance metrics are measured, namely the 
Genuine Acceptance Rate (GAR), False Acceptance Rate (FAR), False Rejection Rate (FRR), and Equal Error Rate 
(EER). Figure 5 presents a complete analysis of these metrics: 

Table 3 - Performance Evaluation of the Proposed Biometric Cryptosystem. 

Metrics GAR FAR FRR EER 

Result 99.07% 0% 0.93% 0.465% 

 

• The GAR (99.07%) indicates that the system shows a high proficiency in correctly identifying and 
verifying genuine users in almost all cases. 
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• The FAR (0%) indicates a zero error in recognizing unauthorized users, improving the system's 
immunity to false positives. 

• The FRR (0.93%) indicates that a small percentage of genuine users were rejected, possibly due to small 
inaccuracies in biometric information. 

• The EER (0.465%) is a midpoint between FAR and FRR, indicating that the system maintains a balance 
between security and usability at its optimal point. 

These metrics verify that the biometric-based cryptography system attains a high degree of precision without 
sacrificing security. 

 

Fig. 5- Performance Metrics Analysis: GAR, FAR, FRR, and EER. 

In practical applications, biometric-based systems need to work in short response times to provide an optimal user 
experience. The time taken to execute crucial processes is discussed in Figure 6, stressing the time taken to execute 
the following processes: 

• Registered Embedding: The process of extracting biometric features from input data. 

• Creation of a binary vector: The conversion of the extracted features to a binary vector that is usable in a 
cryptographic process. 

• Key Generation: The conversion of a binary vector to a key that is usable in a cryptographic process for 
purposes of authentication. 

• Creation of Helper Data: The generation of auxiliary data that is used to rebuild the key during a verification 
process. 
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Fig. 6- Execution Time for Each Step in Biometric Cryptographic Processing. 

4.3. Comparison of the proposed approach with recent studies 

The proposed system integrates face detection through YOLOv8 and feature extraction through DeepFace-VGG 
along with fingerprint identification to ensure greater biometric authentication security. The system is trained and 
validated on the Labeled Faces in the Wild face recognition dataset and FVC2000 fingerprint-based authentication 
dataset. With feature extraction through deep learning combined with cryptographic security protocols, the system 
had 99.07% accuracy, indicating better performance of biometric authentication. The multi-biometric fusion of face 
and fingerprint, the use of deep learning-based models, and the optimization of the process justified the reliability 
and resilience of the system. 

Table 4 - Comparing our Proposed System with Previous Studies based on Artifactual Intelligence. 

Ref\ Year Biometric Type 
Feature 

Extraction 
Dataset Result 

Abdellatef et al. 
[14]\ 2019 

Face CNNs 

FERET Accuracy of 98.89% 

LFW Accuracy of 98.93%  

PaSC Accuracy of 97.38% 

Sudhakar et al. 
[15]\2020 

Iris \ Finger veins CNN 

IITD Accuracy of 98% 

MMU Accuracy of 92% 

Zeroual et al. 
[16]\2022 

Physical \ 
behavioural 

DCNN + LTP 

Yale Accuracy of 90.90%  

Georgia Tech Accuracy of 98.66%  

FEI Accuracy of 98.03% 
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ORL Accuracy of 98.75% 

Extended Yale Accuracy of 98.78%  

Shukla et al. 
[17]\2023 

Iris \ Finger vein CNNs 

IITD    Accuracy of 92.1% 

MMU Accuracy of 85.4% 

FV-USM Accuracy of 92.3%  

Our Proposed  

System (2025) 
Face \ Fingerprint 

YOLOv8 + 
Deepface_VGG 

LFW \ 
FVC2000 

Accuracy of 99.07% 

 

When compared to earlier literature, our system outcompetes many of the top-notch models. Abdellatef et al. 
(2019), employing CNN-based face recognition models on FERET, LFW, and PaSC datasets, have reported 97.38-
98.93% accuracies. Sudhakar et al. (2020), employing CNN-based iris and finger vein recognition, reported up to 
98% on the IITD dataset, while Zeroual et al. (2022), employing combined DCNN and LTP on behavioral and 
physical biometrics, reported 98.66% on the Georgia Tech dataset. More recently, when employing iris and finger 
vein recognition, Shukla et al. (2023) reported 85.4-98.78% accuracies on datasets that they used.  

5. Conclusion 

The integration of key binding through biometrics makes cloud storage secure by overcoming weaknesses in 
password-based and token-based schemes. With the high-level security risks of unauthorized use and identity theft 
in cloud computing, biometric-based authentication combined with cryptographic key binding has been 
demonstrated to be an effective scheme of security. The present work introduces novel face recognition-based 
biometric-based authentication using face recognition (YOLOv8 and DeepFace-VGG) combined with hashing of 
fingerprints using SHA-256. The system is structured into three processes: registration, verification, and 
encryption, offering greater accuracy and attack resilience. Fuzzy extractors bind biometric features into 
cryptographic keys securely, protecting against replay attacks and coping with variations of biometrics through 
time. The experimental findings confirmed the reliability of the system, providing mean average precision (mAP) of 
0.984 along with zero false acceptance rate (FAR), false rejection rate (FRR) of 0.93%, equal error rate (EER) of 
0.465%, and genuine acceptance rate (GAR) of 99.07%. The integration of the AES-256 encryption scheme also 
provided protection of data. The comparative study confirmed that the system is very secure, efficient, and resilient 
to variations of biometrics, making it very effective to use in cloud-based security schemes. 
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