

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

Pure Essential-Coessential and Pure Essential-Coclosed Submodules

Omar Hameed Ibrahim¹, Nuhad Salim Al-Mothafar²

^{1,2}Department of Mathematics, University of Baghdad, College of Science. Baghdad, Iraq. Email: omar1979hameed@gmail.com

ARTICLEINFO

Article history: Received: 21 /10/2024 Rrevised form: 3 /12/2024 Accepted : 14 /1/2025 Available online: 30 /3/2025

Keywords: pure submodules, pure essential submodules, coessential submodules, coclosed submodules.

ABSTRACT

During this work, we introduce concepts named pure-essential coessential sub-modules and pure- essential coclosed submodules. Various properties related with these concepts are considered. Let *K*, *N* be sub-modules of an *T*-module *D* in which case $K \le N \le D$, subsequently *K* is called pure essential-coessential sub-module of *D*, if $\frac{N}{K} \ll_{pre} \frac{D}{K}$, and *K* is said to be pure essential-coclosed sub-module, if $\frac{N}{K} \ll_{pre} \frac{D}{K}$ implies that K = N.

MSC.

https://doi.org/10.29304/jqcsm.2025.17.11985

1. Introduction

T is a commutative ring with identity, and *D* is an *T*-module (shortly, *T*-mod). A proper sub-module (shortly, sub-mod) *N* of *D* namely small ($N \ll M$), if for any sub-mod *K* of *D* such that N + K = D indicates K = D [1]. A sub-mod *N* of *D* is said to be an essential (or *D* namely an essential extension of a sub-mod *N*) ($N \le_e D$), if $N \cap W \ne \{0\}$, for each nonzero sub-mod *W* of *D* [2-3]. The sub-mod *N* of a an *T*- mod *D* to be pure if $ID \cap N = IN$ for each ideal *I* of *T* [4]. Ibrahim and Al-Mothafar in [5] defined a generalization of essential sub-mod, which is called pure- essential (*Pr*-essential), as follows, a sub-mod *N* is said to be *Pr*-essential in *D*,(denoted by $N \trianglelefteq_{pr} D$), if $N \cap W = \{0\}$, indicates *W* is a pure sub-mod of *D*. For $K \le N \le D$, *K* is called coessential sub-mod of *N* in *D* ($K \le_{ce} N$) if $\frac{N}{K} \ll \frac{D}{K'}$ and *K* is called coclosed in *D* denoted by($K \le_{cc} D$), if *K* has no proper coessential sub-mod of *D*. Equivalently, if $\frac{K}{L} \ll \frac{D}{L}$ for any sub-mod *L* of *D* implies that D = L, see [2] and [6-8]. Many authors present generalization of a small sub-mod, briefly (*Pre*-small) was introduced by Ibrahim and Almothafar, where a sub-mod *N* of an *T*-mod *D* is called *Pre*-small, and denoted by ($N \ll_{pre} D$), if D = N + L, for any *Pr*- essential sub-mod *L* of *D*, indicates *L* = *D*. Equivalent, if $N + L \ne D$, for any proper *Pr*- essential sub-mod *L* of *D*. In section 2 of this work we study first a new concept, named pure-essential coessential sub-mod (*Pre*- coessential), which is a generalization of the coessential sub-mod and it is more powerful than the notion of pure-essential sub-mod, such as a sub-mod *K* namely pure- essential coessential sub-mod (*Pre*- coessential), which is a generalization of the coessential sub-mod and it is more powerful than the notion of pure-essential sub-mod, such as a sub-mod *K* namely pure- essential coessential sub-mod (*Pre*- coessential), which is a generalization of the coes

^{*}Corresponding author: Omar Hameed Ibrahim

Email addresses: omar1979hameed@gmail.com

we study another term which is called pure essential coclosed sub-mod (*Pre*- coclosed), as a generalization of coclosed sub-mod, if *K* is *Pre*-coessential of *N* in *D*, (i.e. if $\frac{N}{K} \ll_{pre} \frac{D}{K}$), implies N = K. We give some results analogue to the known results on coclosed submodules.

Main Results:

Lemma 1.1 [13]: For any *T*-mod *D*:

- 1. Every small submodule is *Pre*-small. But the converse is not true in general.
- 2. Let $f: D \to M$ be an epimorphisim, where D, M are modules, if $N \ll_{nre} D$ then $f(N) \ll_{nre} M$.
- 3. If $N_1 \oplus N_2 \ll_{pre} H_1 \oplus H_2$, then $N_1 \ll_{pre} H_1$, also $N_2 \ll_{pre} H_2$, where $D = H_1 \oplus H_2$ and $N_1 \leq H_1$, $N_2 \leq H_2$,
- 4. Suppose that *N*, *H* are sub-mod of *T*-mod *D*, with $N \le H \le D$. If $H \ll_{pre} D$, then $N \ll_{pre} D$.
- 5. Let *N*, *K* and *H* be submodules of an *T*-mod *D*, with $N \le K \le H \le D$. If $\frac{H}{N} \ll_{pre} \frac{D}{N}$, then $\frac{H}{K} \ll_{pre} \frac{D}{K}$.
- 5. Suppose that *N*, *K* are sub-mod of *T*-mod *D*, with $N \le K \le D$. If $N \ll_{pre} K$, then $N \ll_{pre} D$.
- 6. Suppose that *D* be an *T*-mod, also let $N \le D$. If *D* be a *Pre*-holow mod, hence $\frac{D}{N}$ is *Pre*-holow mod.

Lemma 1.2 [5]:

For any *T*-mod *D* and *N*, *K* are sub-mod of *D*, with $K \leq N$. If $\frac{N}{K} \leq_{pr} \frac{D}{K}$ and $K \leq_{p} D$, then $N \leq_{pr} D$.

2. Pure Essential Coessential Submodules.

In this part we introduce a new type of submodule called pure essential coessential submodule, we start with a few characteristics of this category of submodule.

Definition 2.1:

Let *D* be an *T*-mod, and let *N*, *K* are submodules of *D*, in which case $K \le N \le D$. Then *K* is called pure essential coessential submodule of *N* in *D*, briefly(*Pre*-coessential submodule), denoted by ($K \trianglelefteq_{pr.co} N$), if $\frac{N}{\kappa} \ll_{pre} \frac{D}{\kappa}$.

Remarks and Examples 2.2

1. Clearly that each coesential sub-mod is *Pre*- coesential. Since every small submodule is *Pre*-small submodule, see Lemma (1.1).

2. In general, the opposite of (1) may not be correct. Consider in Z_{24} as Z – module: $\frac{4Z_{24}}{(\overline{0})} \ll_{pre} \frac{Z_{24}}{(\overline{0})}$, hence $(\overline{0}) \trianglelefteq_{pr.co} 4Z_{24}$. But $4Z_{24}$ is not small sub-mod of Z_{24} , since $4Z_{24} + 3Z_{24} = Z_{24}$, while $3Z_{24} \neq Z_{24}$, implies $(\overline{0})$ is not coessential submodules in Z_{24} .

3. Let *D* be an *T*-mod, and let *N* be a sub-mod of *D*. Then $N \ll_{pre} D$ if and only if $(\overline{0}) \trianglelefteq_{pr.co} N$ in *D*.

4. In Z_6 as a Z-module, $(\overline{0})$ it cannot be *Pre*- coessential of $(\overline{3})$ from Z_6 . Since $\frac{(\overline{3})}{(\overline{0})} \simeq (\overline{3})$ is not *Pre*-small in $\frac{Z_6}{(\overline{0})} \simeq Z_6$.

Proposition 2.3:

Let *N*, *K* and *H* are sub-modules of an *T*-mod *D*, with $N \le K \le H \le D$. Then $K \trianglelefteq_{pr.co} H$ in *D* if and only if $\frac{K}{N} \trianglelefteq_{pr.co} \frac{H}{N}$ in $\frac{D}{N}$.

Proof:

 $\implies) \text{ Since } K \trianglelefteq_{pr.co} H, \text{ implies } \frac{H}{K} \ll_{pre} \frac{D}{K}. \text{ Then by second isomorphism theorem: } \frac{D}{K} \simeq \frac{D/N}{K/N} \text{ and } \frac{H}{K} \simeq \frac{H/N}{K/N}, \text{ hence } \frac{H/N}{K/N} \ll_{pre} \frac{D/N}{K/N}. \text{ Thus } \frac{K}{N} \trianglelefteq_{pr.co} \frac{H}{N} \text{ in } \frac{D}{N}.$

 $(=) \text{ Suppose that } \frac{K}{N} \leq_{pr.co} \frac{H}{N} \text{ in } \frac{D}{N}, \text{ then by second isomorphism theorem: } \frac{D}{K} \simeq \frac{D}{K/N} \text{ and } \frac{H}{K} \simeq \frac{H/N}{K/N}, \text{ hence } \frac{H/N}{K/N} \ll_{pre} \frac{D/N}{K/N}.$ Thus $\frac{H}{K} \ll_{pre} \frac{D}{K}, \text{ so } K \leq_{pr.co} H \text{ in } D.$

Corollary 2.4:

Let *A*, *B* and *C* be submodules of an *T*-mod *D*, with $A \leq B \leq C \leq D$. If $B \leq_{pr.co} C$, then $\frac{B}{A \cap B} \leq_{pr.co} \frac{C}{A \cap B}$.

Proof:

Since $A \cap B \leq B \leq C$ in D and $B \leq_{pr.co} C$, then by Proposition (2.3) $\frac{B}{A \cap B} \leq_{pr.co} \frac{C}{A \cap B}$.

Corollary 2.5:

Let *A*, *B* and *C* be submodules of an *T*-mod *D*, with $A \le B \le C \le D$. If $A + B \trianglelefteq_{pr.co} C$, then $\frac{A+B}{A} \oiint_{pr.co} \frac{C}{A}$.

Proof:

Since $A \le A + B \le C$ and $A + B \trianglelefteq_{pr.co} C$, then by Proposition (2.3) $\frac{A+B}{A} \trianglelefteq_{pr.co} \frac{C}{A}$.

Proposition 2.6:

Every non-zero epimorphic image of Pre- coessential is Pre- coessential.

Proof:

Suppose that $f : D \to M$ is an epimorpism, and let A, B be submodules of D, such that $A \leq B \leq D$. If $A \leq_{pr.co} B$ in D, implies that $\frac{B}{A} \ll_{pre} \frac{D}{A}$, but f is an epimorphism, then by Lemma (1.1, 2) $f(\frac{B}{A}) \ll_{pre} f(\frac{D}{A})$, hence $\frac{f(B)}{f(A)} \ll_{pre} \frac{f(D)}{f(A)}$, thus $\frac{f(B)}{f(A)} \ll_{pre} \frac{M}{f(A)}$. Therefore $f(A) \leq_{pr.co} f(B)$ in f(D) = M.

Now, we will present some properties of Pre- coessential submodules.

Proposition 2.7:

Let *A*, *B*,*N* and *K* are sub-modules of an *T*-mod *D*. If $A ext{leq}_{pr.co} N$ and $B ext{leq}_{pr.co} K$ in *D*, then $A + B ext{leq}_{pr.co} N + K$.

Proof:

Since $A \leq_{pr.co} N$ and $B \leq_{pr.co} K$ in D, so $\frac{N}{A} \ll_{pre} \frac{D}{A}$ and $\frac{K}{B} \ll_{pre} \frac{D}{B}$. Now, let $f: \frac{D}{A} \to \frac{D}{A+B}$ be a map defined by f(x+A) = x + (A+B), for each $x \in D$, and $g: \frac{D}{B} \to \frac{D}{A+B}$ be a map defined by g(x+B) = x + (A+B), for each $x \in D$, clearly each f and g are epimorphisms, then by Lemma $(1.1)f\left(\frac{N}{A}\right) = \frac{N+B}{A+B} \ll_{pre} \frac{D}{A+B}$ and $g(\frac{K}{B}) = \frac{A+K}{A+B} \ll_{pre} \frac{D}{A+B}$, hence by Lemma $(1.1)\frac{N+B}{A+B} + \frac{A+K}{A+B} \ll_{pre} \frac{D}{A+B}$, thus $\frac{N+K}{A+B} \ll_{pre} \frac{D}{A+B}$. Therefore $A + B \leq_{pr.co} N + K$.

Corollary 2.8:

Let A, B and C are submodules of D, if $B \trianglelefteq_{pr.co} A$ then $B + C \trianglelefteq_{pr.co} A + C$ in D.

Proof:

Since $C \leq_{pr.co} C$, then by Proposition (2.7) $B + C \leq_{pr.co} A + C$ in D.

Proposition 2.9:

Let N, L, K be sub-modules of D, such that $L \le N \le D$, with L is pure in D. If N = L + K and $K \ll_{pre} D$, then $L \trianglelefteq_{pr.co} N$.

Proof:

To prove $\frac{N}{L} \ll_{pre} \frac{D}{L}$. Let $\frac{U}{L} \trianglelefteq_{pr} \frac{D}{L}$ such that $\frac{D}{L} = \frac{U}{L} + \frac{N}{L}$, hence D = U + N = U + L + K, then D = U + K. Since $\frac{U}{L} \trianglelefteq_{pr} \frac{D}{L}$ and $L \leq_{pr} D$, then by lemma (1.2) $U \trianglelefteq_{pr} D$. But $K \ll_{pre} D$, implies that D = U. Thus $L \bowtie_{pr.co} N$.

In the following propositions results:

Proposition 2.10:

Let *A*, *B* and *C* are sub-modules of an *T*-mod *D*, such that $A \leq B \leq C \leq D$. If $A \leq_{pr.co} C$ in *D*, then $A \leq_{pr.co} B$ and $B \leq_{pr.co} C$ in *D*.

Proof:

Suppose that $A \trianglelefteq_{pr.co} C$, then $\frac{c}{A} \ll_{pre} \frac{D}{A}$, since $\frac{B}{A} \le \frac{C}{A} \le \frac{D}{A}$ then by Lemma $(1.1)\frac{B}{A} \ll_{pre} \frac{D}{A}$, hence $A \trianglelefteq_{pr.co} B$. Since $\frac{C}{A} \ll_{pre} \frac{D}{A}$, then by Lemma $(1.1)\frac{C}{B} \ll_{pre} \frac{D}{B}$, thus $B \trianglelefteq_{pr.co} C$ in D.

Proposition 2.11:

Let N, L, K and A be submodules of D, then the following are equivalent:

1. If $N \trianglelefteq_{pr.co} N + L$ in *D*, then $N \cap L \trianglelefteq_{pr.co} L$ in *D*.

2. If $N \trianglelefteq_{pr,co} L$ in D, then $N \cap A \trianglelefteq_{pr,co} L \cap A$ in D.

3. If $N \trianglelefteq_{pr.co} L$ and $A \trianglelefteq_{pr.co} K$, then $N \cap A \trianglelefteq_{pr.co} L \cap K$ in D.

Proof:

(1 \Rightarrow 2) Let $N \trianglelefteq_{pr.co} L$ in D. Since $N \le L$ and $L \cap A \le L$, then $N + (L \cap A) \le L$. Since $N \le N + (L \cap A)$ in D, then by Proposition (2.10) $N \trianglelefteq_{pr.co} N + (L \cap A)$. By (1) $N \cap (L \cap A) \trianglelefteq_{pr.co} (L \cap A)$, but $N \cap L \le N$, hence $N \cap A \bowtie_{pr.co} L \cap A$.

 $(2 \Rightarrow 3)$ Suppose that $N \trianglelefteq_{pr.co} L$ and $A \trianglelefteq_{pr.co} K$. Since $A \le D$, then by $(2) N \cap A \trianglelefteq_{pr.co} L \cap A$. Also $A \trianglelefteq_{pr.co} K$ and $L \le D$, then by $(2) L \cap A \trianglelefteq_{pr.co} L \cap K$. Then by Proposition $(2.10) N \cap A \bowtie_{pr.co} L \cap K$ in D.

 $(3 \Rightarrow 1)$ Suppose that $N \leq_{pr.co} N + L$. Since $L \leq_{pr.co} L$ in D, then by $(3) N \cap L \leq_{pr.co} (N + L) \cap L$. Thus $N \cap L \leq_{pr.co} L$.

3. Pure Essential Coclosed submodules:

Within this part we present a new idea, pure essential coclosed submodules, some properties related to this concept will be discussed. First we have the following definition:

Definition 3.1:

A submodule *N* of an *T*-mod *D* is called pure essential coclosed submodule (*Pre*-coclosed), if $\frac{N}{K} \ll_{pre} \frac{D}{K}$, implies that N = K, for each *K* contained in *N* and denoted by ($N \leq_{pr.cc} D$).

Equivalently, a submodule *N* of an *T*-mod *D* is called pure essential coclosed submodule of *D*, if *N* has no proper *Pre*-coessential submodule in *D*.

Remarks and Examples 3.2:

1. Clearly that each Pre-coclosed sub-mod is coclosed.

Proof: Let $\frac{N}{K} \ll \frac{D}{K}$, then by lemma (1.1) $\frac{N}{K} \ll_{pre} \frac{D}{K}$. But *N* is *Pre*-coclosed, hence N = K. Thus *N* is coclosed.

2. The converse of (1) in general may not be correct, for example. In Z_6 as Z-module, since $(\overline{2}) \simeq \frac{(\overline{2})}{(\overline{0})} \ll_{pre} \frac{(\overline{6})}{(\overline{0})} \simeq (\overline{6})$, hence $(\overline{2})$ is coclosed of Z_6 , but not *Pre*-coclosed in Z_6 . Since $(\overline{0})$ is *Pre*-coessential sub-mod in $(\overline{2})$ of Z_6 .

3. Every simple module is not Pre-coclosed.

4. $(\overline{2})$ in Z_4 as Z-module is not *Pre*-coclosed. Since $(\overline{2}) \simeq \frac{(\overline{2})}{(0)}$ and $\frac{Z_4}{(0)} \simeq Z_4$, by Lemma (1.1) $(\overline{2}) \ll_{pre} Z_4$ and $(\overline{2}) \neq (\overline{0})$.

5. Let $D = Z \bigoplus Z_4$ as Z-module. ($\overline{0}$) be a proper sub-mod of Z_4 in D, but $Z_4 \simeq \frac{Z_4}{(\overline{0})}$, $D \simeq \frac{D}{(\overline{0})}$ so Z_4 is not *Pre*-small of M and $Z_4 \neq (\overline{0})$. Therefore Z_4 is *Pre*-coclosed of D.

Proposition 3.3:

Let *N* be a non-zero sub-mod of an *T*-mod, if $N \trianglelefteq_{pr.cc} D$, then *N* is not *Pre*-small in *D*.

Proof:

Assume that $0 \neq N \ll_{pre} D$, and $N \trianglelefteq_{pr.cc} D$. Since $(\overline{0}) \le N$ and $N \simeq \frac{N}{(\overline{0})} \ll_{pre} \frac{M}{(\overline{0})} \simeq D$, but $N \trianglelefteq_{pr.cc} D$, implies $N = (\overline{0})$ contradiction. Therefore N is not *Pre*-small in D.

The following propositions gives basic properties for *Pre*-coclosed submodules:

Proposition 3.4:

Let *A*,*B* are submodules of an *T*-mod *D*, such that $A \le B \le D$. If $B \trianglelefteq_{pr.cc} D$, then $\frac{B}{A} \trianglelefteq_{pr.cc} \frac{D}{A}$.

Proof:

Suppose that *B* is *Pre*-coclosed in *D*, and let $\frac{L}{A} \leq \frac{D}{A}$ such that $\frac{B_{A}}{L_{A}} \ll_{pre} \frac{D_{A}}{L_{A}}$, then by third isomorphism theorem [1] $\frac{B_{A}}{L_{A}} \simeq \frac{B}{L}$ and $\frac{D_{A}}{L_{A}} \simeq \frac{D}{L}$, so $\frac{B}{L} \ll_{pre} \frac{D}{L}$. Since $B \leq_{pr.cc} D$, implies B = L and $\frac{L}{A} = \frac{B}{A}$. Therefore $\frac{B}{A} \leq_{pr.cc} \frac{D}{A}$.

Proposition 3.5:

Let *D* be an *T*-mod, and *A*, *B* be submodules of *D* such that $A \leq B$. If $A \leq_{pr.cc} D$, then $A \leq_{pr.cc} B$.

Proof:

Let L < A such that $\frac{A}{L} \ll_{pre} \frac{B}{L} \leq \frac{D}{L}$, hence by Lemma (1.1) $\frac{A}{L} \ll_{pre} \frac{D}{L}$. Since $A \leq_{pr.cc} D$, hence A = L. Therefore $A \leq_{pr.cc} B$.

Proposition 3.6:

Let *D* be an *T*-mod, and let $A \leq B \leq D$. If $A \ll B$ and $\frac{B}{A} \leq_{pr.cc} \frac{D}{A}$, then $B \leq_{pr.cc} D$.

Proof:

Assume that $L \leq B$ such that $\frac{B}{L} \ll_{pre} \frac{D}{L}$, so by third isomorphism theorem [1] $\frac{B_{/A}}{L+A_{/A}} \simeq \frac{B}{L+A}$ and $\frac{D_{/A}}{L+A_{/A}} \simeq \frac{D}{L+A}$. Let $\pi: D \to \frac{D}{A}$ be the natural epimorphism, define as $\pi(L) = L + A$. Hence by Proposition (2.6) $\frac{L+A}{A} \leq_{pr.cc} \frac{B}{A}$, then $\frac{B_{A}}{L+A_{A}}$ $\ll_{pre} \frac{D/A}{L+A/A}$. Since $\frac{B}{A} \leq_{pr.cc} \frac{D}{A}$, so $\frac{L+A}{A} = \frac{B}{A}$, then B = L + A. But $A \ll B$, implies B = L. Therefore $B \leq_{pr.cc} D$.

Corollary 3.7:

Let *A* is *Pre*-essential sub-mod of an *T*-mod *D* and $A \le B \le D$. If $A \ll_{Pre} B$ and $\frac{B}{A} \trianglelefteq_{pr.cc} \frac{D}{A}$, then $B \bowtie_{pr.cc} D$.

Proof:

By the same argument of proof proposition (3.6) until, then B = L + A. But $A \ll_{Pre} B$ implies B = L. Therefore B $\trianglelefteq_{pr.cc} D.$

Recall that a non-zero *T*-mod *D* is called pure-uniform, briefly (*Pr*-uniform), if every non-zero sub-mod of *D* is Pr-essential. [5]

Corollary 3.8:

Let *D* be a *Pr*-uniform *R*-mod, and $N \le K \le D$. If $N \ll_{pre} K$ and $\frac{K}{N} \trianglelefteq_{pr.cc} \frac{D}{N}$, then $K \bowtie_{pr.cc} D$.

Proof:

Clear by Lemma (1.1) and by Proposition (3.6).

In the following results we have a *Pre*-coclosed submodule of direct summand is also *Pre*-coclosed:

Proposition 3.9:

Let $D = D_1 \oplus D_2$ be *T*-mod, and $N \trianglelefteq_{pr.cc} D_1$, then $N \trianglelefteq_{pr.cc} D$.

Proof:

Let L < N, such that $\frac{N}{L} \ll_{pre} \frac{D}{L} = \frac{D_1 \oplus D_2}{L}$. Hence $\frac{N}{L} \ll_{pre} \frac{D_1}{L} \oplus \frac{L+D_2}{L}$, then by lemma $(1.1)\frac{N}{L} \ll_{pre} \frac{D_1}{L}$. Since $N \leq_{pr.cc} D_1$, implies N = L. Thus $N \leq_{pr.cc} D$.

Proposition 3.10:

Let *D* be *T*-mod, and let $A \trianglelefteq_{pr.cc} D$. If $B \ll_{pre} D$, then $B \ll_{pre} A$, for every $B \le A$ and for some $A \le D$.

Proof:

Let $L \leq_{pr} A$ such that A = L + B to prove that A = L. Since $A \leq_{pr.cc} D$, then by Proposition (3.4) $\frac{A}{L} \leq_{pr.cc} \frac{D}{L}$, hence $\frac{A/B}{L/D}$ $\ll_{pre} \frac{D_B}{L_p}$, where $B \leq L$, then $\frac{A}{B} = \frac{L}{B}$. Thus A = L, therefore $B \ll_{pre} A$.

Recall that, a non-zero T-mod D namely pure essential hollow (Pre-holow), if each proper submodule of D is Pre-small submodule of D.[13]

Proposition 3.11:

Every Pre-coclosed sub-mod of Pre-hollow module is also Pre-coclosed.

Proof:

Assume that *D* is *Pre*-hollow module, and *A* be *Pre*-coclosed in *D*. Let *L* be a proper sub-mod of *A* and *H* be a *Pre*essential sub-mod of A such that A = L + H. Since D is Pre-hollow by Lemma (1.1, 7) $\frac{D}{H}$ is Pre-hollow, then $\frac{A}{H}$ is a *Pre*-small submodule of $\frac{D}{H}$. Since *A* is *Pre*-coclosed, hence A = D and *H* is *Pre*-small submodule of *A*. Thus *A* is *Pre*-hollow.

Conclusion:

In this work, pure-essential coessential and pure- essential coclosed submodules, which are generalization of coessential submodules and pure coclosed submodules respectively. We also show some of the following results:

- ≻ $K \trianglelefteq_{pr.co} H$ in *D* if and only if $\frac{K}{N} \trianglelefteq_{pr.co} \frac{H}{N}$ in $\frac{D}{N}$, with $N \le K \le H \le D$.
- > Every non-zero epimorphic image of Pre- coessential is Pre- coessential.
- ▶ If N = L + K and $K \ll_{pre} D$, then $L \trianglelefteq_{pr,co} N$, such that $L \le N \le D$, and L is pure in D.
- ▶ If $A \trianglelefteq_{pr,co} C$ in *D*, then $A \oiint_{pr,co} B$ and $B \oiint_{pr,co} C$ in *D*, where $A \le B \le C \le D$.
- ▶ If $N \leq_{pr.cc} D$, then N is not Pre-small in D.
- ▶ If $B \trianglelefteq_{pr.cc} D$, then $\frac{B}{A} \trianglelefteq_{pr.cc} \frac{D}{A}$.
- ▶ If $A \trianglelefteq_{pr,cc} D$, then $A \trianglelefteq_{pr,cc} B$, such that $A \le B \le D$.

References.

- [1] F. Kasch, Modules and Rings. 1982. doi: 10.1017/cbo9780511529962.
- [2] A. S. Mijbass and N. K. Abdullah, "Semi-essential submodules and semi-uniform modules," Kirkuk J. Sci., vol. 4, no. 1, pp. 48-58, 2009.
- [3] M. A. Ahmed and M. R. Abbas, "On semi-essential submodules", Ibn Al-Haitham, J. for Pure & Applied Science, Vol. 28 (1), pp:179-185, 2015
- [4] F. W. Anderson and K. R. Fuller, "Rings and Categories of Modules", Springer-Verlage, New York, 1992.
- [5] O. H. Ibrahim, and N. S. Al-Mothafar, "Pure Essential Submodules", Iraqi J. Sci. (Accepted), 2024.
- [6] Ganesan, L. and Vanaja, N. "Modules for which every submodule has a unique coclosure". Comm. Algebra, vol.30, no.5, pp. 2355-2377, 2002.
- [7] Firas Sh. F and Sahira M. Y. "ET-Coessential and ET-Coclosed submodules", Iraqi J. Sci., vol.60, no.12, pp. 2706-2710, 2019.
- [8] A. A. Abduljaleel and S. M. Yaseen, "Large-Coessential and Large-Coclosed submodules", Iraqi J. Sci., pp. 4065-40670, 2021.
- [9] A. Kabban and W. Khalid, "On Jacobson-small submodules," Iraqi J. Sci., vol. 60, no. 7, pp. 1584–1591, 2019.
- [10] H. R. Baanoon and W. Khalid, "e*-Essential Small Submodules and e*-Hollow Modules," Eur. J. Pure Appl. Math., vol. 15, no. 2, pp. 478–485, 2022, doi: 10.29020/nybg.ejpam.v15i2.4301.
- [11] C. Nebiyev and H. H. Ökten, "r-Small Submodules," vol. 3, no. 1, pp. 33-36, 2020.
- [12] I. M. A. Hadi and S. H. Aidi, "On e-small submodules," Ibn AL-Haitham J. Pure Appl. Sci., vol. 28, no. 3, pp. 214-222, 2017.
- [13] O. H. Ibrahim, and N. S. Al-Mothafar, "Pure Essential Small Submodules and Pure Essential Hollow Modules", AIP conference proceedings, ISSN; 0094-243X, 1551-7616, (Accepted), 2024.