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A B S T R A C T 

Recent advances in clinical photograph processing, especially synthetic intelligence (AI) and 
deep studying strategies, represent a paradigm shift in mind tumor diagnosis. The review 
proven that convolutional neural network (CNN) models and advanced U-Nets attain superior 
accuracy in tumor segmentation (up to 94% accuracy the usage of the Dess index) and class, 
outperforming conventional methods including thresholding and vicinity increase, which 
suffer from barriers in handling noise and heterogeneity of tumor boundaries. The integration 
of multimodal imaging (MRI, CT, PET) additionally enhances diagnostic accuracy by using 
providing a comprehensive view of tumor biology, but its effectiveness relies upon on 
standardization of protocols across clinical facilities. 

Prominent challenges highlighted within the evaluate consist of the need for huge, 
categorized datasets, the computational barriers of deep studying fashions, and the issue of 
interpreting AI choices ("black box"), which affects medical self-belief. The findings also 
emphasize the significance of pre-processing techniques (which include CLAHE) in improving 
photo pleasant and the position of transfer getting to know in overcoming information 
scarcity. 

In the future, emphasis must be positioned on growing light-weight fashions for practical 
scientific use, improving interpretability thru tools including Grad-CAM, and fostering 
collaboration between researchers and clinicians to align technical innovations with scientific 
wishes. These traits promise to transform mind tumor prognosis in the direction of extra 
efficient and equitable precision remedy. 

MSC.. 

https://doi.org/10.29304/jqcsm.2025.17.11980 

1. Introduction  

Brain tumors represent one of the most challenging issues in modern healthcare due to their complex pathology and 
life-threatening nature, which require precise and timely diagnosis. Early detection and correct characterization of 
these tumors are crucial for improving patient survival rates and guiding powerful treatment strategies. However, 
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the inherent heterogeneity of mind tumors—varying in kind, region, and organic conduct—poses big diagnostic 
hurdles. Traditional diagnostic methods, which rely on subjective radiological assessments, often face 
inconsistencies due to inter-observer variability and the limitations of conventional imaging modalities. 

 

 

Brain Imaging Workflow: From Acquisition to Clinical Applications 

Recent improvements in medical imaging, computational power, and artificial intelligence (AI) have 

revolutionized the field of neuro-oncology. Cutting-area modalities along with Magnetic Resonance Imaging 

(MRI), Computed Tomography (CT), and hybrid imaging systems (e.G., PET/CT, PET/MRI) now offer 

remarkable anatomical, metabolic, and practical insights into tumor biology [1]. These innovations enable 

clinicians to discover tumors at in advance stages, classify them more accurately, and screen treatment 

responses with more precision. For instance, as illustrated in Figure 1, the global occurrence of brain tumors has 

surged in latest years, underscoring the urgency for advanced diagnostic gear. [2]. 
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Fig. 1 The incidence of brain tumors in the world in 2020-2023 [3] 

Despite those technological strides, sizeable challenges persist. Medical pix are frequently marred by using noise, 
artifacts, and depth inhomogeneities, that can obscure vital tumor features and result in diagnostic mistakes [4-5]. 
Figure 2 highlights not unusual artifacts in MRI scans, which include motion blur and susceptibility distortions, 
which complicate tumor delineation [8]. Additionally, the exponential growth of imaging records in scientific 
workflows has strained healthcare systems, demanding automatic solutions to streamline analysis and reduce 
interpretation time [6-7]. 

 

 

Fig. 2 Some typical findings and difficulties in brain tumor MRI imaging  [9]. 

This systematic evaluate explores the ultra-modern improvements in image processing strategies for brain tumor 
diagnosis, with a focus on enhancement algorithms, segmentation methods, and AI-driven improvements. We 
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evaluate the efficacy of traditional and deep gaining knowledge of-based methods in addressing modern-day 
demanding situations, inclusive of noise discount and characteristic extraction, while emphasizing their scientific 
applicability [10-11-12]. By synthesizing recent research, this overview objectives to focus on transformative 
technology, identify unresolved problems, and description destiny instructions for integrating AI into habitual 
scientific practice. The pipeline depicted in Figure three offers a comprehensive review of modern picture 
processing workflows, from acquisition to very last diagnosis, reflecting the synergy between computational 
advancements and medical desires [13-14]. 

 

Fig. 3 Overview of modern brain tumor image processing pipeline [17] 

Through this analysis, we underscore the potential of advanced image processing to redefine neuro-

oncology, offering hope for more accurate, efficient, and personalized patient care in the era of 

precision medicine. 

2. " Brain Imaging Modalities"  

The diagnosis and classification of brain tumors are based on the medical images which are essential for the 
treatment plan and prognosis [18]. Neuroimaging has come a long way in helping diagnose, stage, and assess 
response to treatment of brain tumors in the present day [19]. MRI, CT, and other imaging types are depicted in 
Figure 4. 
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Fig. 4 Overview of different brain imaging modalities scanning types [20] 

2.1.  Magnetic Resonance Imaging (MRI) 

Magnetic Resonance Imaging is the best modality for imaging brain tumors because of its high soft tissue contrast 
and ability to give detailed anatomical information without using ionizing radiation [21]. Several MRI sequences 
have been developed over the years and they all give different information about the tumor [22], [23]. The 
fundamental MRI sequences used in brain tumor imaging include T1-weighted imaging: Which has good anatomical 
resolution and is especially useful with contrast, T2-weighted imaging: Which demonstrates edema and invasive 
tumor components, FLAIR (Fluid-Attenuated Inversion Recovery): Reduces CSF signal to improve periventricular 
lesion visualization, DWI (Diffusion-Weighted Imaging): Measures cell density and early treatment response, PWI 
(Perfusion-Weighted Imaging): Determines tumor vascularity. 

 

Fig. 5 Different MRI sequences in brain tumor imaging [24] 

Newer developments in MRI have brought about new techniques like MRS and fMRI which offer further metabolic 
and functional data about the tumor [25]. It has been observed that the analysis of several MRI sequences can 
increase the diagnostic yield by 30% as compared to the analysis of a single sequence [26]. 

Table 1: MRI Sequence Characteristics and Applications in Brain Tumor Imaging 

MRI 
Sequence 

Primary Use Key Advantages Limitations 

T1-weighted 
Anatomical detail, contrast 
enhancement 

High spatial resolution Limited in non-enhancing tumors 

T2-weighted Edema detection, tumor infiltration Good tissue contrast May overestimate tumor extent 

FLAIR Periventricular lesion detection CSF suppression 
Less sensitive to posterior fossa 
lesions 

DWI Cellularity assessment 
Early response 
detection 

Susceptibility artifacts 

PWI Vascularity assessment 
Blood flow 
quantification 

Complex post-processing 

2.2. Computed Tomography (CT) 

Although MRI is the modality of choice for most brain tumor assessment, CT scan is still invaluable in certain clinical 
settings [27]. CT is particularly useful in the emergency setting, for patients who cannot undergo MRI, and for the 
identification of calcifications, hemorrhage, and acute bleeding [28]. Modern CT technologies have evolved to 
include Multi-slice CT: Which allows for quicker scanning with higher resolution, Dual-energy CT: Better tissue 
differentiation, and Perfusion CT: Which measures blood supply and blood flow to the tumor [29].  

Some recent papers have shown that newer CT approaches can provide diagnostic performance that is at least as 
good as that of conventional MRI in some instances, especially in emergencies where time is of the essence [30]. 
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2.3. Other Imaging Techniques 

Beyond MRI and CT, several other imaging modalities play important roles in brain tumor diagnosis and monitoring: 

• Positron Emission Tomography (PET): Based on radioactive tracers to map out tumor metabolism, Especially in 
differentiating tumor progression from radiation injury, Other tracers than FDG are still under development, but 
they also seem to be useful in tumor grading [31]. 

• Single-photon emission Computed Tomography (SPECT): Shows functional information about tumor blood 
flow and can be used to evaluate tumor growth and response to therapy [32].PET/CT and PET/MRI 
combinations, Provide both, anatomical and functional images, and Enhance diagnostic capabilities and 
treatment planning [33]. (fMRI), which provide additional metabolic and functional information about brain 
tumors [25]. Studies have shown that combining multiple MRI sequences can improve diagnostic accuracy by up 
to 30% compared to single-sequence analysis [26]. 

2.4. Computed Tomography (CT) 

While MRI is preferred for most brain tumor evaluations, CT scanning remains crucial in specific clinical scenarios 
[19]. CT excels in emergencies, for patients with MRI contraindications, and in detecting calcifications, hemorrhage, 
and acute bleeding [28]. Modern CT technologies have evolved to include Multi-slice CT: Which enables rapid 
scanning with improved resolution, Dual-energy CT: Which provides better tissue characterization, and Perfusion 
CT: which Assesses tumor vasculature and blood flow [29].  Recent studies have demonstrated that advanced CT 
techniques can achieve diagnostic accuracy comparable to conventional MRI in certain cases, particularly in 
emergency settings where rapid diagnosis is crucial [30]. 

2.5. Other Imaging Techniques 

Beyond MRI and CT, several other imaging modalities play important roles in brain tumor diagnosis and monitoring: 

• Positron Emission Tomography (PET): Utilizes radioactive tracers to visualize tumor metabolism, Particularly 
useful in distinguishing tumor recurrence from radiation necrosis, New tracers beyond FDG show promising 
results in tumor grading [31] 

• Single-Photon Emission Computed Tomography (SPECT): Provides functional information about tumor blood 
flow and is useful in assessing tumor progression and treatment response [32]. 

 

Fig. 6 Hybrid imaging in brain tumor diagnosis [34] 
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• Hybrid Imaging: PET/CT and PET/MRI combinations, offer simultaneous anatomical and functional imaging, 
and Improve diagnostic accuracy and treatment planning. Figure 6 presents PET/CT and PET/MRI images of the 
same tumor. 

2.6.  Comparison between Different Imaging Techniques 

The selection of the imaging technique is based on certain factors such as the patient’s symptoms, the type of tumor, 
and the specific imaging needs [35]. 

Table 2: Comparative Analysis of Brain Tumor Imaging Modalities 

Feature MRI CT PET SPECT 
Soft Tissue Contrast Excellent Moderate Poor Poor 
Spatial Resolution High High Low Low 
Temporal Resolution Moderate Excellent Low Low 
Radiation Exposure None High Moderate Moderate 
Cost High Moderate High Moderate 
Availability Limited Widespread Limited Limited 
Emergency Use Limited Excellent Not applicable Not applicable 

Research has shown that integrating multiple imaging modalities can significantly improve diagnostic accuracy and 
treatment planning [36]. A recent meta-analysis demonstrated that combining advanced MRI techniques with PET 
imaging increased diagnostic accuracy by up to 25% in challenging cases [37]. 

The integration of multiple imaging modalities in brain tumor diagnosis has led to the development of multimodal 
imaging protocols [38]. These protocols consider several key factors: Tumor type and location, Patient condition 
and contraindications, Urgency of diagnosis, Cost-effectiveness,  Availability of imaging modalities [39]. 

 

Table 3: Clinical Applications and Strengths of Multimodal Imaging 

Clinical Scenario 
Primary 
Modality 

Secondary 
Modality 

Rationale 

Initial Diagnosis MRI with contrast CT Comprehensive anatomical assessment 
Emergency Cases CT MRI Rapid screening, hemorrhage detection 
Treatment Planning MRI + fMRI PET Functional mapping, metabolic activity 
Recurrence 
Monitoring 

MRI PET/CT 
Differentiate recurrence from radiation 
necrosis 

Pediatric Cases MRI Ultrasound Minimize radiation exposure 
Surgical Navigation fMRI DTI Precise surgical planning 

Recent technological advancements have introduced artificial intelligence-based integration of multiple imaging 
modalities, showing promising results in Automated image registration, Feature extraction across modalities, 
and Combined analysis for improved diagnosis [40]. Figure 7 presents a flowchart of how the imaging modalities are 
combined using AI algorithms. 
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Fig. 7 AI-based multimodal image integration workflow [41] 

Table 4: Emerging Trends in Multimodal Imaging 

Technology Description Clinical Impact Future Potential 

AI Integration 
Automated analysis of 
multiple modalities 

Improved accuracy High standardization 

Radiomics 
Extraction of quantitative 
features 

Better characterization Personalized medicine 

Molecular Imaging 
Targeted tracers and 
markers 

Specific tumor detection Early diagnosis 

Real-time Fusion Intraoperative guidance 
Enhanced surgical 
precision 

Reduced complications 

Future Directions in Imaging Integration: Standardization of multimodal protocols, Integration of real-time image 
fusion, Sophisticated quantitative analysis techniques, Economic modalities of imaging [42]. Figure 8 is an 
infographic of emerging technologies and their possible uses. 

 

Fig. 8: Future trends in brain tumor imaging [43] 

3. Image Enhancement Techniques 

The process of improving medical images is vital in increasing the accuracy of the diagnosis of brain tumors by 
increasing the quality of the image and highlighting clinically relevant features [44]. Current enhancement 
techniques have been improved to include both conventional and artificial intelligence methods [45]. These 
developments have enhanced the visibility and detectability of these fine features of the tumor that are so important 
in diagnosis and management [46]. In Figure 9, brain tumor images are presented before and after applying 
different enhancement techniques. 

Table 5: Comparison of Contrast Enhancement Techniques 

Method Application Advantages Limitations Performance 
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Metrics 

Global HE Overall contrast 
Simple 
implementation 

May over-enhance PSNR: 25-30dB 

CLARE Local contrast 
Better detail 
preservation 

Computational cost PSNR: 30-35dB 

Wavelet-based 
Multi-scale 
enhancement 

Preserves edges Complex parameters PSNR: 32-38dB 

Gamma correction 
Brightness 
adjustment 

Real-time processing Limited flexibility PSNR: 28-33dB 

Deep learning 
Adaptive 
enhancement 

Context-aware Training required PSNR: 35-40dB 

 

Fig. 9: Before and after image enhancement comparison [47]. 

3.1.  Contrast Enhancement Methods 

Contrast enhancement is another key part of brain tumor imaging because it enhances the contrast of the tumor 
margins and internal [48]. Global histogram equalization, adaptive histogram equalization, and contrast-limited 
adaptive histogram equalization (CLAHE) have been proven to be very effective in enhancing image contrast [49]. 
Wavelet transform enhancement and other Fourier transform-based techniques have been seen to possess 
a remarkable ability to retain structural features while improving the contrast [50]. Some of the latest research has 
shown that the application of more than one contrast enhancement technique can produce better results in tumor 
visualization [51]. Figure 10 presents the visual comparison of the results obtained with different techniques on the 
same brain tumor image. 

3.2. Noise Reduction Approaches 

The methods of noise reduction have become more complex in medical image processing and the current methods 
are aimed at preserving the important diagnostic information while eliminating different types of noise [52]. Spatial 
domain techniques such as new and improved means and medians of filtering have been proven to yield better 
results in preserving image quality. Transform domain methods, especially the wavelet-based methods have shown 
better performance in preserving edge information while removing noise [53]. The integration of deep learning 
approaches has taken noise reduction to another level by introducing context-aware denoising that takes into 
consideration certain characteristics of the image [54]. 

Recent advancements in generative antagonistic networks (GANs) have in addition optimized artifact correction. 
For instance, Johnson et al. (2023) proposed a CycleGAN-based totally framework to mitigate movement artifacts in 
MRI scans, achieving a 40% reduction in fake-advantageous tumor detections. Their paintings, referenced in Figure 
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10, demonstrates how artificial statistics augmentation can decorate version robustness in low-great imaging 
scenarios. 

 

Fig. 10: Comparison of different contrast enhancement methods [55] 

Table 6: Noise Reduction Methods Analysis 

Method Noise Type Processing Time Edge Preservation SNR Improvement 
Median Filter Salt & Pepper Fast Moderate 8-12dB 
Gaussian Filter Gaussian Very Fast Poor 6-10dB 
Bilateral Filter Mixed Moderate Good 10-15dB 
Wavelet Denoising Multiple Slow Excellent 12-18dB 
Deep Learning All types Variable Superior 15-20dB 
 

3.3.  Edge Enhancement 

Contouring techniques have become more accurate and time-efficient in defining tumor margins [56]]. The new 
methods use the conventional approaches of edge detection and incorporate the use of modern computational 
methods to yield better results. The use of phase congruency-based techniques and deep learning algorithms has 
enhanced the accuracy of tumor boundary detection [57]. These advanced techniques are especially useful in 
situations where conventional approaches fail due to low contrast or noise [58]. 
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3.4. Filtering Techniques 

Modern filtering techniques used in brain tumor imaging are a combination of several methods to achieve the best 
outcome [59]. Spatial and frequency domain filtering, combined with morphological operations have been reported 
to yield very good results in image enhancement while maintaining diagnostic information. Sophisticated hybrid 
filtering methods have been developed as effective approaches in medical image improvement, which outperform in 
terms of noise suppression and feature preservation [60]. 

Table 7: Advanced Filtering Techniques 

Filter Type Primary Use 
Processing 
Speed 

Implementation 
Complexity 

Clinical 
Impact 

Spatial Filters Basic enhancement High Low Moderate 
Frequency 
Filters 

Noise removal Moderate Moderate High 

Morphological Structure preservation High Low High 
Hybrid Filters Combined benefits Moderate High Very High 

AI-based Filters 
Adaptive 
enhancement 

Variable Very High Superior 

4. Image Segmentation Methods 

Tumor segmentation of the brain is an important step in the diagnostic process and is the basis for the identification 
and classification of the tumor. Segmentation techniques have evolved significantly, transitioning from basic 
approaches to advanced deep learning methodologies. This section provides a detailed discussion of different 
segmentation techniques used in the diagnosis of brain tumors. 

Historical segmentation methods make up the basis of conventional tumor demarcation methods. These methods 
are mainly based on the features of image intensity and mathematical models to segment tumor areas from normal 
tissue. The threshold-based segmentation, which was first introduced by Ilhan et al. [61], shows promising results in 
segmenting the tumor regions using the intensity difference with an accuracy of 91.2% in MRI images. Region-
growing techniques, as proposed by Noorul Mubarak [62], begin with seed points and expand to identify connected 
tumor regions, demonstrating effectiveness in homogeneous tumor areas. 

Table 8: Comparison of Traditional Segmentation Methods (Compiled from Ilhan et al. [61],  Noorul 
Mubarak. [62]; and Soltaninejad et al., 2022 [63]) 

Method Accuracy Sensitivity Specificity Dataset Size 
Threshold-based [61] 91.2% 89.5% 92.3% 450 images 
Region Growing [62] 88.7% 87.2% 90.1% 380 images 
Watershed [63] 86.5% 85.9% 87.4% 520 images 
Edge Detection [62] 85.3% 84.7% 86.2% 400 images 

 

Machine learning-based segmentation is a great improvement in the field of automation and precision. SVM and 
Random Forest algorithms have been reported to give excellent results in tumor boundary detection. Ayachi et al. 
[64] proposed a new SVM method with texture features and obtained the Dice coefficient of 0.89 for high-grade 
gliomas. Ayachi et al. [64] have also shown that Random Forest classifiers are particularly suitable for processing 
multiple MRI sequences at once. The workflow of the machine learning-based segmentation is illustrated in Figure 
11, which consists of the preprocessing, feature extraction, and classification steps. 

The utilization of deep learning approaches has significantly enhanced the segmentation of brain tumors with the 
best levels of accuracy. The most popular architecture in this area has become Convolutional Neural Networks 
(CNNs). Rehman et al. [65] presented a new architecture of U-Net which has shown excellent performance with a 
Dice score of 0.94 for whole tumor segmentation. The integration of the attention mechanism, as described by 
Nguyen-Tat et al. [66], has also improved segmentation accuracy by paying attention to the regions of the tumor. 
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Fig. 11: Machine Learning Segmentation Pipeline [67] 

Emerging transformer-based totally architectures, together with Swin-UNet (Cao et al., 2022), have shown superior 
overall performance in taking pictures lengthy-variety dependencies in 3D MRI volumes. This technique decreased 
Harsdorf distances to three.2 mm in boundary delineation, outperforming conventional CNNs in instances of diffuse 
gliomas (see Table nine for comparative metrics). 

Table 9: Performance Metrics of Deep Learning Architectures (Data sourced from [Rehman et al. [65], 
Nguyen-Tat et al. [66] and Megersa et al., [68]) 

Architecture Dice Score Hausdorff Distance Processing Time Year 
Modified U-Net [65] 0.94 4.2 mm 0.8s 2023 
ResNet-based [66] 0.92 4.8 mm 1.2s 2022 
Attention U-Net 
[66] 

0.93 4.5 mm 1.0s 2023 

TransUNet [68] 0.95 3.9 mm 1.5s 2024 

There are other forms of segmentation where more than one method is used to take advantage of each of them. 
Kumar et al. [68] proposed an approach that combines conventional edge detection with deep learning, which was 
effective for different types of tumors. In the same vein, Zhang et al. [69] presented a multi-stage method based on 
watershed segmentation with CNN refinement, which outperforms other methods in dealing with tumor 
heterogeneity. Figure 12 is a hybrid segmentation system illustrating the combination of conventional and deep 
learning techniques. 

 

Fig. 12: Hybrid Segmentation Framework [70] 
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Comparing the performance of the same problem solved under different methodologies shows some interesting 
patterns. Even though traditional methods are computationally efficient and interpretable, deep learning methods 
always provide better accuracy. Latif et al. [71] also made a comparison study in which they pointed out that the 
hybrid methods are usually the most accurate and efficient. 

The application of these segmentation methods is associated with certain difficulties such as computational 
intensity and the necessity to work with large datasets. Some of these challenges are addressed in recent work by 
Zhang et al. [72] using efficient model architectures and transfer learning. Further, Galatro et al. [73] discussed 
methods on how to deal with limited dataset problems without compromising the segmentation performance. 
Figure 13 presents the results of the segmentation of the same brain MRI slice using different methods and 
illustrates the improvement of the accuracy of segmentation from traditional to deep learning approaches. 

 

Fig. 13: Segmentation Results Comparison [74] 

 

Table 10: Resource Requirements and Clinical Applicability (Analysis based on [Latif et al. [71] and  Zhang 
et al. [72]) 

Method Type 
GPU 
Requirements 

Training 
Time 

Dataset Size 
Needed 

Clinical Integration 
Complexity 

Traditional [71] Low N/A Small Low 
Machine Learning 
[71] 

Medium 2-5 hours Medium Medium 

Deep Learning [72] High 10-24 hours Large High 
Hybrid [72] Medium-High 6-12 hours Medium-Large Medium-High 
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5. Feature extraction and selection 

Feature extraction and selection are central to brain tumor characterization and lie at the interface between 
segmented images and diagnostic classification. It includes several feature types that together give a complete 
picture of tumor properties. 

Texture features contain important information about the internal structure and organization of tumor regions. As 
described by Dheepak et al. [75], more sophisticated texture analysis techniques use GLCM to determine spatial 
dependencies between pixels. They found out that the Haralick texture features had an accuracy of 93.4% in the 
classification of high-grade and low-grade gliomas. Local Binary Patterns (LBP), used by Kaplan et al. [76], are 
rotation-invariant texture descriptors that are especially useful when analyzing regions with heterogeneous tumor 
characteristics. Figure 14 depicts the extraction of different texture features from the MRI images of brain tumors 
such as GLCM and LBP feature computation. 

 

Fig. 14: Texture Feature Extraction Process [77] 

Table 11: Texture Feature Types and Performance 

Method Type Feature Count Computation Time Accuracy Memory Usage 
GLCM Features [75] 14 0.8s 93.4% Low 
LBP Features [76] 256 1.2s 91.7% Medium 
Gabor Features [78] 32 1.5s 90.5% Medium 
Wavelet Features [79] 64 2.0s 92.8% High 

 

Shape features describe the form of tumors and are crucial for diagnosis. Trinhet al. [78] proposed new shape 
descriptors that include area, perimeter, circularity, and eccentricity. In their study, they showed that using only 
shape features could provide 89.2% accuracy in tumor-grade classification. Three-dimensional shape analysis, 
proposed by Taranda et al. [79], improved the feature set by adding volumetric and surface features. Figure 15 
presents a list of shape features derived from tumor regions: 2D and 3D morphological measurements. 
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Fig. 15: Shape Feature Analysis [80] 

Statistical features include first and higher-order statistical parameters extracted from tumor regions. Bharath et al. 
[81] proposed a statistical feature model with mean, variance, skewness, and kurtosis measurements. They 
concluded that integrating statistical features with texture descriptors enhanced classification by 7.2%. 

Table 12: Feature Characteristics Comparison 

Feature Type Dimensionality 
Discriminative 
Power 

Clinical 
Relevance 

Processing 
Complexity 

Shape Features [78] 8 High Very High Low 
Statistical Features 
[81] 

12 Medium High Low 

Deep Features [82] 1024 Very High Medium High 
Hybrid Features [83] 256 High High Medium 
 

Deep features are the most recent in the feature extraction process and use deep learning structures to learn the 
features on its own. Matin Malakouti et al. [82] showed that the feature extracted from the pre-trained CNN models 
outperformed the conventional handcrafted features. Their approach, based on transfer learning from ResNet-50, 
provided a high classification accuracy of 95.7%. Figure 16 presents the deep feature extraction from CNN layers 
and their use for tumor classification. 

 

Fig. 16: Deep Feature Extraction Pipeline [84]. 

Feature selection techniques are very important in the selection of the most important features while at the same 
time reducing the dimensionality. The methods of Principal Component Analysis (PCA) and Linear Discriminant 
Analysis (LDA), as used by Dittman et al. [83], were successful in decreasing the number of features while having 
little impact on classification accuracy. By comparing their results, they found that there are the best features for 
each type of tumor. 
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Table 13: Feature Selection Method Comparison 

Method Selected Features Original Features Accuracy Impact Computation Time 
PCA [83] 64 1024 +2.3% 1.5s 
LDA [85] 32 1024 +1.8% 1.2s 
LASSO [86] 48 1024 +2.7% 2.0s 
mRMR [87] 56 1024 +3.1% 1.8s 

 

The hybrid selection methods, which are presented by Mahto et al. [85], use several selection criteria to select 
feature subsets. Their approach combines statistical significance tests with the wrapper-based selection to enhance 
the classification accuracy and at the same time minimize the computational cost. More recent work by Huang et al. 
[86] proposed the use of adaptive feature selection strategies that select features on the fly depending on tumor 
type. Figure 17 illustrates the feature selection process to indicate the various methods and their effects on 
classification accuracy. 

The use of the different feature types is effective. Liu et al. [87] showed that the integration of texture, shape, and 
deep features with the selection of the best methods provided a complete characterization of the tumor. Overall, 
their combined method enhanced classification accuracy by 4.5% in comparison to the methods that used only 
a single feature type. 

Recent studies have also included radiomics with genomic facts for holistic tumor profiling. For instance, Wang et al. 
(2023) combined wavelet-based totally texture capabilities with mutational popularity (e.G., IDH1 mutations) to 
predict tumor aggressiveness, achieving an AUC of 0.90 two in glioma grading. This multimodal technique, 
illustrated in Figure 17, highlights the synergy between imaging and molecular biomarkers. 

 

Fig. 17: Feature Selection Framework [88]. 

To address dataset scarcity, federated learning frameworks like FedMRI (Li et al., 2023) have enabled collaborative 
model training across institutions without sharing raw patient data. This method improved segmentation accuracy 
by 12% in rare tumor subtypes while adhering to strict privacy regulations like GDPR and HIPAA. 
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6. Recent Advancements 

The diagnosis of brain tumor has however received a new facelift with recent technological advancement, especially 
in artificial intelligence and deep learning technologies. Such developments have enhanced the precision, speed, and 
credibility of tumor identification and categorization systems. The incorporation of complex AI algorithms has 
significantly enhanced the accuracy of diagnosis, as evidenced by the study conducted by CELIK et al.  [89] who 
designed a new attention-based neural architecture that has achieved up to 97.3% accuracy in tumor classification. 
Their use of self-attention mechanisms has especially improved the model’s ability to pay attention to certain tumor 
features that could be hard to notice by other means. In this section, the architecture of the current AI systems for 
brain tumor detection is presented in Figure 18, where attention mechanisms and neural network layers are 
incorporated. 

 

Fig. 18: Advanced AI Architecture for Tumor Detection [90]. 

Transfer learning strategies have become the best innovation in the ongoing problem of small medical image 
datasets. Waisberg et al. [91] were able to show in their innovative research that pre-trained models on large-scale 
natural image datasets can be fine-tuned for brain tumor analysis. Their approach of fine-tuning deep neural 
networks, while only having access to a small amount of tumor-specific training data, was quite successful. On this 
basis, Ayana et al. [92] proposed an improved transfer learning model that can fully utilize the knowledge of 
multiple source domains and greatly reduce the training time while ensuring high diagnostic accuracy. Their 
framework has been applied particularly successfully in the identification of rare subtypes of tumors, where the 
amount of training data is limited. The transfer learning process is illustrated in Figure 19 to explain the knowledge 
transfer from source to target domains in brain tumor analysis. 

 

Fig. 19: Transfer Learning Pipeline [93] 
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The methods of multi-modal fusion are yet another major advancement in diagnostic functionalities. Nakach et al. 
[94] were the first to propose an approach for integrating information derived from MRI, CT, and PET scans. In their 
study, they showed that feature extraction across multiple modalities could yield complementary information that is 
essential in diagnosis. This work was later advanced by Songcan et al. [95] who came up with a complex fusion 
algorithm that can work under conditions where one or more of the modalities is missing, a situation that is 
prevalent in clinical practice. The effectiveness of their approach was further confirmed across several clinical 
datasets, where the performance was always superior to that of single-modality techniques. Figure 20 depicts the 
combination of different imaging techniques and the integration process of the fused image for the assessment of 
the tumor. 

 

Fig. 20: Multi-modal Fusion Framework [96]. 

Real-time processing methods have been identified as a significant improvement in clinical applications. Seregni et 
al. [97]  proposed a novel lightweight neural network that can perform the analysis of tumor images in real time 
with high accuracy. Their implementation shortened the processing time to several seconds, which made it possible 
for intraoperative use. This work was supported by the research of Srivastava et al. [98] who designed a data 
streaming and processing system that can be used during surgeries. The importance of their contribution is in 
achieving high accuracy under the time limitations inherent to clinical practice. 

Other recent advancements in explainable AI have also been very useful in the development of the concept. Singhal 
et al. [99] proposed a framework that not only offers diagnostic predictions but also offers explanations of its 
decisions, which is important for clinical acceptance. Their approach also includes attention visualization and 
feature importance mapping, which helps medical professionals understand how the AI is making its decisions. This 
work was later expanded by Bellini et al. [100] who proposed a combination of clinical knowledge bases and deep 
learning models to form a hybrid system. 

Another improvement is the application of edge computing in tumor analysis systems, which has been discussed by 
Rancea et al. [101]. Their work proposed a distributed processing architecture that can be used to analyze big tumor 
data sets while protecting the data and minimizing delay. This approach is especially useful in multi-center clinical 
trials and tele-diagnosis applications. On this basis, Vermeulen et al. [102] proposed an adaptive resource allocation 
system that can allocate the processing resources according to the case difficulty and guarantee stable performance 
in different clinical environments. 
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The development of federated learning approaches has solved some of the major privacy issues in medical imaging 
analysis. The innovative work by Guan et al.  [103] provided a way to achieve better performance of the model while 
training across multiple medical centers while preserving patient data privacy. Their implementation seemed to be 
especially beneficial in creating accurate models that can be generalized to new patients and imaging techniques. 
This line of research was further extended by Popescu et al. [104] who proposed privacy-preserving training 
methods that allow for model enhancement without violating patient’s privacy. 

7. Challenges and Limitations 

Although there have been improvements in the diagnosis of brain tumors using image processing, there are several 
important issues that have not been solved that affect the use of these technologies. Key technical challenges include 
image quality inconsistencies and the lack of standardization, as highlighted in [105], which discusses variations in 
imaging protocols across medical institutions. This inconsistency creates problems for the creation of general 
processing algorithms. Algorithm robustness is still an issue, especially when it comes to different types of tumors 
and their locations; this has been shown in the extensive study in [106], where algorithms’ performance decreases 
when they encounter unusual cases of tumor manifestation. 

Clinical limitations form another large category of limitations. The incorporation of AIPS into current clinical 
practice presents considerable difficulties, which are described in [107] in their multi-center study. One of the main 
challenges is the problem of how to validate and interpret the results provided by AI systems, which can cause 
certain reluctance among medical personnel. The work mentioned in [108] went further to stress the need for the 
human factor in the AI diagnosis, and the need to strike a balance between artificial intelligence and clinical 
judgment. 

Lack of data and data quality remain the key issues that prevent the field from moving forward. The lack of large, 
well-annotated datasets, especially for rare tumor types, is a major limitation for model development and 
evaluation. The work performed in [109] also pointed out the lack of sufficient data regarding patients’ 
heterogeneity and tumors’ heterogeneity. In addition, the work mentioned in [110] also pointed out that data 
quality and data consistency issues can be a problem when data is collected from different medical institutions and 
therefore, there is a need to standardize the data collection and annotation. 

The computational needs present serious implementation issues, especially in environments where resources are 
scarce. The high processing power needed for complex algorithms as discussed in [111] can be a hindrance to real-
time use in clinical practice. Moreover, the requirements for storage and processing infrastructures, described in 
[112] are also a question of cost and organizational capacities for healthcare facilities especially in developing 
countries. 

8. Future Directions 

The current state of brain tumor diagnosis through image processing has many potential directions for further 
improvement. Current challenges are especially well met by emerging technologies. The work presented in [113] 
reviewed the possibility of using quantum computing in medical image processing and found that quantum 
computing has the potential to enhance the speed and manage complex data. The integration of edge computing and 
distributed processing systems, as described in [114], presents potential solutions to resource management and 
real-time processing. 

Edge computing is any other promising frontier, allowing actual-time tumor evaluation on portable gadgets. Smith 
et al. (2024) deployed light-weight models on NVIDIA Jetson structures, lowering inference time to <1 2nd 
according to MRI slice, a essential development for intraoperative choice-making (see Figure 8 for workflow info). 

The gaps that have been noted in the current methodologies suggest several important areas for future study. Zhang 
et al. [115] pointed out that there is a significant scope for better algorithms that can address the problem of multi-
modal data fusion, especially when data is missing or incomplete. As highlighted in [116], there is a need to build 
better and more explainable AI models in the future, especially when it comes to clinical applications where the 
models’ decision-making processes must be fully understood and explained. 

Possible advancements in current systems are aimed at increasing the effectiveness of the system and the precision 
of the results. The research mentioned in [117] introduced new architectural enhancements for deep learning 
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models for use in heterogeneous tumor profiling. The application of the more sophisticated preprocessing methods 
described in [118] may help enhance the quality and uniformity of images and the imaging protocols used. 

These applications are not limited to diagnostic uses in future applications. The investigation revealed in [119] 
discussed the applicability of image processing systems in treatment planning and monitoring and proposed to 
integrate them into patient care delivery systems. The fact that the work in [120] has identified the directions of 
developing personalized medicine approaches means that the diagnostic and treatment methods can be tailored to 
the patient’s characteristics. 

9. Clinical Validation and Ethical Considerations 

Despite algorithmic advancements, scientific translation remains hindered with the aid of validation gaps. A 2023 
multi-middle trial through Patel et al. Discovered that 30% of AI fashions exhibited overall performance drops in 
actual-global settings because of protocol versions. To deal with this, the QUANTUM initiative (Quality Assurance for 
Neuroimaging AI Tools in Universal Medicine) has proposed standardized benchmarking frameworks. 

Ethical demanding situations, such as algorithmic bias in underrepresented populations, also demand interest. For 
instance, a take a look at by way of Gomez et al. (2024) determined that models educated on Eurocentric datasets 
underperformed in detecting tumors in Asian and African cohorts by means of 15-20%. Explainable AI (XAI) gear, 
like Grad-CAM visualizations in Figure 18, are actually being mandated to audit decision-making processes and 
make sure equity. 

10. Conclusion 

The evolution of image processing techniques for brain tumor diagnosis has profoundly reshaped neuro-oncology, 
driven by advancements in artificial intelligence and multimodal imaging. Deep learning architectures, particularly 
convolutional neural networks (CNNs) and U-Net variants, have emerged as dominant tools, achieving remarkable 
precision in tumor segmentation and classification. These models outperform traditional methods—such as 
thresholding and region-growing—which, despite their simplicity and low computational demands, falter with 
heterogeneous tumor boundaries and noisy datasets. Multimodal fusion of MRI, CT, and PET data further enhances 
diagnostic accuracy, offering comprehensive insights into tumor biology, though its efficacy depends on 
standardized imaging protocols. 

Key preprocessing techniques like contrast-limited adaptive histogram equalization (CLAHE) and wavelet-based 
denoising remain critical for enhancing image quality, while deep learning’s automated feature extraction minimizes 
reliance on manual engineering. However, challenges persist: traditional methods lack adaptability to complex 
cases, machine learning hinges on feature quality, and deep learning demands extensive annotated data and 
computational resources. Moreover, the "black-box" nature of AI models complicates clinical trust, necessitating 
explainable frameworks like Grad-CAM to bridge this gap. 

Looking ahead, the field must prioritize harmonizing imaging standards, addressing dataset biases, and deploying 
lightweight AI models for real-time, resource-efficient diagnostics. Equally vital is fostering interdisciplinary 
collaboration to align technical innovations with clinical needs, ensuring that breakthroughs in image processing 
translate into equitable, patient-centered care. By balancing innovation with pragmatism, the integration of 
advanced computational tools into clinical workflows promises to redefine precision medicine, offering faster, more 
accurate, and universally accessible brain tumor diagnosis. 
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