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A B S T R A C T 

This study aims  to analyze the dynamics of  trajectories in a system of Van der Pol with the 

coupled oscillator. The control parameters considered are damping and coupling strength. We 

focus on study the behaviour of this system within a specific small invariant subspace.  It is  

used phase difference to reduce the dimension of this system into two dimensions. Then, the 

Jacobian matrix is computed eigenvalues in order to determine the stability of equilibrium 

point.  this work specifically   discovers the effects the damping and coupling  strength 

parameters to emerge synchronization states. additionally, it investigates how change the 

value of damping parameter influence on the system's  energy.  
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1.  Introduction: 

     Coupled oscillators are essential models for studying complex dynamical systems across diverse sciences, 

including physics [1], biology [2], chemical [3] and electrical oscillators [4]. The Van der Pol oscillator, a typical 

example of a nonlinear oscillator, is used to investigate self-sustained oscillatory dynamics through the interaction 

of energy generation and dissipation [5]. When Van der Pol oscillators are coupled, their interactions show many 

phenomena such as synchronization, energy exchange, and bifurcation patterns. The model of the Van der Pol 

system is an ideal model for studying environment and engineered systems, for example, cardiac rhythms, neural 

networks, and power grids [6, 7].  

     The important parameters that affect the behaviour of coupled van der Pol oscillators include the damping 

parameters K and the coupled strength μ. The damping parameter influences nonlinearity term and generation or 
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dissipation energy, while the coupled strength determines the degree of interaction or coherence between 

oscillators.  

      Both of these parameters have significant effects on the behaviour of trajectory, such as stability, phase portraits 

or bifurcation. when damping has a small value (which means reduced nonlinear dissipation) combined with strong 

coupling is large, the system exhibits distinct patterns, for example, it allows oscillators to sustain harmonic that is 

similar to motion with minimal energy loss. On the other hand, Strong coupling refers to the energy exchange 

between oscillators to promote coherent collective behaviour [8]. Conversely, When damping is strong, and 

coupling is weak, the behaviour of coupled van der Pol oscillators leads to show individual dynamics rather than 

collective dynamics. Also, strong damping refers to the nonlinear dissipation that implicates robust self-sustain 

oscillations with each oscillator and displays a limit cycle and poor synchronization [9, 10]. The study of the Van der 

Pol system reveals the mechanisms governing synchronization, stable limit cycle, exchange energy and bifurcation 

as parameters vary [11, 12].  

       This work is arranged as follows: In section two, it produces the Van der Pol equation with coupled oscillators 

and a small invariant subspace. Also, it is transformed the second-order differential equation into a system with 

first-order equations, which is easier to study mathematically. Section three investigates the influences of varying 

damping effects and coupling strength on appearing coherent states, stable/unstable equilibrium points and the 

behaviour of trajectories towards a limit cycle.  

 

2. Coupled oscillators in the Van der Pol equation  

   We consider the model Van der Pol equation with coupled oscillators to study collective behaviour in networks 

of nonlinear oscillators [5],  

  ̈   (    
 )  ̇      ∑ (     )

 

   

                                        ( ) 

where     state of       oscillators,    is coupled strength and   is a coupled function, where  

 ( )     (   )     (  )  

   We will concentrate on the model (1) analysis within one of the exotic balanced polydiagonals, which is an 

invariant subspace A, from the table at [13, 14].  

  (                 )  (                       )  

Networks often display patterns of frequency synchrony, in which two or more oscillators have the same behave. 

In a mathematical sense, The solutions of equation(1) which are    and      are frequency synchronized on the 

same trajectory, if  

       
   

 

 
[     ]     

and partial synchrony if         

Now, we write invariant subspace A with equation (1) and coupled function(2), we get  

  ̈   (    
 )  ̇      ∑ (     )
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Then, we can write the equitations (3) as a system by:  
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Let us consider              in the interacted  function    we get 

  ̇      
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After simplify, the system becomes, 

 

  ̇      

                   ̇   (    
 )           (     )                                                 

  ̇      

          ̇   (    
 )           (     )                                  ( ) 

The phase difference  between the two oscillators is assumed as: 

           

Then, it is substituted      in (6) to get,  

  ̇         (     ) 

  ̇    ̇    ̇   [(    
 )   (    

 )  ]      [    (   )      (  )] 

                                            (     )                                                                                                         ( ) 

Which is system of coupled oscillators with two parameters coupled strength   and damping  . 
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3.  Stability and Parameters effects 

The important steps to analyze the dynamics of the van Der Pol system are to find equilibrium points and 

determine their stability. Fixed points indicate that the system’s derivatives disappear. In other words, a fixed 

point can be obtained by solving the system (7), when  

  ̇     

  ̇     

Then the equilibrium point is (0, 0). The next step is to compute the Jacobian matrix to evaluate the local linear 

behaviour around this point.  

  

[
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  [
   

     (   (  ))                 (     
]  

The eigenvalues of the Jacobian that are computed at the fixed point (0, 0) determine stability. The fixed point is 

stable if it has all eigenvalues with negative real part. Also, the point is called unstable if any eigenvalues have a 

positive real part. Now, we will display different cases for the changes behaviour of the coupled Van der Pol 

oscillators due to varying values of the damping parameter and coupled strength.  

Case 7: when k = 7, μ = 0.3. 

 

    The Jacobian matrix with these values of parameters at the fixed point (0, 0) has two complex eigenvalues with 

positive real parts, which means the fixed point is an unstable spiral point that is plotted as a black point in 

Figure 1A1. In addition, the single limit cycle is created due to the strong coupled K. In Figure 1A1, the trajectories 

travel slowly with extensive spiralling and take a long time to settle into the stable limit cycle because the 

damping has a small value and the system slowly dissipates energy. Moreover, These values mean there is a 

strong coupling, which leads to emerging synchrony between oscillators. In other words, the oscillators 

continuously oscillate with a constant phase difference (Figure 1A2), such that these values show anti-

synchronization as seen in Figure 1A3. In addition, a small μ refers to the self-sustained oscillations of the 

oscillators, and it is weaker. the strong coupled and μ is small, encouraging synchronization and enabling the 

efficient exchange of energy between oscillators.  

 

Figure 1: This figure shows phase portrait  in A1.  for system (7) with μ = 0.3 and K=1.  Also, the Phase difference 

is in panel A2. Finally, A3.   displays anti-synchronization motion between two coupled oscillators. 
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Case 5:  when μ = 7, K = 0.7. 

 

At these values, there is no change in the stability of the fixed point is still an unstable spiral point. But, you can 

see in Figure 2B1, that the trajectory that starts near an unstable fixed point goes to the stable limit cycle with 

minimal spiralling because the stronger damping quickly rectifies energy imbalance and directs trajectories 

toward the limit cycle. The values of strong damping μ and weak coupled K lead the system to show high 

nonlinearity which is represented by the term μ(1 − x2), which leads to strong self-sustained oscillations. The 

stable limit cycles are formed as a result of cyclic generation and dissipation of energy within each oscillator. In 

other words, K indicates a weak coupling, which means the interaction between oscillators is very little. Also, the 

energy exchange between oscillators is limited because of weak coupled. Moreover, in Figure 2B2, phase 

differences between the oscillators persist over time, and their individual dynamics dominate, resulting in a lack 

of coherent collective motion. Also, the oscillators have anti-synchronization motion which is represented in 

Figure 2B3.  

 

Figure 2: This figure shows a phase portrait in B1 for system (7) with μ = 1 and K = 0.1, the black point represents 

an unstable spiral point. The phase difference is in panel B2. Finally, B3 displays anti-synchronization motion 

between two coupled oscillators. 

Case 3: when μ = 3, K = 0.7. 

 

The equilibrium (0, 0) became an unstable node because their eigenvalues are just positive real parts. The 

trajectories diverge exponentially from this point (see Figure 3C1). In addition, μ = 3 indicates strong nonlinearity 

and K = 0.1 is weak coupling. In Figure 3C1, The phase portrait at these values displays trajectories like symmetry 

wings with the black unstable node point. These trajectories finally go into stable limit cycles with large amplitude 

oscillations due to strong nonlinear damping. The energy of dynamics at this behaviour is internal generation and 

dissipation within each oscillator and there is minimal energy exchange owing to weak coupling. Also, oscillators 

keep continual phase differences (Figure 3C2,). Both of oscillators have the same waveform with temporally shifted 

as seen in Figure 3C3.  
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Figure 3: Phase portrait is shown in panel C1 for system (7) with μ = 3 and K = 0.1, black point represents the 

unstable node point. A phase difference is in panel C2. Finally, C3 displays synchronization motion between two 

coupled oscillators with small shifts.  

 

 

4. Conclusion 

This paper provides an analysis of the behaviour of trajectories of the coupled  Van der Pol oscillators, with effects 
on two essential parameters: damping and coupling strength. This system is reduced into two dimensions by using 
phase differences in order to simplify the analysis.  Also, it enables us to find the Jacobian matrix and its eigenvalues 
that asset to determine the stability of fixed points.  Moreover, it highlights the great influence of damping and 
coupling strength on the emergence of synchronization states. These results give a deeper understanding of the 
motion of coupled oscillators in a nonlinear system and their complex behaviour, with potential applications in 
different sciences where synchronization plays an essential role. This work focused on studying the behaviour of 
trajectories with a specific small number of oscillators. An interesting direction for future work uses different sizes 
of an invariant subspace, changing the symmetry of the invariant set or adding noise to the essential equation.  
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