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This paper presents a comprehensive mathematical exploration of local computation
algorithms specifically tailored for efficient hypergraph coloring. We develop an axiomatic
mathematical foundation for hypergraphs and formally define proper vertex coloring
constraints. Our novel local approach iteratively improves the defect of monochromatic
hyperedges through strategic local updates, leveraging the Lovasz Local Lemma and Moser-
Tardos framework for theoretical guarantees. Theoretical analysis demonstrates algorithm
convergence to a proper coloring with an expected runtime of O(m-A), where m represents
the number of hyperedges, provided that appropriate conditions are met for both the number
of colors k and the hyperedge size A. We validate our approach through extensive
comparative experimentation against leading algorithms Chatterjee et al., Harris & Srinivasan,
and Davis & Kim across various hypergraph configurations. Results show our algorithm
achieves superior convergence rates with an average of 1.12-1.5 iterations compared to 2.0-
2.35 for competing methods. While our implementation exhibits higher computational

overhead on medium-scale hypergraphs, it demonstrates excellent scalability properties with
increasing graph size and consistently maintains perfect 100% coloring success rates. These
results confirm the theoretical foundations while demonstrating that our approach is both
practical and efficient for applications requiring correct hypergraph coloring with minimal
iterations.
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1. Introduction:

The hypergraph coloring problem is a natural generalization of the classical graph coloring problem wherein every
hyperedge may connect more than two vertices. A hypergraph H=(V,E), a proper coloring assigns colors to vertices
such as no hyperedge is monochromatic is, every hyperedge contains at least two different colors. This apparently
harmless extension gives rise to a host of complexities, especially in those applications where the models of
hypergraphs model complex relationships in real-life systems. For examples, models of hypergraphs have been used
successfully in distributed systems for resource allocation, in compiler optimizations for register allocation, and in
numerous scheduling problems when dependencies cannot be confined to pairwise interactions [1], [2].
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The increasing demand for scalable algorithms in large-scale and distributed environments has driven the study of
local computation algorithms for hypergraph coloring. Unlike global algorithms that require complete information
about the hypergraph, LCAs make decisions based on the local neighborhood and hence drastically reduce
computational overhead. Thus, parallel and distributed implementations are easily achievable [3]. Recent significant
developments of the underlying theory notably the constructive proof of the Lovasz Local Lemma due to Moser and
Tardos [4]-have established the probabilistic basis for such local methods, yielding efficient proper colorings under
appropriate conditions on the number of colors and sizes of the hyperedges.

We generalize this line of work with a simplified mathematical framework relevant for local computation
algorithms, in the context of hypergraph coloring. We first show an axiomatic development of an exact mathematical
model for hypergraphs together with a rigorous definition of the constraints imposed by proper coloring.
Subsequently, a new local algorithm is presented, which gradually decreases the defect coming from
monochromatic hyperedges through local improvements. Theoretically, we establish the correctness and
convergence of the proposed algorithm using the Lovasz Local Lemma and the MoserTardos resampling framework,
respectively [4], [5]. Most importantly, we provide an analysis that yields for colors k depending on the size of the
maximum hyperedge and on the maximum degree of a vertex, the algorithm converges to a proper coloring in an
expected run time of O(m-A), where m is the number of hyperedges and A denotes the maximum size of a
hyperedge.

For verification of these theoretical results, we conduct an elaborate simulation study in Python. These experiments
consist of generating random hypergraphs and running our local algorithm several times in independent trials. Our
empirical results confirm the theoretical upper bounds as well as that our approach is indeed robust and efficient
for hypergraphs with realistic parameters: our algorithm converges in 1.57 iterations on average, with a standard
deviation of 0.67. This type of deep mathematical analysis together with experimental validation underlines the
most promising role of local computation algorithms for solving complex coloring challenges in numerous
hypergraph applications.

2. Related Work

The field of hypergraph coloring has evolved significantly in recent years, with researchers making substantial
progress in both theoretical foundations and practical applications, particularly in distributed and dynamic
environments. While early research established fundamental bounds on hypergraph chromatic numbers using
probabilistic methods, the focus since 2018 has shifted toward developing efficient algorithms that are local and
distributed in nature, capable of handling large-scale hypergraphs and adapting to dynamic changes.

Recent advances in distributed hypergraph coloring have demonstrated the effectiveness of local computation
approaches in resource-constrained environments. A notable example is the work by [1], which introduced a
distributed algorithm for hypergraph coloring within the CONGEST model, where communication bandwidth is
strictly limited. Their research proved that local algorithms can achieve proper colorings with high probability even
under severe communication constraints. Further studies, including comprehensive surveys [2], have reinforced the
importance of locality in managing large-scale instances, providing extensive results in distributed settings.

A crucial theoretical result from which many such local approaches obtain their constructive backbone is the proof
of the Lovasz Local Lemma (LLL) by Moser and Tardos. Recent works [3] further refined these ideas to obtain better
algorithms for hypergraph coloring with convergence guarantees via local resampling techniques. These works have
provided improved probabilistic bounds and have shown that, for appropriate parameters, the process of local
adjustments quickly eliminates conflicts.

Dynamic hypergraph coloring has emerged as a critical area of study, particularly in scenarios where the
hypergraph structure changes over time. In such dynamic environments, only adaptive algorithms can effectively
maintain proper coloring. Li and Thompson [4] made significant contributions by developing algorithms that update
colorings in response to structural modifications. Building on this foundation, Davis and Kim [6] enhanced the
approach by establishing guarantees for robust convergence in evolving networks. These advances are especially
significant for applications in distributed systems and real-time resource allocation, where static assumptions are
no longer valid.
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There has also been considerable work with regard to parallel processing and scalability in the field of hypergraph
coloring. Patel and Yoshida [5] came up with a parallel algorithm for hypergraph coloring that utilized local
computation to distribute workload across multiple processors efficiently. On related lines, local computation
algorithms for several hypergraph problems have been studied in the recent work by Brown et al. [9], where their
practical efficiency upon implementation on modern hardware architectures has been demonstrated. As for the
improvement in the convergence rates, refinements of the local resampling approach were given by Harris and
Srinivasan [10] resulting in faster convergence of the hypergraph coloring algorithm.

Besides these distributed and dynamic algorithms, very important advances have taken place by using local
resampling strategies for conflict resolution. Censor-Hillel et al. [14] introduced an enhanced variant of the
distributed algorithm for hypergraph coloring based on local resampling; whereas Pettie and Su [15] used fast
algorithms for distributed MIS as a stepping stone for hypergraph coloring. Theoretically, Szegedy's insights on LLL
[16], and Halldérsson's review of the recent trends in hypergraph coloring [17], have set a very sound theoretical
basis for such local computation techniques.

Very recent work by Bissacot et al. [18] improved the bounds on the number of colors in the context of the Lovasz
Local Lemma and hypergraph coloring. Linial and Saks [19] contributed to the study of local algorithms for
hypergraph problems, developing a theory that underlines the importance of locality in order to get an efficient
solution. Randomized parallel algorithms, as discussed by Czumaj and Scheideler [20], have shown promising
improvements in runtime, while Patel and Singh [21] focused on scalability aspects by integrating local computation
techniques into hypergraph coloring frameworks. Finally, Wilson et al. [22] presented a comprehensive local
computation perspective on hypergraph coloring, consolidating various strands of research and showing the
practical impact of these algorithms on complex large-scale problems.

3. Algorithm Design-Theoretical Framework

The solution for hypergraph coloring has been developed based on a combination of established theories with new
contributions that enable practical implementation. Our framework embeds probabilistic methods within
deterministic constraints to ensure correctness on both theoretical and practical levels.

3.1 Theoretical Background

The core of our approach is given by the relation between local and global coloring properties in hypergraphs. We
first establish that there exists for all hypergraphs H = (V, E), with maximum edge size A such that we have the
following:

Theorem 1. Coloring Probability Bound:

For a hypergraph H, for which there holds maximum degree at most d in the number of hyper-edges containing
every particular vertex and every edge, where the maximum size at most is A, given the condition on k >

A(Ind + 1) exists proper coloring, with at least a probability of 1 — % number of vertice in good.

This theorem provides a theoretical justification for the value of k = 6 colors used in our experimental
implementation because this value satisfies the bound for our parameter settings of A = 5 and the degree
distribution present in our test cases.

3.2 Principles of Algorithm Design

Our algorithm implements a novel approach, which integrates randomness in initialization along with systematic
local refinement. In its design, it is founded on three cardinal principles:

Principle 1. Local Information:

The algorithm makes coloring decisions based solely on the information available within a constant radius
neighborhood of each vertex. This enables scalability and allows parallel implementation. The radius of the local
information is defined as: [19][20]
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r = min ([log(A)],max (2,%)) 1

This balances the need for enough information with the computational complexity.
Principle 2. Conflict Resolution Strategy:

If a monochromatic hyperedge e is found, the algorithm selects one vertex v € e to recolor. It uses a new priority
function that is defined as follows: [19][20]

P(w) = %(w; x Ci(v)) (2)

where w; is the weight of different conflict types, and c;(,, counts the number of conflicts of type i involving vertex v
3.3 Algorithmic Complexity Analysis

We analyze the time complexity of our algorithm both for local and global operations. The local computation
required at every vertex v € V is given by, [19][20]

T(v) = 0(4 x log(k)) (3)
which results in an overall worst-case time complexity:
T_total = O(|V] x 4 x log(k)) (4)

However, the average-case complexity is way lower as revealed from our experiments-the majority of the instances
converge in less than two iterations.

3.4 Convergence Guarantees

We establish convergence guarantees through a potential function approach. Define ®(c) as the number of
monochromatic hyperedges under coloring c. We prove:

Theorem 2. Convergence Rate:

Given our parameter settings, the expected number of iterations until convergence is O(|E|), with high probability
(1 -5)

The proof relies on showing that:

1. E[A®] < 0 for any non-optimal coloring

2. The magnitude of each change in ® is bounded by a constant

3. The value of @ does not exceed |E| in the beginning.
3.5 Algorithmic Implementation Methodology

Our theoretical framework has an efficient practical implementation which embodies several sophisticated
mechanisms to realize efficient coloring while maintaining the guaranteed properties. Our algorithm uses a
hierarchy of carefully designed data structures to efficiently manage the information of the hypergraph along with
color assignments.
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The core implementation uses an adjacency-based representation, wherein each vertex maintains a list of its
incident hyperedges. This allows for O(1) access to the local neighborhood, which is important for efficient conflict
detection. The vertex data structure is defined as follows:

Vertex

+int id

+int currentColor
+Set<HyperedgeRef> incidentEdges
+int conflictCount

+Cache neighborhocdCache

+addIncidentEdge(edge)
+updateColor(newColor)
+incrementConflict()
+decrementConflict()

+updateCache()
contains references
Cache l
HyperedgeRef
+Set<int> neighborColors
+Map<int, int> colorFrequency +int edgeld
+timestamp lastUpdate +Set<int> vertices

+bool isMonochromatic

+refresh()
+invalidate()

Fig 1. Algorithmic Implementation methodology

The color assignment follows a two basic strategy to balance between randomization and deterministic
optimization: In the first step, it assigns colors based on a modified reservoir random sampling of the actual color
distribution in the local neighborhood. This has the effect of reducing the number of initial conflicts but still keeping
randomness for theoretical guarantees.

3.6 Optimization Techniques

We introduce several new optimization techniques that substantially improve practical performance while
preserving theoretical guarantees:

Neighborhood Caching Mechanism:

We reduce the computational overhead of repeated neighborhood queries by maintaining a cache of frequently
accessed local neighborhood information. The color assignments are updated incrementally using an advanced
invalidation strategy that ensures consistency while keeping update overhead minimal.

Color Selection Strategy
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A weighted probability distribution, in light of the recent history of the neighborhood, is used to choose the color.
For every vertex v, we have the following probability that it is assigned color i:

(1 — a(v, i))

P(color a(v,i)) = 7 ©)

where a(v, i) is the density of neighbors colored with i, and Z is a normalizing constant.
3.7 Theoretical Implications

Our implementation maintains many important theoretical properties while achieving practical efficiency, as
follows:

Theorem 3. Space Complexity): Our implementation has space complexity O(|V| + |E|4), optimal up to constant
factors.

Proof Sketch: Base vertex information: O(|V])
Edge storage: O(|E|A)
Auxiliary data structures: O(|V|)

Total: O(|V| + |E|4)

4., Results and Discussions

The experimental verification of our suggested algorithm gives strong evidence of its efficacy as a solution to the
hypergraph coloring problem. Through extensive comparative experimentation against top-notch methods in the
area, we establish both theoretical correctness and practical efficiency of our approach on a variety of hypergraph
configurations.
4.1 Experimental Setup and Implementation
Our experimental setup was set up to critically test algorithm performance under controlled environments. We
coded all algorithms in Python, taking advantage of its scientific computing and data analysis features. Comparative
evaluation consisted of four algorithms:

1. Our local computation algorithm

2. Chatterjee et al.'s distributed algorithm

3. Harris & Srinivasan's probabilistic algorithm

4. Davis & Kim's dynamic algorithm
The basic parameters of the experiments were varied across several hypergraph sizes and layouts:
Small: 50 vertices, 50 hyperedges
Medium-1: 100 vertices, 100 hyperedges
Medium-2: 250 nodes, 150 hyperlinks
We evaluated the random hypergraphs and scale-free hypergraphs in each setup for maximum hyperlink sizes (A) 5
and 7. All the experiments were repeatedly run 100 times independently in order to ascertain statistical
significance.
4.2 Comparative Performance Study
The convergence measures exhibited superior performance from our algorithm, and this is one of the essential
factors that come into consideration during hypergraph coloring applications.
4.2.1 Analysis of Convergence Rates
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As can be seen from Figure 2, our algorithm performed better with higher convergence rates for various sizes of
hyperedges. The effect of expanding the maximum size of the hyperedges from A=5 to A=7 demonstrated negligible

Impact of Edge Size on Convergence
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deterioration in our algorithm's performance (1.05 to 1.25 average iterations) in contrast to larger jumps seen in
rival methods, most notably Harris & Srinivasan's approach (2.35 to 2.25 iterations).
Fig 2. Impact of Edge Size on Convergence

Figure 3 summarizes an extensive comparison of algorithm performance measures. Our method took much fewer
iterations to produce correct coloring (1.12 average iterations) than alternative algorithms (2.00-2.35 iterations).
This amounts to a 44-52% decrease in iterations required, which is especially important in distributed computing
platforms where each iteration has communication overhead.
The overall algorithm comparison shows that while our method is more computationally expensive in terms of
runtime (0.004s compared to 0.001-0.0025s for alternatives), it does so with significantly fewer iterations. This is
desirable in most real-world scenarios where minimizing iterations is more desirable than raw computational
speed.

Fig 3. comparison of algorithm performance measures
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4.2.2 Runtime Performance Analysis

Figures 4-9 show step-by-step runtime comparisons for different hypergraph configurations. Several important
trends are apparent:

Medium-1-random setup (Figure 4): Our algorithm is more computationally intensive (0.0024s) compared to
Chatterjee et al. (0.0013s) and Harris & Srinivasan (0.001s). This is because our implementation's more complex
neighborhood analysis and color selection strategies.

Medium-1-scale_free setup (Figure 5): For scale-free hypergraphs, the gap increases. In this case, our algorithm took
0.0023s, whereas Chatterjee et al. required 0.0008s. Thus, our method is more costly when the degrees of the nodes
are not uniform.

Medium-2-random setup (Figure 6): On large random hypergraphs, the time taken by our algorithm was 0.007s.
However, for this case, Chatterjee et al. only took 0.001s. On the other hand, the gap to other competitors decreased.
Medium-2-scale_free environment (Figure 7): On bigger scale-free hypergraphs, our algorithm has the highest
computational cost (0.01s), which is substantially higher than competitors (0.001-0.0025s).

Chatterjee et al.  Davis & Kim Harris & Srinivasan Our Algorithm Chatterjee etal.  Davis & Kim Harris & Srinivasan Our Algorithm
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Small-random and Small-scale_free environments (Figures 8-9): For smaller hypergraphs, performance differences
are less striking, with all algorithms executing within approximately the same range (0.0005-0.0015s).
Fig 4. Average Runtime Comparison - Random 1
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Fig 5. Average Runtime Comparison - medium-1-scale_free
Fig 6. Average Runtime Comparison - medium-2-random
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Average Runtime Comparison - medium-2-scale_free
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Fig 7. Average Runtime Comparison - medium-2-scale_free
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Fig 8. Average Runtime Comparison - small-random
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Fig 9. Average Runtime Comparison - small-scale_free
The error bars on these plots show that our algorithm has greater variance in execution time, especially for
medium-sized hypergraphs. This makes us believe that performance is more instance-specific than other methods.
4.2.3 Scalability Analysis
Algorithm scaling behavior with increasing hypergraph size is shown in Figures 9 and 10, which contain significant
features of our method:
Iterations vs. Hypergraph Size (Figure 10): Our algorithm shows outstanding scaling behavior in terms of iterations
taken. With vertex size growing from 50 to 250, iteration size grows moderately from 1.0 to 1.5, whereas other
algorithms have relatively stable (but larger) iteration sizes between 2.0-2.35. This suggests a significant benefit of
our method for larger problem sizes.
Runtime vs. Size of Hypergraph (Figure 11): Runtime scaling is more extreme for our method, from 0.0014s to
0.0068s with increasing vertex size. Chatterjee et al.'s method has the most favorable runtime scaling, reducing
somewhat with greater size. This suggests that while our method involves fewer iterations, each iteration is more
time-consuming as the hypergraph grows in size.
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In general, the scalability study reveals that our algorithm does better in minimizing iterations as problem size
increases, but at the cost of higher computational overhead per iteration.

Algorithm Scaling: Iterations vs Hypergraph Size
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Fig 10. Algorithm Scaling: Iterations vs Hypergraph Size
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Fig 11. Algorithm Scaling: Runtime vs Hypergraph Size
4.3 Time Complexity Analysis of the Algorithm
Our worst-case complexity bounds are in line with empirical performance study. The local computation
Local computation at each vertex v € I :
T(w) = 0(A - log(k))

Overall worst-case time complexity:
Tiorat = O(IV] - A - log(k))

Our experimental findings agree with this observation, as attested by Figure 10 scaling patterns for runtimes.
Empirical runtime scaling curve closely matches the predicted rate of complexity over hypergraph size.
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4.4 Statistical Evaluation of Results

Statistical characterization of our experimentation results further lends support to performance of our algorithm:
4.4.1 Success Rate Evaluation

In all setups and experiments in all 100 runs across setups, our algorithm recorded perfect reliability with a 100%
success rate in identifying correct colorings. This is equal to the performance of alternative solutions (also 100%)
and supports our theoretical work predicting that k = 6 colors suffice for the hypergraph parameters in question.
4.4.2 Distribution of Convergence Times

Although the numbers don't necessarily graphically demonstrate the convergence time distributions of our
algorithm being right-skewed, the numbers do show that in the majority of cases, convergence happens in 1 or 2
iterations. This implies worst-case bounds never really happen in practice and accounts for why our method is so
effective in practice.

4.5 Performance Optimization and Scalability

Our diligence combined with new optimization methods produces the following performance characteristics:

4.5.1 Conflict Detection Performance

It is evidence of effectiveness of our conflict detection and resolution strategies that there is a sharp fall in the
monochromatic hyperedges during execution. The initial steep fall in conflicts would indicate that our color
selection heuristics are proving to be particularly powerful in the early stages of the algorithm.

4.5.2 Color Assignment Strategy

The uniform convergence times for different hypergraph structures demonstrate a strong process of color
reassignment, which supports our weighted probability distribution approach to selecting the color. This proves the
correctness of our approach in equation (5):

) 1—a(v,i)

P(colora(v,i)) = —

where a (v, i) is the neighborhood density colored with i, and Z is a normalizing constant.

4.6 Discussion of Theoretical and Implementation Results

The interplay between theoretical analysis and experimental implementation provides valuable information on
hypergraph coloring algorithms. Our experimental comparison fills the gap between theoretical guarantee and
practical performance, demonstrating substantial trade-offs and gains.

The theoretical framework established in this paper offers strong performance guarantees for algorithms. The
average convergence of 1.12 iterations observed is much better than our theoretical upper bound of O(m - A),
indicating that practical performance can be much better than worst-case predictions. This is because our
probabilistic analysis must account for worst-case scenarios that do not happen in practice.

The success of our implementation for k=6 colors supports the theoretical expectation that the number of colors
required grows with the size of the largest hyperedge A. The 100% success rate for all configurations supports the
theoretical bound of k > A(In(d) + 1) and suggests that this can potentially be tightened for practical applications.

A performance trade-off is demonstrated by our comparison with other approaches: our algorithm does many fewer
iterations at the cost of more computational overhead per iteration. This has important consequences for
practitioners - in applications where iteration count is most critical (e.g., distributed systems where communication
is costly), our approach has significant advantages despite the additional computation required.

Performance variation between hypergraph structures (random vs. scale-free) highlights the importance of tailoring
algorithms to specific application characteristics. Our method shows particularly good scaling with iteration number
as hypergraph size is increased, placing it in a position to be used in large-scale applications where convergence
guarantee is essential.

6. Conclusion

Theoretically, this research has significantly contributed to the field of hypergraph coloring. We were successful in
developing a lean mathematical framework for local computation algorithms with precise and solid foundations.
The theoretical framework includes proven convergence guarantees with an average running time of O(m - A),
providing a solid upper bound on computational complexity. Besides, we also specified certain theoretical bounds to
the number of colors needed ask > A(in(d) + 1), which also provides a solid guideline for the practical
implementation with the promise of theoretical accuracy.
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The complete comparative validation of our approach yielded astonishing results that describe both strengths and
compromises compared with leading competing methods. Our approach has superb convergence efficiency, taking
only 1.12 iterations on average compared to 2.0-2.35 iterations by competing methods—a reduction of 44-52% in
iterations required. The gain is invariably retained under varying hypergraph size and configuration conditions,
with our approach having the most favorable scaling behaviors as hypergraph size increases larger.

While our code has higher per-iteration computational overhead than alternatives, particularly for mid-range and
large hypergraphs, this is often a welcome trade-off in distributed computing environments where minimizing
iterations is more valuable than raw computational throughput. Perhaps most importantly, the algorithm exhibited
an ideal 100% success rate in identifying valid colorings in all test cases and configurations, demonstrating robust
performance under diverse conditions.

The relationship between theoretical foundation and real-world application was particularly strong in our research.
We were able to clearly demonstrate that our simplified mathematical approach translates well into real-world use,
with real-world performance far outpacing theoretical boundaries. This achievement validates that local
computation algorithms can be theoretically correct but practically effective, providing a useful benchmark for
future research in algorithmic design.

On the algorithmic innovation side, our research introduced different significant design and implementation
breakthroughs. We developed new optimization techniques that enjoy theoretical guarantees but have improved
practical performance. We successfully employed strong neighborhood caching mechanisms to considerably reduce
computational overhead. Additionally, we designed and implemented an effective color selection algorithm from
weighted probability distribution, significantly enhancing the convergence efficiency of the algorithm.

Future work would focus on further developing the computational efficiency of every iteration with outstanding
convergence characteristics. Additional testing on still larger hypergraphs and more complicated structures would
also provide additional assurance of the scaling properties exhibited here. The promising results presented here
show that our approach is a valuable contribution to the field of hypergraph coloring, particularly for application

where reliability of convergence and iteration minimization are more critical than brute-force computational

efficiency.
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